淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2208201009085400
中文論文名稱 氯化銀薄膜對Orange II 染料的光催化降解
英文論文名稱 Silver Chloride Films for Photocatalytic Degradation of Orange II Dye
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 游長慶
研究生英文姓名 Chang-Ching You
學號 697370095
學位類別 碩士
語文別 中文
口試日期 2010-06-04
論文頁數 66頁
口試委員 指導教授-林清彬
委員-林景崎
委員-李勝隆
中文關鍵字 氯化銀薄膜  UV 光  可見光  光催化  染料降解 
英文關鍵字 Silver chloride film  Ultraviolet light  Visible light  Photocatalytic  Dye degradation 
學科別分類 學科別應用科學機械工程
中文摘要 本研究已提出一種新穎氯化銀薄膜製備方法,將硝酸銀水溶液相
變化成固態後,滴入氯化鈉水溶液,藉由析出反應製得氯化銀薄膜。
該薄膜下表面形態具有高吸附面積之大量小晶粒堆積成棒狀結構。將
此薄膜之下表面晶態分別以UV 光與可見光催化降解Orange II 偶氮
染料,並比較8.4M、6.3M、4.2M 及2.1M 硝酸銀水溶液濃度所製得
之氯化銀薄膜與相同表面積之奈米二氧化鈦粉末對Orange II 偶氮染
料之光催化降解效果。UV 光催化降解實驗中,氯化銀薄膜可有效降
解Orange II 偶氮染料,其色度可於兩個小時內去除98%;在可見光
催化下,表面含有銀原子簇的氯化銀薄膜對Orange II 染料亦有降解
效果,但與UV 光催化比較之下,效果較差,色度在兩個小時內僅能
去除31%。其中以硝酸銀水溶液濃度4.2M 所製得之氯化銀薄膜因具
有較高之吸附面積,故光催化降解效果最佳。在相同吸附面積比較之
下,氯化銀薄膜之染料光催化降解效果大於奈米二氧化鈦粉末。
英文摘要 This study has proposed a novel method to fabricate silver chloride film. The silver chloride film was obtained by precipitating reaction that infusing sodium chloride aqueous solution on the silver nitrate aqueous solution which was phase changed into solid-state. The morphology of under-surface of the silver chloride film has many stick structures with high absorption area which heaps by a lot of
small particles. The under-surface of the film was used to do photocatalytic degradation of orange II azo dye under ultraviolet light and visible light separately, and the degradation effect of the silver chloride film was compared with the film which was obtained with 8.4M, 6.3M, 4.2M, and 2.1M silver nitrate aqueous solution and the nano titanium dioxide powder which have same specific surface area. In ultraviolet light photocatalysis, the Orange II azo dye could be degraded by the silver chloride film effectively. Its color could be removed 98% during 2 hours. And in visible light photocatalysis, the silver chloride film with silver clusters degrades orange II azo dye effectively but not significantly when compared to ultraviolet photocatalytic. And the color could be removed 31% during 2 hours. Among them, the silver chloride obtained from 4.2M silver chloride aqueous solution due to the higher absorption area, so the photocatalytic degradation is better
than other concentration. Under the same absorption area, the photocatalytic degradation effect of the silver chloride film was larger than that of nano titanium
dioxide powder.
