淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2208201114422200
中文論文名稱 太陽能驅動薄膜蒸餾海水淡化系統之模擬與實驗研究
英文論文名稱 The modeling and experimental study of a solar-driven membrane distillation desalination system
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 蔡誌銘
研究生英文姓名 Chih-Ming Tsai
學號 698400651
學位類別 碩士
語文別 中文
口試日期 2011-07-22
論文頁數 198頁
口試委員 指導教授-張煖
委員-程學恆
委員-陳逸航
中文關鍵字 氣隔式薄膜蒸餾  太陽能  海水淡化  程序控制  最佳化 
英文關鍵字 Air Gap Membrane Distillation  Solar energy  Desalination  Simulation  Process Control  Optimization 
學科別分類
中文摘要 薄膜蒸餾(Membrane Distillation, MD)是利用一多孔性疏水薄膜,在薄膜兩側提供溫度之差異,藉以因水之蒸汽壓差產生水之傳輸,達到將水純化之目的。太陽輻射所提供之低溫熱源與薄膜蒸餾海水淡化之結合提供了可同時解決能源與水資源不足問題的解決方案。本論文針對太陽能驅動薄膜蒸餾海水淡化系統進行了模擬與實驗研究。在薄膜蒸餾模組層次,本研究探討了傳統的氣隔式薄膜蒸餾模組(AGMD)和兩個具太陽能吸收功能之創新模組(SAF-AGMD),後者可獲提升純水通量30%-50%之效果。利用經驗證之薄膜蒸餾模式進而分析了文獻報導之大尺寸螺捲式與平板式模組,針對冷、熱流體層、薄膜層與氣隔層之阻力分析指出了性能改善應著重處,針對各裝置參數與操作條件之敏感度分析則指出性能提升的重要參數與條件。在太陽能驅動薄膜蒸餾海水淡化整體系統層次,也建立了一個實驗室小規模系統,主要設備包括太陽能集熱器、儲熱槽、熱交換器、薄膜蒸餾模組與控制系統。針對整體系統完成了動態操作實驗與模擬,包括手動與自動。利用經驗證之整體系統模式,也完成了最佳化操作分析,可獲高出約50%之純水產量。
英文摘要 Membrane distillation is a feasible technology for desalination by utilizing the vapor pressure difference across a hydrophobic membrane via temperature driving force. The integration of the low-temperature solar thermal energy with the membrane distillation provides a way to simultaneously solving the energy and water resource problems. This thesis accomplishes both experimental and simulation studies on the solar-driven membrane distillation desalination system. For three membrane distillation modules, including a conventional air gap membrane distillation (AGMD) and two innovative modules with solar absorption function (SAF-AGMD), the SAF-AGMD modules can provide flux enhancement by 30-50%. Using the verified mathematical model, for two large scale modules reported in the literature, a spiral wound type and a flat plate type, the resistance analysis and the parameter study reveal the significant layers as well as the device parameters and operation conditions for performance improvement. In overall system level, a small laboratory-scale system is established, which includes the solar collector, thermal storage tank, heat exchanger and membrane distillation module, as well as the control system. Dynamic operations of the system, including manual and automatic, have been accomplished. By employing the verified overall system model, the optimization analysis gives the maximum pure water production rate which is enhanced by 50%.
