§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2208201606415600
DOI 10.6846/TKU.2016.00713
論文名稱(中文) 非聚焦共路徑雷射光學尺
論文名稱(英文) Non-focused Common-path Laser Encoder
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 吳翊豪
研究生(英文) Yi-Hao Wu
學號 602370537
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-14
論文頁數 68頁
口試委員 指導教授 - 吳乾埼
委員 - 戴慶良
委員 - 鄭正元
關鍵字(中) 光學尺
位移量測
共路徑
非聚焦
光柵誤差
抗髒汙
關鍵字(英) laser encoder
displacement
common-path
grating pitch error
Anti-dirty
第三語言關鍵字
學科別分類
中文摘要
習用共路徑架構具有高穩定度、高解析度、架構簡單的優點。不過共路徑架構大多是將雷射聚焦在光柵上進行繞射,雷射聚焦在光柵上光點直徑僅有約0.1mm,聚焦光束設計造成光學尺對光柵製造品質、與光柵上髒污變得非常敏感,產生難以補償的量測誤差。
本文提出了一種非聚焦共路徑雷射光學尺(Non-focused common-path Laser Encoder,以下簡稱NFCPLE),在沒有將雷射聚焦情況下可有效克服過往共路徑架構遇到的瓶頸,NFCPLE對於光柵本身品質要求也較類似架構來得低。另外IC-Haus LSC感測器減少了光學元件數目,可減少光學元件之間的對位誤差。
本研究利用商用HP5529A干涉儀進行NFCPLE量測性能實驗評估,並進行誤差分析。實驗結果顯示,在10mm行程內,商用HP5529A干涉儀與NFCPLE的平均差量為185.31nm。而NFCPLE於三小時系統穩定度量測中產生漂移量為3.8±0.5nm,解析度約1.6±0.5 nm。綜合本研究的實驗評估與分析,可知NFCPLE在超精密機械應用相當有潛力。
英文摘要
Commonly usedcommon-path configuration.called (CPLE) has the advantages of high stability, high-resolution. ButCPLE almost is focused laser on grating.The focusedlaseron the grating is only about 100 mm in diameter. The optical scale is sensitive to grating manufacturing quality and grating dirty because of focused laser designed.
This study proposes a non-focused common-path laser encoderdevice called (NFCPLE). NFCPLE can effectively overcome the problems in the past CPLE without focused laser design.NFCPLE compared with CPLE for the grating quality requirements is also much low.MoreoverIC-Haus LSCphotodetector reduces optical elements. With this technique, the effect of optical element error can be greatly reduced.
In this study, NFCPLE conduct experimental evaluation of performance test and error analysis with HP5529A interferometer for offset evaluation, it is displayed in the analysis and the experimental results. In the displacement of 10 mm,the average differential of NFCPLE was 185.31nm with HP5529A interferometer. The time dependent drift of NFCPLE was measured for a period of three hour and was found to be 3.8 ± 0.5 nm with 1.6 ± 0.5 nm resolution.  It is therefore shown that NFCPLE has enormous potential forfuture development.
第三語言摘要
論文目次
目錄
中文摘要.........................................................................................................................I
英文摘要.......................................................................................................................II
目錄..............................................................................................................................III
圖目錄...........................................................................................................................V
表目錄........................................................................................................................VII
符號表.......................................................................................................................VIII
第一章緒論....................................................................................................................1
1.1前言........................................................................................................1
1.2文獻回顧................................................................................................2
1.3研究動機..............................................................................................14
1.4研究目的..............................................................................................14
1.5章節介紹..............................................................................................14
第二章原理與方法......................................................................................................16
2.1NFCPLE系統架構..............................................................................16
2.2干涉基本原理......................................................................................18
2.3都卜勒頻率偏移..................................................................................19
2.4相位調解..............................................................................................23
2.5相位重建..............................................................................................23
第三章實驗與結果......................................................................................................28
3.1實驗架設..............................................................................................28
3.2IC Haus LSC感測器...........................................................................30
3.3IC Haus LSC旋轉...............................................................................32
3.4資料擷取卡..........................................................................................34IV 

3.5複合式定位平台..................................................................................34
3.6位移量測..............................................................................................35
3.6.1 10 mm量測..................................................................................36
3.6.2100 mm量測................................................................................37
3.6.3 1 mm量測...................................................................................39
3.6.410 mm量測.................................................................................40
3.7系統穩定度量測..................................................................................42
3.8對位公差量測......................................................................................44
第四章誤差分析..........................................................................................................46
4.1系統誤差..............................................................................................46
4.1.1餘弦誤差......................................................................................46
4.1.2光柵髒汙影響..............................................................................47
4.1.3光柵誤差......................................................................................49
4.1.4光學非線性..................................................................................51
4.2隨機誤差..............................................................................................51
