淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2208201410340800
中文論文名稱 以熱及非溶劑雙重誘導相分離法製備EVOH薄膜
英文論文名稱 Preparation of EVOH membranes by thermal and non-solvent induced phase inversion method
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 蘇彥霖
研究生英文姓名 Yan-Lin Su
學號 601400566
學位類別 碩士
語文別 中文
口試日期 2014-07-24
論文頁數 111頁
口試委員 指導教授-鄭廖平
委員-李亦淇
委員-張旭賢
中文關鍵字 乙烯乙烯醇共聚物  熱及非溶劑雙重誘導相分離法  中空纖維薄膜 
英文關鍵字 Poly(ethylene-co-vinyl alcohol)  thermal and non-solvent induced phase inversion method(T-NIPS)  hollow fiber 
學科別分類
中文摘要 本研究結合熱與非溶劑誘導兩種相分離法製備聚乙烯乙烯醇薄膜,在水/二甲亞砜/聚乙烯乙烯醇成膜系統之相圖中選擇適當的製膜液與沉澱槽組成,利用兩者之溶劑、非溶劑比例相同的特點,讓沉澱槽濃度保持恆定可重複使用(稱為reusable bath),並藉由改變沉澱槽組成以及沉澱槽溫度,探討其對薄膜結構之影響。隨著沉澱槽中DMSO溶劑增加至70%,薄膜上表面開始出現孔洞,截面部分則由胞孔型結構轉變為顆粒狀結構。當沉澱槽溫度上昇至45度時,薄膜結構鬆散而脆弱;而下降至5oC時,薄膜較紮實,孔隙也較小。上表面均為多孔型表面,截面則為顆粒狀結構。由DSC、XRD測量,得知各薄膜之結晶度約在20~30%之間。水通量則以reusable bath製備之薄膜通量最大,過濾藍色葡聚醣測試則以5度製備之薄膜阻隔效果最佳。接著我們在系統中摻入添加劑(PVP、Tween20)製備中空纖維薄膜,探討不同比例添加劑對於薄膜結構之影響。當摻入PVP時,內表面有孔洞分布在表面上,外表面僅少量小孔洞存在,截面皆有手指型巨孔的產生,水通量以摻入7.5%PVP之薄膜其通量最大,玻尿酸過濾則以未摻入PVP之薄膜其阻隔效果較佳;當摻入Tween20,內表面均有孔洞分布,其中T-5孔洞極少,T-10孔洞最多,而外表面屬於緻密層,截面也均有手指型巨孔產生,水通量以摻入15%Tween20之薄膜其通量最大,而玻尿酸過濾則以摻入5%之薄膜阻隔效果較佳。
英文摘要 In this study, we combine thermal and non-solvent induced phase inversion method to prepare EVOH membranes from the water/DMSO/EVOH system. In the phase diagram, we found a dope composition whose solvent and non-solvent ratio was equal to that in the precipitation bath. The composition of the bath could maintain constant by itself offer the precipitation process; we call the bath “reusable bath.” By changing the composition and temperature of the bath, we investigated their effects on the membranes structure. With the increase of DMSO concentration to 70% in the bath, pores began to form on the top surface of the membrane, while cross section evolved from cellular to particulate morphology. When the bath temperature was raised to 45oC, the formed membrane were loosely packed and fragile. At 5oC, the membrane was tightly packed, and the pores were smaller. The top surface was porous and the cross section demonstrated a particulate structure. XRD and DSC analyses indicated that the membranes had crystallinity of 20~30%. Pure water flux experiments showed that the membrane prepared from the reusable bath exhibited the highest permeation flux and filtration tests showed that the membrane prepared from 5oC reusable bath exhibited the highest rejection.