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與範疇 4
1.3 論文組織與架構 5
第二章 文獻回顧 6
第三章 實驗研究 12
3.1 太陽能輔助氣隔式薄膜蒸餾模組實驗 12
3.1.1 實驗系統 12
3.1.2 實驗步驟 22
3.1.3 實驗條件與結果 24
3.1.3.1 實驗個案條件 24
3.1.3.2 熱流體進口溫度與流量之影響 25
3.1.3.3 冷流體進口溫度與流量之影響 29
3.1.3.4 熱流體層、冷流體層與氣隔層厚度之影響 33
3.1.3.5 日照輻射強度之影響 39
3.2 太陽能驅動薄膜蒸餾海水淡化系統實驗. 42
3.2.1 實驗系統 42
3.2.1.1 流程與裝置 42
3.2.1.2 設備尺寸 47
3.2.1.3 手動操作 48
3.2.1.4 自動操作 51
3.2.2 實驗步驟 55
3.2.3 實驗條件與結果 59
3.2.3.1 實驗個案條件. 59
3.2.3.2 儲熱循環總流量與入儲熱槽流量之影響 60
3.2.3.3 蒸餾循環流量之影響 66
3.2.3.4 日照輻射強度之影響 68
3.2.3.5 控制器設定之影響 69
第四章 薄膜蒸餾模組模式建立與分析 72
4.1 數學模式 72
4.1.1 統制方程式 75
4.1.1.1 基本型模組 75
4.1.1.2 具太陽能吸收功能模組 76
4.1.2 物理/輸送性質 78
4.1.3 熱質傳係數 79
4.1.3.1 吸收板與玻璃面蓋間氣隔層熱傳係數 79
4.1.3.2 熱流體層熱傳係數 79
4.1.3.3 薄膜層熱質傳係數 81
4.1.3.4 氣隔層熱質傳係數 81
4.1.3.5 冷凝液熱傳係數 81
4.1.3.6 冷流體層熱傳係數 82
4.1.4 模式之求解 82
4.2 模式驗證 82
第五章 薄膜蒸餾模組最佳設計 89
5.1 阻力分析 92
5.1.1 螺捲狀模組 92
5.1.2 平板型模組 95
5.2 模組設計參數影響分析 98
5.2.1 螺捲狀模組 98
5.2.2 平板型模組 110
5.3 性能改進設計 121
第六章 太陽能驅動薄膜蒸餾海水淡化系統模式建立與分析 124
6.1 個別單元數學模式 124
6.1.1 太陽能集熱器 124
6.1.2 儲熱槽 126
6.1.3 熱交換器 127
6.2 整體系統數學模式 127
6.2.1 流程說明 128
6.2.2 設備規格與操作條件 132
6.3 基本個案分析 136
6.3.1 動態特性 136
6.3.2 系統性能 137
6.4 操作條件影響分析 139
第七章 太陽能驅動薄膜蒸餾海水淡化系統之操作控制 157
7.1 控制架構 157
7.1.1 控制系統配置與操作模式 158
7.1.2 控制器参數調諧 164
7.2 實驗與模擬結果分析 168
第八章 太陽能驅動薄膜蒸餾海水淡化系統最佳化分析 172
8.1 問題定義 172
8.1.1 最佳化方法 174
8.1.2 最佳化參數設定與控制設定 174
8.2 求解方法 177
8.3 結果分析 178
第九章 結論 187
符號說明 189
參考文獻 193
圖目錄
圖1.1 薄膜蒸餾操作原理 2
圖1.2 薄膜蒸餾模組配置 3
圖1.3太陽能驅動薄膜蒸餾海水淡化系統流程(CADDET, 1996) 4
圖2.1 歐盟具熱交換功能之螺捲式薄膜蒸餾模組(Koschikowski et al., 2003) 7
圖2.2 荷蘭TNO之Memstill系統(van Medevoort et al., 2008) 7
圖2.3 義大利之平板型氣隔式薄膜蒸餾模組(Guillen-Burrieza et al., 2011) 8
圖3.1 氣隔式薄膜蒸餾模組實驗配置 13
圖3.2 基本型氣隔式薄膜蒸餾模組流體渠道 14
圖3.3 基本型氣隔式薄膜蒸餾模組裝置分解圖 14
圖3.4 鋁製平板型吸收板流體渠道 16
圖3.5 鋁製V型吸收板流體渠道 17
圖3.6 太陽能輔助V型氣隔式薄膜蒸餾模組裝置分解圖 17
圖3.7 基本型氣隔式薄膜蒸餾模組分解照片 20
圖3.8 太陽能輔助平板型氣隔式薄膜蒸餾模組分解照片 20
圖3.9 太陽能輔助V型氣隔式薄膜蒸餾模組分解照片 21
圖3.10 太陽能輔助氣隔式薄膜蒸餾模組裝置照片 21
圖3.11 薄膜蒸餾模組熱物流進口溫度對純水產量之影響 28