4.2.1材料熱變形..................................................................................51
4.2.2電子雜訊......................................................................................52
4.2.3 訊號誤差 ......................................................................................52
第五章結論與研究建議..............................................................................................54
5.1結論......................................................................................................54
5.2未來研究建議......................................................................................54
附錄A訊號處理演算法.............................................................................................55
A.1訊號校正處理演算法..........................................................................55
參考文獻......................................................................................................................67

圖目錄
圖1-1麥克森干涉光路[5].......................................................................3
圖1-2反射式雷射光學尺[8]...................................................................4
圖1-3光學尺結合Littrow裝置示意圖[9].............................................5
圖1-4反射式繞射光學尺[10].................................................................6
圖1-5外差光柵干涉儀架構圖[11].........................................................7
圖1-6繞射式雷射光學尺[12].................................................................8
圖1-7雷射光學尺結合Littrow架構[13]...............................................9
圖1-8外差光柵干涉儀一維位移量測結構圖[14]...............................10
圖1-9擬共光程位移量測系統[15].......................................................11
圖1-10線性繞射式雷射光學尺[16].....................................................12
圖2 -1NFCPLE雷射光學尺架構示意圖............................................18
圖2 -2入射波方向與光柵移動方向反向...........................................20
圖2 -3入射波方向與光柵移動方向同向...........................................20
圖2 -4 位移一光柵週期之訊號..........................................................22
圖2 -5一組訊號校正為正交訊號.......................................................23
圖2 -7經過相位重建的tan-1函數.....................................................26
圖2 -8未經相位重建的位移值...........................................................26
圖2 -9經相位重建的位移值...............................................................27
圖3 -1NFCPLE實驗架構....................................................................29
圖3 -2NFCPLE干涉條紋....................................................................29
圖3 -3IC-Haus LSC..............................................................................31
圖3 -4IC-Haus LSC感測器電路示意圖.............................................31
圖3 -5LSC兩感測器間距離................................................................32VI 

圖3 -6條紋與感測器夾角0度...........................................................33
圖3 -7條紋與感測器夾角30度.........................................................33
圖3 -8條紋與感測器夾角60度.........................................................33
圖3 -9LabVIEW程式前置面板.........................................................34
圖3 -10複合式定位平台示意圖.........................................................35
圖3 -1110um位移運動........................................................................37
圖3 -12100um位移運動......................................................................38
圖3 -131 mm位移運動........................................................................40
圖3 -1410 mm位移運動......................................................................41
圖3 -153小時靜態量測(HP5529A V.S .NFCPLE).............................42
圖3 -16三小時靜態量測溫度變化.....................................................43
圖3 -17NFCPLE穩定度量測..............................................................43
圖3 -18機械運動偏擺.........................................................................45
圖4 -1光柵貼附於移動平台的不平行示意圖...................................47
圖4 -2污漬在光柵上...........................................................................48
圖4 -3共路徑雷射光學尺讀取污漬光柵...........................................48
圖4 -4非聚焦共路徑雷射光學尺讀取污漬光柵...............................48
圖4 -5繞射儀架構示意圖...................................................................49
圖4 -6正負一階閃耀角沿入射光路徑射出.......................................50
圖4 -7繞射儀量測點示意圖...............................................................50
圖4 -8未去除直流項之呂薩加圖形...................................................52
圖4 -9等速位移時,直流項不為零而交流項相等示意圖...............53
圖A-1無偏離圓心之正橢圓座標圖形...............................................55
圖A-2實際訊號座標圖形...................................................................56
圖A-3反正切函數圖形.......................................................................65
圖A-4反正切函數運算流程圖...........................................................66VII 

表目錄
表1 -1文獻回顧....................................................................................13
表2 -1角度轉換關係表.......................................................................25
表3 -1系統使用元件...........................................................................30
表3 -2複合式平台規格.......................................................................35
表3 -310um量測實驗環境參數..........................................................36
表3 -410um實驗結果..........................................................................36
表3 -5100um量測實驗環境參數........................................................37
表3 -6100um實驗結果........................................................................38
表3 -71 mm量測實驗環境參數..........................................................39
表3 -81 mm實驗結果..........................................................................39
表3 -910mm量測環境參數.................................................................40
表3 -1010 mm實驗結果......................................................................41
表3 -113小時穩定度測試結果...........................................................44
表3 -12對位公差實驗結果.................................................................45
表4 -120mm銦鋼繞射儀結果............................................................50
表4 -2實驗元件熱膨脹係數[32].........................................................51
參考文獻
參考文獻
[1]	C.-C. Hsu, "The applications of the heterodyne interferometry," Interferometry-Research and Applications in Science and Technology, pp. 31-64, 2012.
[2]	W. T. Estler, "High-accuracy displacement interferometry in air," Appl. Opt., vol. 24, pp. 808-815, 1985.