We prepared EVOH hollow fibers with additives PVP and Tween20 to investigate their effects of the membrane structures. Using PVP, both the inner and external surfaces of the membrane were porous; however, the pore in the external surface were smaller. All membranes had cross section consisting of finger-like macrovoids. In the case of adding Tween20 in the dope, the inner surface was porous. The pore density was smallest for 5% addition, and largest for 10% addition. The external surface of all membranes were dense and nonporous. Water flux experiments showed that adding 7.5% PVP and 15% Tween20 gave rise to membranes with highest permeation fluxes in respective series, and hyaluronic acid filtration experiments showed that membranes with no PVP addition and 5% Tween20 addition exhibited highest rejection.
論文目次 目錄
致謝I
中文摘要II
英文摘要III
目錄V
圖目錄VIII
表目錄XII

第一章緒論1
1-1前言1
1-2研究動機與目的2
1-3文獻參考3
第二章T-NIPS法製備乙烯乙烯醇共聚物平板薄膜5
2.1前言5
2-2實驗9
2-2.1實驗材料9
2-2.2實驗步驟9
2-2.3物性分析10
2-3結果與討論13
2-3.1薄膜型態13
2-3.2薄膜厚度及孔隙度28
2-3.3孔隙影像分析29
2-3.4拉力測試30
2-3.5微分掃描式熱分析儀(DSC)之熱行為分析31
2-3.6廣角X-ray繞射(WXRD)之結晶度計算32
2-3.7水通量測試33
2-3.8過濾應用37
2-4結論42
2-5參考文獻43

第三章以乾噴溼紡法製備乙烯乙烯醇共聚物中空纖維薄膜47
3-1前言47
3-2實驗49
3-2.1實驗材料49
3-2.2實驗步驟49
3-2.3薄膜之物性分析52
3-3結果與討論58
3-3.1薄膜結構58
3-3.2厚度與孔隙度73
3-3.3拉力測試74
3-3.4孔隙度影像分析75
3-3.5微分掃描式熱分析儀之熱行為分析76
3-3.6廣角X-ray繞射(WXRD)之結晶度計算77
3-3.7純水通量79
3-3.8過濾應用87
3-3.9 紅外線光譜分析93
3-3.10 核磁共振分析95
3-4結論100
3-5參考文獻101
附錄A 106
附錄B 109

圖目錄
圖2.1(a)三成分相圖之示意圖 7
圖2.1 (b) (c)EVOH/DMSO/water三成分相圖 8
圖2.2藍色葡聚醣水溶液之UV-Vis檢量線 13
圖2.3製膜液浸漬到沉澱槽中,溫度對時間曲線圖 16
製膜液溫度為90oC,沉澱槽溫度為20oC 16
圖2.4不同濃度沉澱槽所形成EVOH薄膜之截面SEM圖(a)B-0, (b)B-60, (c)B-70, (d)B-83 17
圖2.5不同濃度沉澱槽所形成EVOH薄膜之截面SEM圖(a)B-0, (b)B-60, (c)B-70, (d)B-83 18
圖2.6不同濃度沉澱槽所形成EVOH薄膜之上表面SEM圖(a)B-0, (b)B-60, (c)B-70, (d)B-83 19
圖2.7不同濃度沉澱槽所形成EVOH薄膜之截面上層SEM圖(a)B-0, (b)B-60, (c)B-70, (d)B-83 20
圖2.8不同濃度沉澱槽所形成EVOH薄膜之下表面SEM圖(a)B-0, (b)B-60, (c)B-70, (d) B-83 21
圖2.9沉澱槽溫度上升到40oC所製備之薄膜(BT-40) 23
圖2.10 不同溫度之83wt%DMSO水溶液沉澱槽所形成薄膜之SEM截面圖(a)BT-5, (b)B-83, (c)BT-40 24