圖3.12 薄膜蒸餾模組熱物流流量對純水產量之影響 28
圖3.13 薄膜蒸餾模組冷物流進口溫度對純水產量之影響 32
圖3.14 薄膜蒸餾模組冷物流流量對純水產量之影響 32
圖3.15薄膜蒸餾模組熱流體層厚度對純水產量之影響 37
圖3.16 薄膜蒸餾模組冷流體層厚度對純水產量之影響 37
圖3.17 薄膜蒸餾模組氣隔層厚度對純水產量之影響 38
圖3.18 薄膜蒸餾模組太陽能入射量對純水產量之影響 41
圖3.19 太陽能驅動薄膜蒸餾海水淡化系統實驗配置 43
圖3.20 日間操作模式流程 49
圖3.21 夜間操作模式流程 50
圖3.22 控制系統 52
圖3.23 整體系統實驗裝置 53
圖3.24 儲熱槽 53
圖3.25熱交換器 54
圖3.26幫浦 54
圖3.27 有日照時流入儲槽流量比之影響 61
圖3.28 無日照時流入儲槽流量比之影響 63
圖3.29 儲熱循環總流量之影響 65
圖3.30 蒸餾循環流量之影響 67
圖3.31 日照輻射強度之影響 68
圖3.32 自動控制操作蒸餾循環設定溫度之影響 71
圖4.1 基本型氣隔式薄膜蒸餾熱質傳 74
圖4.2 平面吸收板型氣隔式薄膜蒸餾熱質傳 74
圖4.3 熱流體進口溫度對通量之影響(mfHL=mfCL=0.05 L/min, TCL=25℃, I=1000 W/m2) 85
圖4.4 熱流體進口流量對通量之影響(mfCL=0.05 L/min, THL=25℃, TCL=25℃, I=1000 W/m2) 85
圖4.5 冷流體進口溫度對通量之影響(mfHL=mfCL=0.05 L/min, THL=60℃, I=1000 W/m2) 86
圖4.6 冷流體進口流量對通量之影響(mfHL=0.05 L/min, THL=25℃, TCL=25℃, I=1000 W/m2) 86
圖4.7熱流體層厚度對通量之影響(mfHL=mfCL=0.05 L/min, THL=25℃, TCL=25℃, I=1000 W/m2) 87
圖4.8 冷流體層對通量之影響(mfHL=mfCL=0.05 L/min, THL=25℃, TCL=25℃, I=1000 W/m2) 87
圖4.9 氣隔層厚度對通量之影響(mfHL=mfCL=0.05 L/min, THL=25℃, TCL=25℃, I=1000 W/m2) 88
圖4.10 日照輻射強度對通量之影響(mfHL=mfCL=0.05 L/min, THL=25℃, TCL=25℃) 88
圖5.1螺捲狀氣隔式薄膜蒸餾模組熱傳係數改變對通量之影響 92
圖5.2螺捲狀氣隔式薄膜蒸餾模組質傳係數改變對通量之影響 93
圖5.3螺捲狀氣隔式薄膜蒸餾模組熱質傳係數同時改變對通量之影響 94
圖5.4平板型氣隔式薄膜蒸餾模組熱傳係數改變對通量之影響 95
圖5.5平板型氣隔式薄膜蒸餾模組質傳係數改變對通量之影響 96
圖5.6平板型氣隔式薄膜蒸餾模組熱質傳係數同時改變對通量之影響 97
圖5.7螺捲狀氣隔式薄膜蒸餾模組薄膜孔徑對通量之影響 98
圖5.8螺捲狀氣隔式薄膜蒸餾模組薄膜支撐層厚度對通量之影響 99
圖5.9螺捲狀氣隔式薄膜蒸餾模組薄膜多孔層厚度對通量之影響 100
圖5.10螺捲狀氣隔式薄膜蒸餾模組薄膜空隙度對通量之影響 101
圖5.11螺捲狀氣隔式薄膜蒸餾模組長寬比對通量之影響 102
圖5.12螺捲狀氣隔式薄膜蒸餾模組流體通道高度對通量之影響 103
圖5.13螺捲狀氣隔式薄膜蒸餾模組氣隔層厚度對通量之影響 104
圖5.14螺捲狀氣隔式薄膜蒸餾模組氣隔層操作壓力對通量之影響 105
圖5.15螺捲狀氣隔式薄膜蒸餾模組冷熱流體雷諾數對通量之影響 106
圖5.16螺捲狀氣隔式薄膜蒸餾模組熱流體進口溫度對通量之影響 107
圖5.17純水之溫度與蒸氣壓的關係 108
圖5.18螺捲狀氣隔式薄膜蒸餾模組冷流體進口溫度對通量之影響 109
圖5.19平板型氣隔式薄膜蒸餾模組薄膜孔徑對通量之影響 110
圖5.20平板型氣隔式薄膜蒸餾模組薄膜支撐層厚度對通量之影響 111
圖5.21平板型氣隔式薄膜蒸餾模組薄膜多孔層厚度對通量之影響 112
圖5.22平板型氣隔式薄膜蒸餾模組薄膜空隙度對通量之影響 113
圖5.23平板型氣隔式薄膜蒸餾模組長寬比對通量之影響 114
圖5.24平板型氣隔式薄膜蒸餾模組流體通道高對通量之影響 115
圖5.25平板型氣隔式薄膜蒸餾模組氣隔層厚度對通量之影響 116
圖5.26平板型氣隔式薄膜蒸餾模組氣隔層操作壓力對通量之影響 117