論文目次 總目錄
中文摘要............................................................................................................I
英文摘要.......................................................................................................... II
總目錄.............................................................................................................IV
圖目錄........................................................................................................... VII
表目錄.............................................................................................................IX
壹、導論........................................................................................................... 1
1.1 前言......................................................................................................... 1
1.2 文獻回顧................................................................................................. 2
1.2.1 染料.................................................................................................. 2
1.2.2 光化學反應...................................................................................... 4
1.2.3 氯化銀簡介...................................................................................... 6
1.2.4 氯化銀光催化.................................................................................. 7
1.2.5 氯化銀光催化染料降解.................................................................. 9
1.2.6 氯化銀薄膜製備方法.................................................................... 11
1.2.6.1 真空蒸鍍法(vacuum evaporation) ........................................ 11
1.2.6.2 濺鍍法(sputtering)................................................................. 11
1.2.6.3 溶膠-凝膠法(sol-gel)............................................................. 12
1.2.6.4 化學浴沉積法(chemical bath deposition)............................. 13
1.3 研究範疇............................................................................................... 14
貳、實驗步驟................................................................................................. 25
2.1 實驗材料與設備................................................................................... 25
2.1.1 實驗材料......................................................................................... 25
2.1.2 實驗設備........................................................................................ 25
2.2 氯化銀薄膜之製備............................................................................... 26
2.3 氯化銀薄膜之性質分析....................................................................... 28
2.3.1 顯微結構觀察(SEM) ..................................................................... 28
2.3.2 X-光繞射分析(XRD)...................................................................... 28
2.3.3 比表面積測定(BET)...................................................................... 28
2-4 Orange II 染料光催化降解................................................................. 29
2-4.1 實驗流程及裝置............................................................................ 29
2-4.2 實驗方法........................................................................................ 30
2.4.2.1 預備實驗.................................................................................. 30
2.4.2.2 光催化降解實驗..................................................................... 31
2.4.3 分析方法........................................................................................ 33
2.4.3.1 真色色度分析( ADMI ) ........................................................ 33
參、結果與討論............................................................................................. 38
3.1 氯化銀薄膜之性質分析....................................................................... 38
3.1.1 顯微結構觀察(SEM) ..................................................................... 38
3.1.2 X-光繞射分析(XRD)...................................................................... 42
3.1.3 比表面積測定(BET)....................................................................... 43
3.2 預備實驗............................................................................................... 44
3.2.1 揮發實驗......................................................................................... 44
3.2.2 直接光解實驗................................................................................. 44
3.2.3 吸附實驗......................................................................................... 44
3.3 光催化降解實驗................................................................................... 45
3.3.1 UV 光催化降解實驗...................................................................... 45
3.3.2 可見光催化降解實驗.................................................................... 46
肆、結論......................................................................................................... 60