圖2.11不同溫度之83wt%DMSO水溶液沉澱槽所形成薄膜之SEM截面圖(a)BT-5, (b)B-83, (c)BT-40 25
圖2.12 不同溫度之83wt%DMSO水溶液沉澱槽所形成薄膜之SEM上表面圖(a)BT-5, (b)B-83, (c)BT-40 26
圖2.13 不同溫度之83wt%DMSO水溶液沉澱槽所形成薄膜之SEM下表面圖(a)BT-5, (b)B-83, (c)BT-40 27
圖2.14 EVOH薄膜之DSC熔解曲線圖 31
圖2.15 EVOH薄膜之XRD圖 32
圖2.16 XRD擬合圖 32
圖2.17 EVOH薄膜之水通量圖 35
圖2.18 EVOH薄膜對藍色葡聚醣之阻隔率與通量, ΔP=2bar, Feed conc.=0.09wt%(a)各濃度之藍色葡聚醣顏色深度(b)B-60(c)B-70(d)B-83(e)BT-5 37
圖2.19各EVOH薄膜之藍色葡聚醣過濾結果(a)分子量5000k(b)分子量2000k 38
圖2.20葡聚醣水溶液之UV-Vis檢量線 39
圖2.21 EVOH薄膜對分子量5000k葡聚醣水溶液之阻隔率與通量 40
圖2.22 EVOH薄膜對分子量2000k葡聚醣之通量 41
圖3.1噴絲法製備中空纖維薄膜之裝置示意圖 50
圖3.2.薄膜過濾裝置圖 55
圖3.3 玻尿酸水溶液之UV-Vis吸收度檢量線 56
圖3.4 各濃度之玻尿酸水溶液呈現不同深度之紫色 57
圖3.5.EVOH中空纖維薄膜之截面SEM影像圖(a)P, (b)P-2.5, (c)P-5, (d)P-7.5, (e)P-10 60
圖3.6. EVOH中空纖維薄膜部分截面之SEM影像圖(a)P, (b)P-2.5, (c)P-5, (d)P-7.5, (e)P-10 61
圖3.7. EVOH中空纖維薄膜手指型巨孔之孔壁SEM影像圖(a)P, (b)P-2.5, (c)P-5, (d)P-7.5, (e)P-10 62
圖3.8. EVOH中空纖維薄膜截面非巨孔區域之高倍率SEM影像圖(a)P, (b)P-2.5, (c)P-5, (d)P-7.5, (e)P-10 63
圖3.9. EVOH中空纖維薄膜之內表面SEM影像圖(a)P, (b)P-2.5, (c)P-5, (d)P-7.5, (e)P-10, (f) P-10薄膜之小倍率SEM影像 64
圖3.10. EVOH中空纖維薄膜之外表面SEM影像圖 65
(a)P, (b)P-2.5, (c)P-5, (d)P-7.5, (e)P-10, (f) P-10薄膜之小倍率SEM影像 65
圖3.11. EVOH中空纖維薄膜之截面SEM影像圖(a)P, (b)T-2.5, (c)T-5, (d)T-10, (e)T-15 67
圖3.12. EVOH中空纖維薄膜部分截面之SEM影像圖(a)P, (b)T-2.5, (c)T-5, (d)T-10, (e)T-15 68
圖3.13. EVOH中空纖維薄膜截面非巨孔區域之高倍率SEM影像圖(a)P, (b)T-2.5, (c)T-5, (d)T-10, (e)T-15 69
圖3.14.EVOH中空纖維薄膜手指型巨孔之孔壁SEM影像圖(a)P, (b)T-2.5, (c)T-5, (d)T-10, (e)T-15 70
圖3.15. EVOH中空纖維薄膜之內表面SEM影像圖(a)P, (b) T-2.5, (c)T-5, (d)T-10, (e)T-15 71
圖3.16. EVOH中空纖維薄膜之外表面SEM影像圖(a)P, (b)T-2.5, (c)T-5, (d)T-10, (e)T-15 72
圖3.17 EVOH中空纖維薄膜之DSC熔解曲線圖 77
圖3.18 各薄膜之XRD圖 78
圖3.19.添加不同比例PVP所形成EVOH中空纖維薄膜之水通量 81
圖3.20相同壓力下,添加不同比例PVP所形成中空纖維薄膜之水通量 82
圖3.21.各製膜液在室溫下之黏度 83
圖3.22添加不同比例Tween20所形成EVOH中空纖維薄膜之水通量 85
圖3.23 相同壓力下,添加不同比例Tween20所形成中空纖維薄膜之水通量 86
圖3.24添加不同比例PVP所形成中空纖維薄膜之通量及阻隔率 87
圖3.25. 添加不同比例PVP所形成中空纖維薄膜之玻尿酸過濾(a)各濃度之玻尿酸, (b)P, (c)P-2.5, (d) P-5, (e)P-7.5, (f)P-10 88
圖3.26 添加不同比例Tween20所形成中空纖維薄膜之通量及阻隔率 89
圖3.27 添加不同比例Tween20所形成中空纖維薄膜之玻尿酸過濾 90
