§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2208201211342500
DOI 10.6846/TKU.2012.00954
論文名稱(中文) 微加工用小尺寸鑽石砂輪之研製
論文名稱(英文) Study on fabrication of small diamond wheels for micro-grinding applications
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 邱柏翔
研究生(英文) Po-Hsianf Chiu
學號 600370273
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-11
論文頁數 93頁
口試委員 指導教授 - 趙崇禮
委員 - 趙崇禮
關鍵字(中) 玻璃模造
磨削加工
碳化鎢
UV固化樹脂
洋蔥式Curing
關鍵字(英) GMP
grinding
tungsten carbide
UV curing resin
onion-type curing
第三語言關鍵字
學科別分類
中文摘要
由於光電產業的蓬勃發展,各種精密的光學元件趨於輕薄短小,各界紛紛開發新的加工技術,及改善現有的方法,並有效率的生產相關的組件。在近幾年中,玻璃模造是生產精密光學元件的方法之一,而模具的加工是玻璃模造技術的關鍵要素,通常模具使用硬脆材料製造而成,如碳化鎢(WC)和碳化矽(SiC)等,而模具的加工方式主要以精密鑽石磨削為主。由於光學元件的尺寸變小,因此微磨削加工所使用的工具也勢必得微小化,這將造成工具之取得不易,不但耗時且成本很高。
本研究的目的是開發製造微小鑽石砂輪,並發展出一套新的洋蔥式Curing砂輪製作過程,鑽石砂輪在經過修整後的直徑約可達到0.8~1mm。經過磨削實驗的結果,碳化鎢的Ra可以達到32nm,實驗結果證明,洋蔥式Curing的作法不但能克服UV光穿透的限制,層與層的包覆也非常好,因此利用UV樹脂製作棒狀微小鑽石砂輪是可行的。
英文摘要
As the demand for precision optical components with sub-millimeter feature size steadily increasing, numerous efforts have been made in developing new techniques and in improving the existing approaches to efficiently and economically produce those components. Glass molding process (GMP) is one of these methods to enable mass production of precision glass optical components in recent years. One of the key issues in GMP is precision mold fabrication. Since the mold are normally made of hard and brittle materials such as tungsten carbide (WC) and silicon carbide (SiC), precision diamond grinding is by far the leading choice used to machine the GMP mold. As the feature size of optical component gets smaller, the size of mold and grinding wheel used to fabricate the mold gets smaller too. This makes getting one of those “micro diamond wheel” a time consuming and very expensive task. 
This research aimed to develop a effective way of fabricating small diamond wheel. UV curing polymers were used as bond materials for diamond particles of various sizes. Diamond wheels of around 0.8~1mm in diameter after truing were successfully produced. A surface roughness of 32nm Ra was achieved during preliminary diamond grinding tests of WC materials using the fabricated diamond wheel.
第三語言摘要
論文目次
目錄

致謝......................................................I
中文摘要..................................................III
英文摘要..................................................V
目錄......................................................VI
圖目錄....................................................IX
表目錄....................................................XIV
第一章 緒論...............................................1
1.1 前言..................................................1
1.2 研究動機..............................................3
1.3 研究目的..............................................4

第二章 文獻回顧與理論基礎.................................5
2.1 精密磨削加工..........................................5
2.1.1 磨削加工機制........................................5
2.1.2 硬脆材料移除機制....................................7
2.1.3 影響磨削加工之參數探討..............................8
2.1.4 砂輪的磨耗..........................................11
2.1.5 砂輪的修整與削銳....................................13
2.2 砂輪的組成............................................15
2.2.1 磨料的種類..........................................15
2.2.2 結合劑的種類........................................16
2.2.3 砂輪硬度的區分......................................20
2.3 UV光固化技術..........................................21
2.3.1 UV光固化反應機制....................................21
2.3.2 UV光固化材料組成之成分及功能........................22
2.3.3 結合UV光固化技術之應用..............................26

第三章 實驗方法與設備.....................................28
3.1 實驗設計..............................................28
3.2 實驗設備..............................................28
3.2.1 UV光固化設備........................................28
3.2.2 輪磨設備............................................33
3.2.3 量測儀器............................................36
3.3 實驗流程圖............................................42
3.4 實驗步驟..............................................43
3.4.1 各種樹脂之UV光固化實驗..............................43
3.4.2 微鑽石砂輪製作......................................47
3.4.3 高速主軸直進磨削試驗................................50
3.4.4 精密加工機磨削試驗..................................51
3.4.5 其它形狀微砂輪之製作................................52