圖5.27平板型氣隔式薄膜蒸餾模組冷熱流體雷諾數對通量之影響 118
圖5.28平板型氣隔式薄膜蒸餾模組熱流體進口溫度對通量之影響 119
圖5.29平板型氣隔式薄膜蒸餾模組冷流體進口溫度對通量之影響 120
圖6.1 太陽能集熱器 125
圖6.2 儲熱槽 126
圖6.3日間循環流體流動方向 130
圖6.4夜間循環流體流動方向 131
圖6.5整體系統基本個案物流溫度分佈 137
圖6.6 整體系統基本個案純水通量與產量之模擬結果 138
圖6.7 有日照時進入儲熱槽流量比為0.5之溫度分佈 142
圖6.8 有日照時進入儲熱槽流量比為0.7之溫度分佈 143
圖6.9 有日照時進入儲熱槽流量比為0.9之溫度分佈 144
圖6.10 無日照時進入儲熱槽流量比為0.5之溫度分佈 145
圖6.11 無日照時進入儲熱槽流量比為0.7之溫度分佈 146
圖6.12 無日照時進入儲熱槽流量比為0.9之溫度分佈 147
圖6.13 儲熱循環流量為4.6 kg/h之溫度分佈 148
圖6.14 儲熱循環流量為4.8 kg/h之溫度分佈 149
圖6.15 儲熱循環流量為5 kg/h之溫度分佈 150
圖6.16 儲熱循環流量為5.2 kg/h之溫度分佈 151
圖6.17 蒸餾循環流量為2.2 kg/h之溫度分佈 152
圖6.18 蒸餾循環流量為2.4 kg/h之溫度分佈 153
圖6.19 蒸餾循環流量為2.6 kg/h之溫度分佈 154
圖6.20 蒸餾循環流量為2.8 kg/h之溫度分佈 155
圖6.21 陰天操作之溫度分佈 156
圖7.1 控制系統配置 159
圖7.2 使用PI控制於有日照輻射下的操作 163
圖7.3 使用PI控制於無日照輻射下的操作 164
圖7.4 TC1之參數諧調 165
圖7.5 TC2之參數諧調 166
圖7.6設定點45℃之TC3參數諧調 167
圖7.7設定點40℃之TC3參數諧調 167
圖7.8 設定1之系統溫度分佈 170
圖7.9 設定2之系統溫度分佈 171
圖8.1 最佳化操作之系統流程 172
圖8.2晴天之日照輻射強度 173
圖8.3陰天之日照輻射強度 173
圖8.4 FEASOPT 177
圖8.5 儲熱循環流量2.4 kg/h 之最佳化結果 ................................... 180
圖8.6 儲熱循環流量2.4 kg/h 之最佳化物流流量 ........................... 181
圖8.7 晴天時不同儲熱槽循環流量最佳化結果 .............................. 182
圖8.8 陰天時不同儲熱槽循環流量最佳化結果 .............................. 185

表目錄
表3.1 薄膜性質 .................................................................................... 15
表3.2 實驗之操作變數與模組設計參數 ............................................ 24
表3.3 薄膜蒸餾模組熱物流進口溫度對純水產量之實驗紀錄 ........ 26
表3.4 薄膜蒸餾模組熱物流進口流量對純水產量之實驗紀錄 ........ 27
表3.5 薄膜蒸餾模組冷物流進口溫度對純水產量之實驗紀錄 ........ 30
表3.6 薄膜蒸餾模組冷物流進口流量對純水產量之實驗紀錄 ........ 31
表3.7 薄膜蒸餾模組熱流體層厚度對純水產量之實驗紀錄 ............ 34
表3.8 薄膜蒸餾模組冷流體層厚度對純水產量之實驗紀錄 ............ 35
表3.9 薄膜蒸餾模組氣隔層厚度對純水產量之實驗紀錄 ................ 36
表3.10 薄膜蒸餾模組幅射強度對純水產量之實驗紀錄 .................. 40
表3.11 整體系統實驗設備尺寸........................................................... 47
表3.12 實驗之操作變數與模組設計參數 .......................................... 59