(a)各濃度之玻尿酸, (b)T-5, (c)T-10, (d)T-15 90
圖3.28 EVOH中空纖維薄膜對藍色葡聚醣之阻隔率與通量 91
圖3.29 EVOH中空纖維薄膜對藍色葡聚醣之阻隔率與通量 92
圖3.30.添加不同比例PVP中空纖維薄膜之全反射式紅外線光譜 93
圖3.31.添加不同比例Tween20中空纖維薄膜之全反射式紅外線光譜 94
圖3.32.EVOH中空纖維薄膜之NMR掃描圖(未摻入添加劑) 95
圖3.33.EVOH中空纖維之NMR掃描圖(a)添加2.5%PVP, (b)添加5%PVP 96
圖3.33.EVOH中空纖維之NMR掃描圖(c)添加7.5%PVP, (d)添加10%PVP 97
圖3.34.EVOH中空纖維之NMR掃描圖(a)添加5%Tween20 98
圖3.34.EVOH中空纖維之NMR掃描圖(b)添加10%Tween20, (c)添加15%Tween20 99
圖A1.添加不同比例Tween20之PVDF薄膜純水通量 107
圖A2. 添加不同比例Tween20之PVDF薄膜其通量與阻隔率 108
圖B1.葡聚醣(分子量:2000k)之檢量線 109
圖B2. 葡聚醣(分子量:500k)之檢量線 109
圖B3.過濾葡聚醣(MW.2000K)之通量與阻隔率圖 110
圖B4. 過濾葡聚醣(MW.500K)之通量與阻隔率圖 111

表目錄
表1-1 商業薄膜的結構、材料和分離機制(譯自文獻[4]) 2
表1-2 薄膜的應用(譯自文獻[4]) 2
表2.1 實驗條件 10
表2.2沉澱槽中製膜液溫度與時間之數據 16
表2.3 EVOH薄膜之厚度、孔隙度與成膜時間 28
表2-4 薄膜孔隙之ImageJ影像分析 29
表2.5 EVOH薄膜之抗張強度 30
表2.6 EVOH薄膜的熔點、熱焓、結晶度 33
表2.7 不同壓力下,各薄膜之流量表 36
表2.8由Hagen-Poiseuille’s方程式計算EVOH薄膜孔洞尺吋之結果 36
表2.9 EVOH薄膜於2bar壓力下,過濾0.09wt%藍色葡聚醣之通量與阻隔率 38
表2.10 EVOH薄膜於2bar壓力下,過濾葡聚醣(5000k)水溶液之流量及阻隔率 40
表2.11 EVOH薄膜於2bar壓力下,過濾葡聚醣(2000k)水溶液之流量及阻隔率 41
表3.1製備中空纖維之實驗參數 51
表3.2用於製作EVOH中空纖維薄膜之製膜液組成 51
表3.3各薄膜之內外直徑、厚度、孔隙度 74
表3.4各薄膜之抗張強度 75
表3.5 由ImageJ分析EVOH薄膜之孔洞大小及孔隙面積比 76
表3.6 EVOH中空纖維薄膜之熔點、熱焓、結晶度 79
表3.7 EVOH中空纖維薄膜在不同壓降下之純水通量(LMH) 81
表3.8各製膜液在室溫下之黏度 83
表3.9 由Hagen-Poiseuille’s方程式計算EVOH薄膜孔洞尺吋之結果 84
表3.10 不同壓力下,添加不同比例Tween20 85
所形成EVOH中空纖維薄膜之水通量(LMH) 85
表3.11 添加不同比例PVP所形成中空纖維薄膜之通量及阻隔率數據 88
表3.12添加不同比例Tween20所形成中空纖維薄膜之通量及阻隔率數據 89
表3.13 EVOH中空纖維薄膜於1bar壓力下,過濾0.09wt%藍色葡聚醣之通量 91
表3.14 EVOH中空纖維薄膜於1bar壓力下,過濾0.09wt%藍色葡聚醣之通量 92
表A1.製備中空纖維薄膜之實驗參數 106
表A2.添加Tween20的製膜液組成 106
表A3. 添加不同比例Tween20之PVDF薄膜純水通量數據 107
表A4. 過濾藍色葡聚醣之通量與阻隔率數據 108
表B1. 過濾葡聚醣(MW.2000K)之通量與阻隔率數據 110
表B2. 過濾葡聚醣(MW.500K)之通量與阻隔率數據 111


參考文獻 第一章
[1] 張旭賢,私立淡江大學化學工程與材料工程學系碩士論文(2005)
[2] G. D. Kang, Y. M. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, J. Membr. Sci. 463 (2014) 145-165
[3] Z. Wang, J. Ma, C. Y. Tang, K. Kimura, Q. Wang, Z. Han, Membrane cleaning in membrane bioreactors : A review, J. Membr. Sci. 468 (2014) 276-307