第四章 結果與討論.........................................54
4.1 UV光固化試驗..........................................54
4.1.1 UV光樹脂固化時間之量化試驗..........................54
4.1.2 影響UV光固化的因素探討..............................57
4.1.3 UV光樹脂混合磨粒固化之影響..........................60
4.2 棒狀微樹脂鑽石砂輪研製................................61
4.2.1 棒狀鑽石砂輪之製作..................................61
4.2.2 微棒狀鑽石砂輪之製作................................64
4.2.3 不同UV樹脂對鑽石之結合度觀察........................65
4.3 高速主軸直進磨削試驗結果..............................67
4.3.1 直進磨削玻璃試片之結果..............................68
4.3.2 不同樹脂磨削比之比較................................69
4.3.3 添加切削液對研磨碳化鎢之Ra影響......................73
4.4 加工機磨削試驗之結果..................................74
4.4.1 不同切深磨削後對碳化鎢Ra之影響......................74
4.4.2 不同進給量磨削後對碳化鎢Ra之影響....................75
4.4.3 不同磨料粒徑大小磨削後對碳化鎢Ra之影響..............77
4.4.4 不同樹脂砂輪磨削後對碳化鎢Ra之影響..................78
4.4.5 砂輪磨耗對工件Ra之影響..............................79
4.4.6 不同樹脂砂輪磨削後之觀察............................81
4.4.7 微型棒狀樹脂砂輪磨削後之Ra..........................83
第五章 結論...............................................86
參考文獻..................................................88

圖目錄
圖1-1 傳統固化樹脂與UV固化樹脂收縮比較圖【2】..................2
圖1-2 不同形狀之砂輪.......................................3

圖2-1 切削、犁切與摩擦三階段模型【5】.........................6
圖2-2 不同進給率磨削後工件的表面【10】........................9
圖2-3 砂輪三種磨耗形式【15】................................11
圖2-4 砂輪的磨損過程【16】..................................12
圖2-5 鑽石磨粒之磨耗模式【17】...............................13
圖2-6 顯示砂輪表面完成【19】.................................14
圖2-7 不同結合劑磨削後的工件表面【25】.........................18
圖2-8 光固化之反應示意圖....................................22
圖2-9 光起始劑濃度與固化速率關係圖............................25

圖3-1 點光源機............................................30
圖3-2 防塵暗箱............................................31
圖3-3 FACT/CK-J鑽石粉(30~40μm)............................31
圖3-4 FACT/CK-3鑽石粉(90~106μm)...........................32
圖3-5 FACT/YK-J鑽石粉(2~4μm)..............................32
圖3-6 NSK高速主軸	33
圖3-7 NACHi ASP-MKE精密加工機【47】.........................34
圖3-8 玻璃試片.............................................35
圖3-9 碳化鎢...............................................35
圖3-10 光學金相顯微鏡........................................37
圖3-11 掃描式電子顯微鏡......................................37
圖3-12 雷射共軛焦顯微鏡......................................39
圖3-13 微小维克氏硬度實驗機...................................40
圖3-14 LVDT線性位移感測器....................................41
圖3-15 實驗示意圖...........................................44
圖3-16 光源能量分佈取點位置圖.................................45
圖3-17 棒狀砂輪製作示意圖....................................48
圖3-18 UV光照射實景圖.......................................48
圖3-19 棒狀砂輪參數設計流程圖.................................48
圖3-20 砂輪修整示意圖........................................50
圖3-21 高速主軸直進磨削示意圖.................................50
圖3-22 磨削加工示意圖........................................52
圖3-23 圓形薄片鑽石砂輪製作示意圖【28】.........................53
圖3-24 中空型圓形薄片砂輪製作示意圖【28】.......................53