參考文獻......................................................................................................... 62

圖目錄
圖1.1 Orange II 之化學結構......................................................................... 16
圖1.2 太陽光的光譜..................................................................................... 17
圖1.3 氯化銀/銀簇能隙示意圖.................................................................... 18
圖1.4 在可見光照射下Ag/AgCl (■) 與N-Doped TiO2 (▲)針對甲基橙染
料降解效率的比較............................................................................. 19
圖1.5 AgCl/Ag-NP、AgCl 及N-Doped TIO2 之UV/Vis 擴散反射光譜... 20
圖1.6 不同光觸媒(N-Doped TiO2、AgCl、AgCl/Ag-Bulk、AgCl/Ag-NP50
及AgCl/Ag-NP20)在可見光照射下對甲基藍染料降解效率比較. 21
圖2.1 氯化銀薄膜製備裝置圖..................................................................... 34
圖2.2 實驗光源之光譜(a)UV 光;(b)可見光............................................. 35
圖2.3 染料光催化降解實驗流程圖............................................................. 36
圖2.4 染料光催化降解實驗裝置................................................................. 37
圖3.1 氯化銀薄膜上表面之顯微結構(a)10 分鐘;(b)12 小時;(c)24 小時
............................................................................................................. 48
圖3.2 氯化銀薄膜下表面之顯微結構(a)10 分鐘;(b)12 小時;(c)24 小時
............................................................................................................. 49
圖3.3 氯化銀薄膜剖斷面之顯微結構(a)10 分鐘;(b)12 小時;(c)24 小時
............................................................................................................. 50
圖3.4 不同硝酸銀水溶液濃度之氯化銀薄膜之上表面顯微結構............ 51
(a)6.3 M;(b)4.2 M;(c)2.1M ........................................................... 51
圖3.5 不同硝酸銀水溶液濃度之氯化銀薄膜之下表面顯微結構............ 52
(a)6.3 M;(b)4.2 M;(c)2.1M ........................................................... 52
圖3.6 不同硝酸銀水溶液濃度之氯化銀薄膜之上表面顯微結構............ 53
(a)6.3 M;(b)4.2 M;(c)2.1M ........................................................... 53
圖3.7 氯化銀薄膜之X-光繞射圖(a)UV 光照射前;(b)UV 光照射後..... 54
圖3.8 揮發實驗之Orange II 染料殘餘分率............................................... 55
圖3.9 以UV 光與可見光直接光解之Orange II 染料殘餘分率............... 56
圖3.10 吸附實驗之Orange II 染料殘餘分率............................................. 57
圖3. 11 UV 光照射下不同硝酸銀濃度所製得氯化銀薄膜之Orange II 染料
殘餘分率........................................................................................... 58
圖3.12 可見光照射下不同硝酸銀濃度所製得氯化銀薄膜之Orange II 染
料殘餘分率....................................................................................... 59

表目錄
表1.1 染料之發色團..................................................................................... 22
表1.2 染料之助色團..................................................................................... 23
表1.3 各種氧化劑之標準氧化電位............................................................. 24
參考文獻 1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Volume 238, Issue 5358, 1972, pp. 37-38.
2. P. Wang. B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J. Wei and M. H. Whangbo, “Ag@AgCl: a highly efficient and stable photocatalyst active under visible light” Angew. Chem. Int. Ed. 2008, 47, pp. 7931 –7933.
3. C.F. Song and S.W. Liu, “Preparation of highly efficient photocatalyst ag/agcl film and study on its methyl orange degradation under sunlight”, Journal of Anhui Agri. Sci. vol. 37, No. 18, 2009, pp. 8318-8319, 8342.
4. 邱永亮、魏盛德合譯,染色化學,徐氏基金會出版,1975。
5. 邱永亮譯,染料之合成與特性,徐氏基金會出版,1975。
6. R. Nilsson, R. Nordlinder, U. Wass, B. Meding and L. Belin, “Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes”, British Journal of Industrial Medicine, 50, 1993, pp. 65-70.
7. 中華民國行政院環境保護署(2009):放流水標準。2010年3月20日,取自:http://ivy5.epa.gov.tw/epalaw/docfile/060060.pdf。
8. E.S. Knapp, F.M. Zhanga and K.N. Tapleyb, "Decolourisation of orange ii by a wood-rotting fungus", Journal of Chemical Technology & Biotechnology, 69, 1997, pp. 289-296.
9. C.M. Doede and C.A. Walker, “Photochemical engineering”, Chemical Engineering journal, 62, 1955, pp. 159-178.
10. S.H. Maron and J.B. Lando., Fundamentals of physical chemistry, Macmillan Publishing Co. Inc., New York, 1974.
11. R.G. Zepp, “Factors affecting the photochemical treatment of hazardous waste”, Environmental Science and Technol, 22, 1988, pp. 256-257.
12. R. Phillips, Sources and applications of ultraviolet radiation, Academic press, London, 1983, pp.47-58.
13. O.C. Zafirinu, J. Joussot-Dubien, R.G. Zepp and R.G. Zik, “Photochemistry of natural waters”, Environ. Sci. Technol. 18, 1984, pp. 358A-371A.
14. P.H. Chen and C.H. Jenq, “Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide”, Environment International, Vol. 24, No. 8, 1998, pp. 871-879.
15. H.P.R. Frederikse, D.R. Lide, “Solubility product constants”, in CRC Handbook of Chemistry and Physics (89th ed.). CRC Press/Taylor and Francis, Boca Raton, FL.. pp. 8-118.