[4] H. Strathmann, Introduction to Membrane Science and Technology, Wiley(2011)
[5] R. Naim, A. F. Ismail, N. B. Cheer, M. S. Abdullah, Polyvinylidene fluoride and polyetherimide hollow fiber membranes for CO2 stripping in membrane contactor, Chem. Eng. Res. Des. 92 (2014) 1391-1398
[6] F. Korminouri, M. R. Sisakht, D. Rana, T. Matsuura, A. F. Ismail, Study on the effect of air-gap length on properties and performance of surface modified PVDF hollow fiber membrane contactor for carbon dioxide absorption, Sep. Purif. Technol. 132 (2014) 601-609
[7] M. R. Sisakht, D. Rana, T. Matsuura, D. Emadzadeh, M. Padaki, A. F. Ismail, Study on CO2 stripping from water throught novel surface modified PVDF hollow fiber membrane contactor, Chem. Eng. J. 246 (2014) 306-310
[8] N. Aryanti, R. Hou, R. A. Williams, Performance of a rotating membrane emulsifier for production of coarse droplets, J. Membr. Sci. 326 (2009) 9-18
[9] F. Siavashi, M. Saidi, M. R. Rahimpour, Purge gas recovery of ammonia synthesis plant by integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell as a novel technology, J. Power. Sources. 267 (2014) 104-116
[10] R. Espinal. A. Anzola, E. Adrover, M. Roig, R. Chimentao, F. Medina, E. Lopez, D. Bori, J. Llorca, Durable ethanol steam reforming in a catalytic membrane reactor at moderate temperature over cobalt hydrotalcite, Int. J. Hydrogen Energy. 39 (2014) 10902-10910

第二章
[1] A.L. Rubio, Ethylene-vinyl alcohol (EVOH) copolymers, Multifunctional and Nanoreinforced Polymers for Food Packaging, Woodhead (2011) 261-284.
[2] T.H. Young, Y.H. Huang, Y.S. Huang, The formation mechanism of EVAL membranes prepared with or without the nonsolvent absorption process, J.Membr. Sci. 171 (2000) 197-206.
[3] V. M. Galet, G. L. Carballo, P. H. Munoz, R. Gavara, Characterization of ethylene-vinyl alcohol copolymer containing lauril arginate (LAE) asmaterial for active antimicrobial food packaging, Food packaging and shelf life. Volume 1, Issue 1 (2014) 10-18.