圖4-1 固化時間與硬度關係圖....................................54
圖4-2 樹脂A、B、C光照射時間及硬度之關係圖.......................56
圖4-3 樹脂D、E光照射時間及硬度之關係圖..........................56
圖4-4 UV光固化樹脂之固化時間及硬度分佈圖........................57
圖4-5 能量分佈之硬度測試圖....................................58
圖4-6 固化深度對固化程度之影響關係圖............................58
圖4-7 光源距離對固化時間之影響關係圖............................59
圖4-8 光源距離對固化面積之影響關係圖............................60
圖4-9 不同磨料含量對固化時間影響之關係圖........................61
圖4-10 Curing後棒狀砂輪之樣貌................................62
圖4-11 修整與削銳後之形貌....................................62
圖4-12 CCD影像擷取之砂輪輪廓.................................63
圖4-13 修整後的砂輪表面特徵...................................63
圖4-14 Curing後微棒狀砂輪之樣貌..............................64
圖4-15 修整後之微棒狀砂輪樣貌.................................64
圖4-16 砂輪尺寸分別是........................................65
圖4-17 修整後的微棒狀砂輪表面特徵..............................65
圖4-18 不同樹脂對鑽石結合度觀察...............................66
圖4-19 樹脂砂輪M-6210修整後之表面形貌.........................66
圖4-20 樹脂砂輪M-5020修整後之表面形貌.........................67
圖4-21 樹脂砂輪M-6148修整後之表面形貌.........................67
圖4-22 樹脂砂輪(M-6210)磨削後的表面..........................68
圖4-23 樹脂砂輪(M-5020)磨削後的表面..........................68
圖4-24 樹脂砂輪(M-6148)磨削後的表面..........................68
圖4-25 樹脂砂輪(M-5020)不同磨粒濃度磨削後的表面................69
圖4-26 樹脂砂輪磨削後的磨耗角及玻璃表面特徵.....................70
圖4-27 砂輪磨耗角估算示意圖..................................70
圖4-28 不同樹脂砂輪磨削後工件的形貌及移除剖面圖..................71
圖4-29 單點磨削玻璃試片之表面粗糙度柱狀圖.......................72
圖4-30 Co含量6%的碳化鎢之磨削表面.............................73
圖4-31 Co含量6%的碳化鎢之磨削表面.............................73
圖4-32 不同切深磨削後工件表面之觀察f= 5μm/rev .................75
圖4-33 不同進給量磨削後工件表面之觀察D=0.7μm....................76
圖4-34 不同砂輪粒徑大小磨削後工件表面之觀察......................77
圖4-35 不同結合劑磨削後工件表面之觀察 ..........................79
圖4-36 樹脂M-5020不同磨削次數磨削後工件表面之觀察................80
圖4-37 砂輪磨耗對表粗的影響...................................80
圖4-38 樹脂結合劑(M-6210)鑽石砂輪之磨耗觀察....................82
圖4-39 樹脂結合劑(M-5020)鑽石砂輪之磨耗觀察....................82
圖4-40 樹脂結合劑(M-6148)鑽石砂輪之磨耗觀察....................82
圖4-41 樹脂砂輪磨耗角示意圖...................................82
圖4-42 微型棒狀樹脂砂輪加工後之工件表面(右)為(左)的放大...........83
圖4-43 微型棒狀樹脂砂輪加工後之工件表面(OM圖)...................84
圖4-44 雷射共軛焦顯微鏡量測之圖表..............................84
圖4-45 樹脂結合劑(M-5020)鑽石砂輪之磨耗觀察....................84
圖4-46 微樹脂砂輪磨耗角示意圖.................................85
 
表目錄
表2-1 磨料的特性及使用範圍【16】..............................16
表2-2 熱固性樹脂與UV固化樹脂之性能比較表【2】...................19
表2-3 各種結合劑的特性及用途【16】............................20
表2-4 官能基與物性之關聯表【1】...............................24
表2-5 自由基型與陽離子基型的比較【1】..........................24

表3-1 環氧丙烯酸酯(Epoxy-Acrylate)樹脂之特性	.................29
表3-2 脂肪族胺基甲酸丙烯酸酯(PU-Acrylate)樹脂之特性.............29
表3-3 點光源機基本資料.......................................30
表3-4 鑽石粉規格表..........................................31
表3-5 NSK高速主軸規格表......................................33
表3-6 NACHi ASP-MKE精密加工機規格表..........................34
表3-7 磨削材料之規格表.......................................34
表3-8 雷射共軛焦顯微鏡 Keyence VK-9700規格表..................39
表3-9 维克氏硬度實驗機規格表	..................................40
表3-10 UV光固化樹脂混合參數..................................43
表3-11 樹脂A、B、C之固化時間參數表............................44
表3-12 樹脂D、E之固化時間參數表...............................44
表3-13 光源能量分佈之固化參數表...............................45
表3-14 固化深度影響固化程度之參數表............................46
表3-15 UV光源距離影響固化時間之參數表	.........................46
表3-16 UV光源距離影響照射面積之參數表	.........................46
表3-17 加入鑽石磨粒之參數表	.................................47
表3-18 棒狀砂輪固化參數表....................................49
表3-19 直進磨削參數.........................................51
表3-20 磨削參數表之設定......................................51