表4.1 AGMD 模式 ................................................................................ 75
表4.2 SAF-AGMD 模式 ........................................................................ 77
表4.3 實驗裝置參數 ............................................................................ 84
表4.4 實驗操作條件 ............................................................................ 84
表5.1 螺捲狀氣隔式薄膜蒸餾模組裝置設計參數 ............................ 90
表5.2 螺捲狀氣隔式薄膜蒸餾模組之操作條件 ................................ 90
表5.3 平板型氣隔式薄膜蒸餾模組之裝置設計參數 ........................ 91
表5.4 平板型氣隔式薄膜蒸餾模組之操作條件 ................................ 91
表6.1 整體系統數學模式 ................................................................... 127
表6.2 集熱器裝置尺寸與參數設定 ................................................... 132
表6.3 儲熱槽裝置尺寸與參數設定 ................................................... 133
表6.4 熱交換器裝置尺寸與參數設定 ............................................... 133
表6.5 動態操作之控制設定 ............................................................... 134
表6.6 基本個案之操作變數 ............................................................... 135
表6.7 動態操作變數改變個案 .......................................................... 135
表6.8 各操作條件對純水總產量之影響 .......................................... 141
表7.1 控制元件之設定 ...................................................................... 160
表7.2 控制器設定對純水總產量與操作時間之影響 ...................... 169
表8.1 最佳化參數設定 ...................................................................... 175
表8.2 最佳化操作的控制元件設定 .................................................. 176
表8.3 晴天時不同儲熱槽循環流量之最佳化結果 .......................... 183
表8.4 陰天時不同儲熱槽循環流量最佳化結果 .............................. 186
參考文獻 Al-Gobaisi, D.M.K., Barakzai, A.S., El-Nashar, A.M., “An overview of modern control strategies for optimizing thermal desalination plants,” Desalination, 84, 3-43, 1991.
Alatiqi, I., Ettouney, H., El-Dessouky, H., “Process control in water desalination industry: an overview,” Desalination, 126, 15-32, 1999.