[4] N. Guerra, L. Barbani, L. Lazzeri, L. Lelli, M. Palla, C. Rizzo, The activation of human plasma prekallikrein as a hemocompatibility test for biomaterials. II. Contact activation by EVAL and EVAL–SMA copolymers, J. Biomater. Sci. 4 (1995) 643–652.
[5] T.H. Young, J.Y. Lai, W.M. You, L.P. Cheng, Equilibrium phase behavior of the membrane forming water–DMSO–EVAL system, J. Membr. Sci. 128 (1997) 55–65.
[6] M.E. Avramescu, W.F.C. Sager, M.H.V. Mulder, M. Wessling, Preparation of ethylene vinyl alcohol copolymer membranes suitable for ligand coupling in affinity separation, J. Membr. Sci. 210 (2002) 155–173.
[7] M.E. Avramescu, W.F.C. Sager, M. Wessling, Functionalised ethylene vinyl alcohol copolymer (EVAL) membranes for affinity protein separation, J. Membr.
Sci. 216 (2003) 177–193.
[8] Y. Sakurada, A. Sueoka, M. Kawahashi, Blood purification device using membranes derived from poly(vinyl alcohol), and copolymer of ethylene and vinyl alcohol, Polym. J. 19 (1987) 501–513.
[9] M. Hashino, K. Hirami, T. Ishigami, Y. Ohmukai, T. Maruyama, N. Kubota, H. Matsuyama, Effect of kind of membrane materials on membrane fouling with BSA, J. Membr. Sci. 384 (2011) 157-165.
[10] Y.C. Li, Y.T. Liao, H.H. Chang, T.H. Young, Covalent bonding of GYIGSR to EVAL membrane surface to improve migration and adhesion of cultured neural stem/precursor cells, Colloids Surf., B:Biointerfaces 102 (2013) 53-62.
[11] R. Lv, J. Zhou, Q. Du, H. Wang, W. Zhong, Preparation and characterization of EVOH/PVP membranes via thermally induced phase separation, J. Membr. Sci. 281 (2006) 700-706.
[12] J. Zhou, H. Zhang, H. Wang, Q. Du, Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation, J. Membr. Sci. 343 (2009) 104-109.
[13] Q. Y. Wu, L. S. Wan, Z. K. Xu, Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation, J. Membr. Sci. 409-410 (2012) 355-364.
[14] H. Zhang, Y. Zhao, H. Wang, W. Zhong, Q. Du, X. Zhu, Phase behavior of polyetherimide/benzophenone/triethylene glycol ternary system and its application for the preparation of microporous membrabrnes J. Membr. Sci. 354 (2010) 101-107
[15] X. Li, X. Lu, Morphology of polyvinylidene fluoride and its blends in thermally induced phase separation process, J. Appl. Polym. Sci. 101 (2006) 2944–2952.
[16] T.H. Young, D.M. Wang, C.C. Hsieh, L.W. Chen, The effect of the second phase inversion on microstructures in phase inversion EVAL membranes, J. Membr. Sci. 146 (1998) 169-178.
[17] 陳勝昌,以非溶劑誘導相轉移法製備多孔型薄膜,淡江大學化學工程與材料工程碩士論文,(2013).
[18] N.Riyasudheen, A.Sujith, Formation behavior and performance studies of poly(ethylene-co-vinyl alcohol)/poly(vinyl pyrrolidone) blend membranes prepared by non-solvent induced phase inversion method, Desalination 294 (2012) 17-24.
[19] M. Zhang, A.Q. Zhang, B.K. Zhu, C.H. Du, Y.Y. Xu, Polymorphism in porous poly(vin ylidene fluoride) membranes formed via immersion precipitation process, J. Membr. Sci. 319 (2008) 169-175.
[20] C.Y. Kuo, S.L. Su, H.A. Tsai, Y.S. Su, D.M. Wang, J.Y. Lai, Formation and evolution of a bicontinuous structure of PMMA membrane during wet immersion process, J. Membr. Sci. 315 (2008) 187-194.
[21] S.P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF jollow fiber membranes, J. Membr. Sci. 150 (1998) 75-85.