16. D.J.G. Ives and G.J. Janz, Reference electrodes, Academic Press, New York, 1961, pp. 1–70.
17. S. Ito, H. Hachiya, K. Baba, Y. Asano and H. Wada, “Improvement of the silver/silver chloride reference electrode and its application to pH measurement”. Talanta 42, 1995, pp. 1685–1690.
18. B. Tang and Q.Q. Zhang, “Characterization of photocatalysis of agcl colloid”, Journal of university of science and technology of china, Vol. 32, No. 6, 2002, pp. 743-747.
19. M. Pera-Titus, V. Garc´ ıa-Molina, M.A. Baños, J. Giménez and S. Esplugas, ”Degradation of chlorophenols by means of advanced oxidation processes: a general review”, Applied Catalysis B: Environmental 47, 2004, pp. 219–25.
20. M. Lanz, D. Schuch, G. Calzaferri, “Photocatalytic oxidation of water to O2 on AgCl coated electrodes”, J. Photochem. Photobiolog. A: chemistry, 120, 1999, pp. 105-107.
21. M. Ashokkumar and J.L. Marignier, “Hydrogen and oxygen evolution from water using Ag and AgCl colloids”, Internation Journal of Hydrogen Energy, 24, 1999, pp. 17-20.
22. G. Calzaferri, D. Brühwiler, S. Glaus, D. Schürch and A. Currao, “Quantum-sized silver, silver chloride and silver sulfide clusters”, Journal of Imaging Science and Technology, Volume 45, Number 4, July/August, 2001, pp. 331-339.
23. D. Schurch, A. Currao, S. Sarkar, G. Hodes and G. Calzaferri, “The silver chloride photoanode in photoelectrochemical water splitting”, J. Phys. Chem. B, vol. 106, No. 49, 2002, pp. 12764-12775.
24. C.F. Song, Q.Q. Zhang and B. Tang, “On the photocatalytic degradation of pigment by AgCl film”, Journal of Anhui Institute of Mechanical and Electrical Engineering, vol. 18, No. 1, Mar, 2003, pp. 23-25.
25. Y. Zhang, Y.D. Tan and Q. Kong, “Study on the photocatalytic performance of reactive red k-2bp by agcl photocatalyst”, Contemporary Chemical Industry, Vol. 34, No.3, 2005, pp. 180-183.
26. J. Yu, X. Wang, W. Guo and J. Wang, “Photocatalytic degradation of p-nitrophenol in water with AgCl catalysis”, Chemical Journal on Internet, Vol.8, No.5, May, 2006, pp. 33.
27. M. Choi, K.H. Shin and J. Jang, “Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light”, Journal of Colloid and Interface Science, 341, 2010, pp. 83-87.
28. N. Kakuta, N. Goto, H. Ohkita, and T. Mizushima, “Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution”, Journal of Physical Chemistry B, Vol. 103, No. 29, 1999, pp. 5917-5919.
29. H. Haefke, R. Mattheis and M. Krohn, “Thin film growth of AgCl on NaCl(001)”, Thin Solid Films, 195 , 1991, pp. 225-235.
30. A. Belkind, E. Ezell, M. Dror, W.A. Luo, JR Jacobs and M.G. Lagally, “Compositional and morphological analysis of AgCI films deposited by evaporation and R.F. sputtering”, Thin Solid Films, 142 , 1986, pp. 113-125.
31. M. Zayat, D. Einot and R. Reisfeld, “Reversible photochromism of sol-gel SiO2 :AgCl films”, Journal of Sol-Gel Science and Technology, 10, 1997, pp. 203–211.
32. G. Hodes and G. Calzaferri, “Chemical solution deposition of silver halide films”, Advanced Functional Materials, 12, No. 9, August, 2002, pp. 501-505.
33. B.A. Xu, D.E. Giles and I.M. Ritchie, “Reactions of lime with carbonate-containing solutions”, Hydromaetallurgy, 48, 1998, pp. 205-224.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信