Alklaibi, A.M., Lior, N., “Heat and mass transfer resistance analysis of membrane distillation,” Journal of Membrane Science, 282, 362-369, 2006.
Banat, F., Jwaied, N., Rommel, M., Koschikowski, J., Wieghaus, M., “Performance evaluation of the large SMADES autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan,” Desalination, 217, 17-28, 2007a.
Banat, F., Jwaied, N., Rommel, M., Koschikowski, J., Wieghaus, M., “Desalination by a compact SMADES autonomous solar- powered membrane distillation unit,” Desalination, 217, 29-37, 2007b.
Banat, F.A., Simandl, J., “Membrane distillation for propanone removal from aqueous streams,” Journal of Membrane Science, 75(2), 168-178, 2000.
Banat, F.A., Simandl, J., “Membrane distillation for dilute ethanol: Separation from aqueous streams,” Journal of Membrane Science, 163(2), 333-348, 1999.
Ben Bacha, H., Bouzguenda, M., Abid, M.S., Maalej, A.Y., “Modelling and simulation of a water desalination station with solar multiple condensation evaporation cycle technique,” Renewable Energy, 18, 349-365, 1999.
Ben Bacha, H., Bouzguenda, M., Damak, T., Abid, M.S., Maalej, A.Y., “A study of a water desalination station using the SMCEC technique: production optimization,” Renewable Energy, 21, 523-536, 2000.
Ben Bacha, H., Damak, T., Bouzguenda, M., Maalej, A.Y., Ben Dhia, H., “Study of a water desalination station using the SMCEC technique: dynamic modeling and simulation,” Desalination, 137, 53-61, 2001.
Ben Bacha, Damak, H., Bouzguenda, T.M., Maalej, A.Y., Ben Dhia, H., “A methodology to design and predict operation of a solar collector for a solar-powered desalination unit using the SMCEC principle,” Desalination, 156, 305-313, 2003.
Ben Bacha, H., Damak, T., Ben Abdalah, A.A., Maalej, A.Y., Ben Dhia, H., “Desalination unit coupled with solar collectors and a storage tank: modelling and simulation,” Desalination, 206, 341-352, 2007.
Ben Boudinar, Hanbury, W.T., Avlonitis, S., “Numerical simulation and optimization of spiral-wound modules,” Desalination, 86, 273-290, 1992.
Bird, R.B., Stewart, W.E., Lighfoot, E.N., Transport Phenomena, New York: John Wiley and Sons, Inc., 1960.
CADDET Centre for Renewable Energy, A Solar Desalination System Using the Membrane Distillation Process, United Kingdom, 1996.
Cath, T.Y., Dean Adams, V., Childress A.E., “Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement,” Journal of Membrane Science, 228, 5–16, 2004.
Chang, H., Chang, C.L., Ho, C.D., Li, C.C., Wang, P.H., “Experimental and simulation study of an air gap membrane distillation module with solar absorption function for desalination,” Desalination and Water Treatment, 25, 251-258, 2011.
Chang, H., Liau, J.S., Ho, C.D., Wang, W.H., Desalination, 249, 380-387, 2009.
Chang, H, Wang, G.B., Chen, Y.H., Li, C.C., Chang, C.L., “Modeling and optimization of a solar driven membrane distillation desalination system,” Renewable Energy, 35, 2714-2722, 2010.
Chernyshov, M.N., Meindersma, G.W., de Haan, A.B. “Comparison of spacers for temperature polarization reduction in air gap membrane distillation,” Desalination, 183, 363-374, 2005.
Cussler EL. Diffusion: mass transfer in fluid systems, 2nd Ed. Cambridge University Press; 1997.
Ding, Z., Liying Liu, Mohamed, S., El-Bourawi, R., Ma, “Analysis of a solar-powered membrane distillation system," Desalination, 172, 27-40, 2005.