[22] 游偉明,水-二甲亞風-乙烯乙烯醇系統薄膜成形機構之研究,淡江大學化學工程與材料工程碩士論文,(1997).
[23] J. M. Lagaron, E. Gimennz, J. J. Saura, R. Gavara, Phase morphology, crystallinity and mechanical properties of binary blends of high barrier ethylene-vinyl alcohol copolymer and amorphous polyamide and a polyamide-containing ionomer, Polymer 42 (2001) 7381-7394.
[24] W. Li, W. Xing, N. Xu, Modeling of relationship between water permeability and microstructure parameters of ceramic membranes, Desalination 192 (2006) 340-345.
[25] S. B. Iversen, V. K. Bhatia, K. D. Johansen, G. Jonsson, Characterization of microporous membranes for use in membrane contactors, J. Membr. Sci. 130 (1997) 205-217.

第三章
[1] X. Fu, H. Matsuyama, M. Teramoto, H. Nagai, Preparation of polymer blemd hollow fiber membrane via thermally induced phase separation, Sep. Purif. Technol. 52 (2006) 363-371.
[2] M. Hashino, K. Hirami, T. Ishigami, Y. Ohmukai, T. Maruyama, N. Kubota, H. Matsuyama, Effect of kind of membrane materials on membrane fouling with BSA, J. Membr. Sci. 384 (2011) 157-165.
[3] S. Bonyadi, M. Mackley, The development of novel micro-capillary film membranes, J. Membr. Sci. 389 (2012) 137-147.
[4] M. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, N. Kubota, Preparation and membrane performance of poly(ethylene-co-vinylalcohol) hollow fiber membrane via thermally induced phase separation, Polymer 44 (2003) 7441-7447.
[5] S. Simone, A. Figoli, A. Criscuoli, M. C. Carnevale, A. Rosselli, E. Drioli, Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD, J. Membr. Sci. 364 (2010) 219-232.
[6] F. Tasselli, J. C. Jansen, F. Sidari, E. Drioli, Morphology and transport property control of modified poly(ether ether ketone) (PEEKWC) hollow fiber membranes prepared from PEEKWC/PVP blends: influence of the relative humidity in the air gap, J. Membr. Sci. 255 (2005) 13-22.
[7] P. Sukitpaneenit, T. S. Chung, Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology, J. Membr. Sci. 340 (2009) 192-205.
[8] J. J. Qin, Y. Li, L.S. Lee, H. Lee, Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360K/NMP/water, J. Membr. Sci. 218 (2003) 173-183.
[9] J. J. Qin, J. Gu, T. S. Chung, Effect of wet and dry-jet wet spinning on the shear-induced orientation during the formation of ultrafiltratiob hollow fiber membranes, J. Membr. Sci. 182 (2001) 57-75.
[10] J. J. Qin, F. S. Wong, Y. Li, Y. T. Liu, A high flux ultrafiltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol, J. Membr. Sci. 211 (2003) 139-147.
[11] P. Y. Zhang, Y. Wang, Z. Xu, H. Yang, Preparation of poly(vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive, Desalination 278 (2011) 186-193.
[12] M. Khayet, The effects of air gap length on the internal and external morphology of hollow fiber membranes, Chem. Eng. Sci. 58 (2003) 3091-3104.
[13] A. Mansourizadeh, A. F. Ismail, Effect of additives on the structure and performance of polysulfone hollow fiber membranes for CO2 absorption, J. Membr. Sci. 348 (2010) 260-267.
[14] W. Z. Lang, J. P. Shen, Y. T. Wei, Q. Y. Wu, J. Wang, Y. J. Guo, Precipitation kinetics, morphologies, and properties of poly(vinyl butyral) hollow fiber ultrafiltration membranes with respect to polyvinylpyrrolidone molecular weight, Chem. Eng. J. 255 (2013) 25-33.
[15] Q. Yang, T. S. Chung, M. Weber, Microscopic behavior of polyvinylpyrrolidone hydrophilizing agents on phase inversion polyethersulfone hollow fiber membranes for hemofiltration, J. Membr. Sci. 326 (2009) 322-331.