表4-1 不同樹脂之磨削比列表....................................72
表4-2 有、無切削液之磨削表面粗糙度.............................74
表4-3 不同切深對Ra之影響.....................................75
表4-4 不同進給率對Ra之影響...................................76
表4-5 不同砂輪粒徑大小對Ra之影響..............................78
表4-6 不同樹脂結合劑對Ra之影響................................79
表4-7 不同磨削次數對Ra之影響	..................................80
表4-8 不同樹脂砂輪之磨削比列表................................83
表4-9 微樹脂砂輪磨削比計算列表................................85
參考文獻
【1】王德海,江欞,”紫外光固化材料之理論與應用”,科學出版社,北京市,2001。
【2】劉建良,“UV curing發展簡介與應用”,化工科技與商機,第41期特別報導。
【3】王先逵, “精密機械加工原理”,高立圖書有限公司,2007。
【4】C. Rubenstein, “The mechanics of grinding”, International Journal of Machine Tool Design and Research, Vol. 12, pp. 127-139, 1972.
【5】W. Lortz, “A Model of the Cutting Mechanism in Grinding”, Wear, Vol. 53, pp. 115-128, 1979.
【6】Z. Liang, X. Wang, Y. Wu, L. Xie, Z Liu, W Zhao, “An investigation on wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire” , Journal of Materials Processing Technology, Vol. 212, pp. 868– 876, 2012.
【7】曾健棕,“應用雙軸振動於碳化鎢磨削之研究”,國立雲林科技大學機械工程系碩士班,碩士論文,2007。
【8】F.Z. Fang, L.J. Chen, “Ultra-Precision Cutting for ZKN7 Glass” , Annals of the CIRP, 49, pp. 17-20, 2000.
【9】P.L. Tso, “Study on the grinding of Inconel 718”,Journal of Materials Processing Technology, Vol. 55, pp.421 – 426, 1995.
【10】D. J. Stephenson, D. Veselovac, S. Manley, J.Corbett, “Ultra precision grinding of hard steels”, Journal of the International Societies for Precision Engineering and Nanotechnology Vol. 25, pp. 336-345, 2001.
【11】Z. Zhong, N.P. Hung, “Grinding of alumina/aluminum composites” , Journal of Materials Processing Technology Vol. 123, pp. 1317, 2002.
【12】W.K. Chen, H. Huang, “Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels”, Journal of Materials Processing Technology, Vol. 140, pp. 217–223, 2003.
【13】A. Abdullah, A. Pak, M. Farahi, M. Barzegari, “Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide” , Journal of Materials Processing Technology Vol. 183, p. 165-168, 2007.
【14】H. Huang, L. Yin, L. Zhou, “High speed grinding of silicon nitride with resin bond diamond wheels”, Journal of Materials Processing Technology, Vol. 141, pp. 329-336, 2003.
【15】M. Alfares, A. Elsharkawy,“Effect of grinding force on the vibration of grinding machine spindle system”, International Journal of Machine Tools and Manufacture, Vol. 40, pp. 2003-2030, 2000.
【16】喻懷仁,“金屬切削原理”,宇夏人民出版社,上海市,1990。
【17】S.Y. Luo, Y.S. Liao, C.C. Chou, J. Chen, “Analysis of the wear of a resin-bonded diamond wheel in grinding of tungsten carbide”, Journal of Materials Processing Technology, Vol. 69, pp. 289-296, 1997. 
【18】S.Y. Luo, Y.C. Liu, “Effect of copper filler of resin-bonded diamond composites on the wear behaviors under a dry condition”, Journal of Materials Processing Technology, Vol. 96, pp. 215-224, 1999.
【19】杉田忠彰,上田完次,“機械加工”,機械研究,1984年10月號,pp.1-4。
【20】X. Chen and W.B. Rowe, “Analysis and Simulation of the grinding process. Part1: Generation of the grinding wheel surface”, International Journal of Machine Tools and Manufacture, Vol. 36, pp. 871-882, 1996.
【21】X. Chen, D.R. Allanson, W.B. Rowe, “Life cycle model of the grinding process”, Computers in Industry, 36, pp. 5-11, 1998.
【22】W.K. Chen, H. Huang, L. Yina, “Loose abrasive truing and dressing of resin bond diamond cup wheels for grinding fibre optic connectors” , Journal of Materials Processing Technology, Vol. 159, pp. 229–239, 2005.
【23】D. Herman, J. Krzos, “ Influence of vitrified bond structure on radial wear of CBN grinding wheels” , Journal of Materials Processing Technology, Vol. 209, pp. 5377-5386, 2009.
【24】J. Qian, W. Li, H. Ohmori, “Precision internal grinding with a metal-bonded diamond grinding wheel”, Journal of Materials Processing Technology, Vol. 105, pp. 80-86, 2000.