Guillen-Burrieza, E., Blanco, J., Zaragoza, G., Alarcon, D.C., Palenzuela, P., Ibarra, M., Gernjak, W., “Experimental analysis of an air gap membrane distillation solar desalination pilot system,” Journal of Membrane Science, 06, 009, 2011.
El-Bourawi, M.S., Ding, Z., Ma, R., Khayet, M., “A framework for better understanding membrane distillation separation process,” Journal of Membrane Science, 285, 4-29, 2006.
Fuller, E.N., Schettler, P.D., Giddings, J.C., “New method for prediction of binary gas-phase diffusion coefficients,” Industrial & Engineering Chemistry, 58, 18-27, 1966.
Galvez, J.B., Garcia-Rodriguez, L., Martin-Mateos, I., “Seawater desalination by an innovative solar-powered membrane distillation system,”: the MEDESOL project. Desalination, 246, 567-576, 2009.
Geraldes, V., Pereira, N.E., de Pinho, M.N., “Simulation and Optimization of Medium-Sized Seawater Reverse Osmosis Processes with Spiral-Wound Modules,” Industrial and Engineering Chemistry Research, 44(6), 1897-1905, 2005.
Guijt, C.M., Meindersma, G.W., Reith, T., de Haan, A.B., “Air gap membrane distillation 1. Modelling and mass transport properties for hollow fibre membranes,” Separation and Purification Technology, 43, 233-244, 2005a.
Guijt, C.M., Meindersma, G.W., Reith, T., de Haan, A.B., “Air gap membrane distillation 2. Model validation and hollow fibre module performance analysis,” Separation and Purification Technology, 43, 245-255, 2005b.
Holman, J.P., Heat Transfer, McGraw-Hill, Inc., 1989.
Hollands, K.G.T., Shewen, E.C., “Optimization of flow passage geometry for air-heating, plate-type solar collectors,” Journal of Solar Energy Engineering, 103, 323-330, 1981.
Hollands, K.G.T., Unny, T.E., Raithby, G.D., Konicek, L., “Free convective heat transfer across inclined air layers,” Journal of Heat Transfer, 98, 189-193, 1976.
Hsu, S.T., Cheng, K.T., Chiou, J.S., “Seawater desalination by direct contact membrane distillation," Desalination, 143, 279-287, 2002.
Izquierdo-Gil, M.A., Garcia-Payo, M.C., Fernandez-Pineda, C., “Air gap membrane distillation of sucrose aqueous solutions,” Journal of Membrane Science, 155, 291-307, 1999.
Karim, M.A., Hawlader, M.N.A., “Performance evaluation of a v-groove solar air collector for drying applications,” Applied Thermal Engineeringm, 26, 121–130, 2006.
Kays, W., Crawford, M.E., Convective heat and mass transfer, 2nd Ed. McGraw-Hill; 1980.
Khayet, M., Godino, M.P., Mengual, J.I., “Study of Asymmetric Polarization in Direct Contact Membrane Distillation,” Separation Science and Technology, 39(1), 125-147, 2004.
Khayet, M., Mengual, J.I., Matsuura, T., “Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation,” Journal of Membrane Science, 252, 101-113, 2005.
Koshchikowski, J., Wieghaus, M., M.Rommel, “Solar thermal-driven desalination plants based on membrane distillation,” Desalination, 156, 295, 2003.
Lawson, K.W., Lloyd, D.R., “Membrane distillation. II. Direct contact membrane distillation,” Journal of Membrane Science, 120, 123-133, 1996.
Lawson, K.W., Lloyd, D.R., “Membrane distillation,” Journal of Membrane Science, 124, 1-25, 1997.
Li, B., Sirkar, K.K. , “Novel membrane and device for direct contact membrane distillation-based desalination process,” Industrial and Engineering Chemistry Research, 43(17), 5300-5309, 2004.
Li, J.M., Xu, Z.K., Liu, Z.M., Yuan, W.F., Xiang, H., Wang, S.Y., Xu ,Y.Y., “Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination,” Desalination, 155(2), 153-156, 2003.