[16] M. Spruck, G. Hoefer, G. Fili, D. Gleinser, A. Ruech, M.S. Baldassari, M. Rupprich, Preparation and characterization of composite multichannel capillary membranes on the way to nanofiltration, Desalination 314 (2013) 28-33.
[17] H. Matsuyama, Y. Takida, T. Maki, M. Teramoto, Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation, Polymer 43 (2002) 5243-5248.
[18] M. R. M. Abed, S. C. Kumbharkar, A. M. Groth, K. Li, Ultrafiltration PVDF hollow fiber membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique, J. Membr. Sci. 407 (2012) 145-154.
[19] J. Zhou, S. Meng, Z. Guo, Q. Du, W. Zhong, Phosphorylcholine-modified poly(ethylene-co-vinyl alcohol) microporous membranes with improved protein-adsorption-resistance property, J. Membr. Sci. 305 (2007) 279-286.
[20] 陳勝昌,以非溶劑誘導相轉移法製備多孔型薄膜,淡江大學化學工程與材料工程碩士論文,(2013).
[21] L. Shi, R. Wang, Y. Cao, D. T. Liang, J. H. Tay, Effect of additives on the fabrication of poly((vinylidene fluoride-co-hexafluropropylene)(PVDF-HFP) asymmetric microporous hollow fiber membranes, J. Membr. Sci. 315 (2008) 195-204.
[22] . H. Zhao, B. K. Zhu, X. T. Ma, Y. Y. Xu, Porous membranes modified by hyperbranched polymers I. Preparation and characterization of PVDF membrane using hyperbranched polyglycerol as additive, J. Membr. Sci. 290 (2007) 222-229.
[23] M. Cesaretti, E. Luppi, F. Maccari, N. Volpi, A 96-well assay for uronic acid carbazole reaction, Carbohydr. Polym 54 (2003) 59-61
[24] N. Riyasudheen, A. Sujith, Formation behavior and performance studies of poly(ethylene-co-vinyl alcohol)/poly(vinyl pyrrolidone) blend membranes prepared by non-solvent induced phase inversion method, Desalination 294 (2012) 17-24
[25] R. Lv, J. Zhou, Q. Du, H. Wang, W. Zhong, Preparation and characterization of EVOH/PVP membranes via thermally induced phase separation, J. Membr. Sci. 281 (2006) 700-706.
[26] M. E. Avramescu, W. F. C. Sager, M. H. V. Mulder, M. Wessling, Preparation of ethylene vinylalcohol copolymer membranes suitable for ligand coupling in affinity separation, J. Membr. Sci. 210 (2002) 155-173.
[27] 游偉明,水-二甲亞風-乙烯乙烯醇系統薄膜成形機構之研究,淡江大學化學工程與材料工程碩士論文,(1997).
[28] S. Kendouli, O. Khalfallah, N. Sobti, A. Bensouissi, A. Avci, V. Eskizeybek, S. Achour, Modification of cellulose acetate nanofibers with PVP/Ag additiob, Mater. Sci. Semicond. Process. Volume27. (2014)
[29] A. M. Abdelghany, E. M. Abdelrazek, D. S. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite, Spectrochim. Acta, Part A, 130 (2014) 302-308.
[30] D. Liu, Y. Tao, K. Li, J. Yu, Influence of the presence of three typical surfactants on the adsorption of nickel(II) to aerobic activated sludge, Bioresour. Technol. 126 (2012) 56-63
[31] T. Sadik, F. Becquart, J. C. Majeste, M. Taha, In-melt transesterification of poly(lactic acid) and poly(ethylene-co-vinylalcohol), Mater. Chem. Phys. 140 (2013) 559-569
[32] V. Kumar, T. Yang, Y. Yang, Interpolymer complexation. I. Preparation and characterization of a polyvinyl acetate phthalate-polyvinylpyrrolidone (PVAP-PVP) complex, Int. J. Pharm. 188 (1999) 221-232

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-08-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信