[3]	N. Bobroff, "Residual errors in laser interferometry from air turbulence and nonlinearity," Appl. Opt., vol. 26, pp. 2676-2682, 1987.
[4]	C. R. Steinmetz, "Sub-micron position measurement and control on precision machine tools with laser interferometry," Precision Engineering, vol. 12, pp. 12-24, 1990.
[5]	A. A. Michelson, "Dean of American Optics-Life, Contributions to Science, and Influence on Modern-Day Physics," pp. Appl. Opt, vol. 12, pp. 2253-2279, 1973.
[6]	D. Malacara, "Twyman–Green Interferometer," in Optical Shop Testing, ed: John Wiley & Sons, Inc.," pp. pp. 46-96., 2006.
[7]	E. P. Goodwin, "Mach-Zehnder Interferometer," in Field Guide to Interferometric Optical Testing ed," p. p. 17., , 2006,.
[8]	M. Dobosz, "High-resolution laser linear encoder with numerical error compensation," Optical Engineering, vol. 38," pp. 968-973, 1999.
[9]	M. neviere, "High-Accuracy Translation-Rotation Encoder with Two Gratings in a Littrow Mount," Appl. Opt., vol. 38," pp. 67-76, 1999.
[10]	J. Jay, ""Compact diffractive interferometric displacement sensor in reflection," ed.."
[11]	e. a. J.-Y. Lee, "Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution," Sensors and Actuators A: Physical, vol. 137, pp. 185-191, 2007.
[12]	C.-C. Wu, et al., "Laser linear encoder with both high fabrication and head-to-scale tolerances," Appl. Opt., vol. 46, pp. 3169-3176, 2007.
[13]	C.-F. KAO, "Diffractive Laser Encoder with a Grating in Littrow Configuration," Jpn. J. Appl. Phys., vol. 47," pp. 1833-1839, 2008.
[14]	C.-C. Hsu, et al., "Reflection type heterodyne grating interferometry for in-plane displacement measurement," Optics Communications, vol. 281, pp. 2582-2589, 2008.
[15]	J.-Y. Lee, "Optical heterodyne grating shearing interferometry for long-range positioning applications," Optics Communications, vol. 284," pp. 857-862, 2011.
[16]	F. Cheng and K.-C. Fan, "Linear diffraction grating interferometer with high alignment tolerance and high accuracy," Appl. Opt., vol. 50, pp. 4550-4556, 2011.
[17]	廖家煌, "應用於面內位移量測之共路徑雷射光學尺," 淡江大學機械與機電工程學系碩士論文," 2013.
[18]	楊子毅, "共路徑雷射光學尺," 淡江大學機械與機電工程學系碩士論文," 2010.
[19]	程俊堯, "共路徑雷射光學尺及其在奈米長行程量測之研究," 淡江大學機械與機電工程學."
[20]	楊智盛, "共路徑雷射光學尺及其在複合式奈米定位平台之研究 淡江大學機械與機電工程學系碩士論文," 2012.
[21]	蔡立祥, "運用雙相位移疊紋投射之三維顯微形貌量測技術研發," 2011.
[22]	連冠凱, "微型共路徑雷射光學尺,淡江大學機械與機電工程學系碩士論文
" 2015.
[23]	E. Hecht, "Optics,Addsion Wesley,2nd," 1990.
[24]	L. E. Drain and J. Wiley, "The Laser Doppler Technique " 1980.
[25]	吳文中, "高性能量測系統之高速訊號處理平台,碩士論文, 國立台灣大學,," 1998.
[26]	郭立仁, "高解析度光學旋轉編碼器及訊號處理系統之研製,碩士論文, 國立台灣大學," 2015.
[27]	C.-C. W. Chih-Kung Lee, Shih-Jui Chen, Liang-Bin Yu, You-Chia Chang, Yeong-Feng Wang, Jau-Yu Chen, and Jeremy Wen-Jong Wu, "Design and Construction of Linear Laser Encoders That Possess High Tolerance 	of Mechanical Runout,” Applied Optics, Vol. 43, Issue 31," pp. 5754-5762, 2004.
[28]	"https://www.ichaus.de/product/iC-LSC."
[29]	"http://www.ni.com.tw.."
[30]	吳見明, "干涉儀測長之誤差分析," 科儀新知, vol. 21, pp. 34-44, 1999.
[31]	蔡永勝, "單頻位移與傾角量測干涉儀," 國立中央大學光電科學與工程學系碩士論文, 2009.
[32]	G. Palmer, "Diffraction grating handbook 5th edition," 2002.
[33]	B. P. F. W. H. Press, S. A. Teukolsky, and W. T. Vetterling, Numerical 	Recipes –The Art of Scientific Computing , Press Syndicate of the University of 	Cambridge, London, England ,pp. 499-509, 1986.
[34]	劉禮剛, "The Design and optimization if tangent calculate 	circuit based on FPGA,” 微計算機信息," 2007.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信