Lior, N., Alklaibi, A.M., “Membrane-distillation desalination: status and potential,” Desalination, 171, 111-131, 2005.
Lloyd, D.R., Lawson, K.W., “Membrane distillation,” Journal of Membrane Science, 124, 1-25, 1997.
Luyben, W.L., Luyben, M.L., “Essentials of process control,” New York: McGraw-Hill, 1997.
Garćıa-Payo, M.C., Izquierdo-Gil, M.A., Fernandez-Pineda, C., “Wetting study of hydrophobic membranes via Liquid entry pressure measurements with aqueous alcohol solutions,” J. Colloid Interface Sci., 230, 420, 2000.
Martinez, L., Rodriguez-Maroto, J.M., “Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers,” Journal of Membrane Science, 274(1-2), 123-137, 2006.
Martinez, L., Rodriguez-Maroto, J.M., “On transport resistances in direct contact membrane distillation,” Journal of Membrane Science, 295(1-2), 28-39, 2007.
Martinez, L., Florido-Diaz, F.J., “Theoretical and experimental studies on desalination using membrane distillation,” Desalination, 139, 373-379, 2001.
Martinez-Diez, L., Vazquez-Gonzalez, M.I., “Temperature and concentration polarization in membrane distillation of aqueous salt solutions,” Journal of Membrane Science, 156(2), 265-273, 1999.
Martinez-Diez, L., Vazquez-Gonzalez, M.I., “Effects of polarization on mass transport through hydrophobic porous membranes,” Industrial and Engineering Chemistry Research, 37(10), 4128-4135, 1998.
MEDESOL Project, Seawater desalination by Innovative Solar-Powered Membrane Distillation System, funded by European Commission within the 6th Framework Programer, 2007.
Meindersma, G.W., Guijt, C.M., de Haan, A.B., “Desalination and water recycling by air gap membrane distillation,” Desalination, 187, 291–301, 2006.
Reid, R.C., Prausnitz, J.M., Poling, B.E., “The properties of gases and liquids,” New York: McGraw-Hill, 1988.
Reyes, F., Luyben, W.L., “Steady-state and dynamic effects of design alternatives in heat-exchanger/ furnace/reactor processes”, Industrial and Engineering Chemistry Research, 39, 3335-3346, 2000.
Rommel, M., Koschikowski, J., Wieghaus, M., “Solar driven desalination systems based on membrane distillation,” NATO Advanced Research Workshop “Solar Desalination for the 21st Century,” Hammamet Tunesia, 23-25 Feb., 2006.
Schock, G., Miquel, A., “Mass transfer and pressure loss in spiral wound modules,” Desalination, 64, 339-352, 1987.
Senthilmurugan, S., Ahluwalia, A., Gupta, S.K., “Modeling of a spiral-wound module and estimation of model parameters using numerical techniques,” Desalination, 173, 269-286, 2005.
Song, L., Li, B., Sirkar, K.K., Gilron, J.L., “Direct contact membrane distillation-based desalination: Novel membranes, devices, larger-scale studies, and a model,” Industrial and Engineering Chemistry Research, 46(8), 2307-2323, 2007.
Srisurichan, S., Jiraratananon, R., Fane, A.G., “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process,” Journal of Membrane Science, 277(1-2), 186-194, 2006.
van Medevoort, J., Jansen, A., Hanemaaijer, J.H., Dotremont, C., Nelemnas, B., van Sonsbeek, E., Biemans, R., Hylkema, H., Memstill: Seawater desalination a solution to water scarcity, BMG-NMG Membrane Symposium, Antwerp, Belgium, Nov. 16, 2008.
Walton, J., Lu, H., Tumer, C., Solis, S., Hein,H., “Solar and waste heat desalination by membrane distillation,” Desalination and Water Purification Research and Development Program Report No. 81, 20
Winter D, Koschikowski J, Wieghaus M. “Desalination using membrane distillation: experimental studies on full scale spiral wound modules,” Journal of Membrane Science, 375, 104-112, 2011.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信