【25】S.X. Wang, G. Lin, X.J. Liu, B. Geng, S.C. Niu, “ Manufacture of a new kind diamond grinding wheel with Al-based bonding agent” , journal of materials processing technology 209, 1871–1876, 2009.
【26】T. Tanaka, Y. Isono, “New development of a grinding wheel with resin cured by ultraviolet light” , Journal of Materials Processing Technology, Vol. 113, pp. 385-391, 2001.
【27】S.Y. Luo, Y.C. Liu, C.C. Chou, T.C. Chen, “Performance of powder filled resin-bonded diamond wheels in the vertical dry grinding of tungsten carbide” , Journal of Materials Processing Technology, Vol. 118, pp. 329-336, 2001.
【28】羅瑞興,“微鑽石砂輪之研製”,私立淡江大學機電與機電工程學系所,碩士論文,2005。
【29】J. Kindernay, A. Blazkova, J. Ruda, V. Jan, Z. Jakub, “Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 151, pp. 229–236, 2002.
【30】樊美公,“光化學基本原理與光子學材料科學” ,科學出版社,北京市,2000。
【31】S. Peter, “UV Curing Science and Technology” , Technology Marking, 1980.
【32】王德中,“環氧樹脂生產與應用”,化學工業出版社,2001。
【33】F. Michael, “UV curable coatings for electronic components”, IEEE Transactions on Components Packaging and Manufacturing Technology A, Vol. 17, pp. 326-333, 1994.
【34】C.S.B. Ruiz, L.D.B. Machado, J.E. Volponi, E.S. Pino , “Influence of sample composition and processing parameters on the UV cure of clear coatings”, Nuclear Instruments and Methods in Physics Research B, Vol. 208, pp. 309–313, 2003.
【35】J. Kindernay, A. Blazkova, J. Ruda, V. Jan covi cova, Z. Jakub kova, “Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 151, pp. 229–236, 2002.
【36】P. Rosso, L. Ye, K. Friedrich, S. Sprenger, “A toughened epoxy resin by silica nanoparticle reinforcement” , Journal of Applied Polymer Science, Vol. 100, pp. 1849-1855, 2006.
【37】L.H. Li, W.J. Xu, Y.M. Wu, Y.Q. Xiong, W.H. Lu, Q.J. Tang, “Synthesis of polyamide-silicone polyacrylate and its UV curing properties”, Progress in Organic Coatings 53, 77–80, 2005.
【38】R. Bongiovanni, M. Sangermano, G. Malucelli,  A. Priola, ” UV curing of photoinitiator-free systems containing bismaleimides and diacrylate resins: bulk and surface properties” , Progress in Organic Coatings 53, 46–49, 2005.
【39】X. Xiao, C. Hao, “Preparation of waterborne epoxy acrylate / silica sol hybrid materials and study of their UV curing behavio”, Colloids and Surfaces A: Physicochem. Eng. Aspects 359, pp. 82-87, 2010.
【40】L. Hu, W. Shi, “UV-cured organic–inorganic hybrid nanocomposite initiated by rimethoxysilane-modified fragmental photoinitiator”, Composites: Part A 42, pp. 631-638, 2011.
【41】M.E. Nichols, C.M. Seubert, W.H. Weber, J.L. Gerlock, “A simple Raman technique to measure the degree of cure in UV curable coatings”, Progress in Organic Coatings 43,pp 226–232, 2001.
【42】Y. Morii, “A Study on UV-Curable Adhesive Sealant for LCD Panel”, Electronics and Communications in Japan, part 2, Vol. 83, No. 5, pp. 21-27, 2000.
【43】K. Rhodes,“Adhesives deliver low shrink, low stress bonds and fast UV cure”, Proceedings of SPIE, Vol. 4253, pp. 92-107, 2001.
【44】J.S. Lin, “The study and application of manufacturing microstructures by UV curable resin” , National Yunlin University of Science & Technology, 2005.
【45】J.P. Stropp, U. Wolff, S. Kernaghan, H. Loffler, M. Osterhold, H. Thomas, “UV curing systems for automotive refinish applications”
, Progress in Organic Coatings, Vol. 55, pp. 201–205, 2006.
【46】N. Alcon, A. Tolosa, M.T. Rodriguez, C. Moreno, “Development of photoluminescent powder coatings by UV curing process”, Progress in Organic Coatings, Vol. 67, pp. 92-94, 2010.
【47】NACHi, http://www.nachi.com/
【48】KEYENCE, http://www.keyence.com/
【49】微小維克氏硬度試驗機 FM-100/300/700系列,
http://www.curiotu.com.tw/other/other06.html
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信