淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2208200710343600
中文論文名稱 溶膠凝膠法製備B2O3-P2O5-SiO2系玻璃陶瓷之特性探討
英文論文名稱 Characteristics of B2O3-P2O5-SiO2 glass-ceramics prepared by sol-gel method
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 傅育棋
研究生英文姓名 Yuh-Chyi Fuh
學號 694361436
學位類別 碩士
語文別 中文
口試日期 2007-07-30
論文頁數 111頁
口試委員 指導教授-余宣賦
委員-蔡德華
委員-張裕祺
中文關鍵字 溶膠凝膠法  玻璃陶瓷  磷酸硼  磷酸矽 
英文關鍵字 sol-gel method  glass-ceramics  boron phosphate  silicon phosphate 
學科別分類
中文摘要 本研究以溶膠凝膠法來製備B2O3-P2O5-SiO2系玻璃陶瓷粉體,實驗中主要探討不同組成的B2O3-P2O5-SiO2系玻璃陶瓷對最終獲得粉體性質之影響,而產物粉體主要是藉由DTA-TG、FT-IR、XRD、SEM、EIS等分析來作性質分析。從結果顯示,原料的硼酸、磷酸含量影響產物粉體的相態,不同的相態呈現出不同的含水導電特性。若硼酸/磷酸比大於0.8,其粉體相態以磷酸硼為主,其熱行為包含了有機物和結晶水的移除,TG曲線在500℃之後持平,其含水導電度則隨熱處理溫度上升而下降。當硼酸/磷酸比小於0.8時,相態包含了磷酸硼與磷酸矽,隨磷酸的增加而主要相態由磷酸硼變為與磷酸矽,其TG曲線在1100℃時會有一重量損失,是磷酸矽在高溫時分解所導致的現象。高磷酸含量的樣品,其含水時的導電度受熱處理溫度的影響較少,最佳的導電度值可達到1.19×10-2 (S/cm)。
英文摘要 B2O3-P2O5-SiO2 glass-ceramic(BPSG) powder was prepared by using sol-gel method. The resultant powder was analyzed using DTA-TG, FT-IR, XRD, SEM, and EIS. Effects of various BPSG components were studied. The H3BO3/H3PO4 ratios influence the phases and the electric properties of the obtained powder. If the H3BO3/H3PO4 ratios were more than 0.8, BPO4 was the main phase which TG curve end up in a draw at 500℃ with decreasing conductivity by increasing heat-treated temperature. On the other hand, the H3BO3/H3PO4 ratios were less than 0.8, the main phase became silicon phosphate, which TG curve had weight loss about 1100℃ caused by the decomposition reaction. The conductivity showed less dependence on heat-treated temperature. The maxium conductivity of sample with water is 1.19×10-2 (S/cm).
論文目次 中文摘要……………………………………………………………I
英文摘要……………………………………………………………II
目錄…………………………………………………………………III
圖目錄………………………………………………………………V
表目錄………………………………………………………………VIII

第一章 序論……………………………………………………………1
第二章 理論基礎與文獻回顧…………………………………………2
2-1 玻璃結構………………………………………………………2
2-1-1 玻璃的形成………………………………………………2
2-1-2 玻璃的結構………………………………………………3
2-1-3 玻璃陶瓷…………………………………………………6
2-2 溶膠-凝膠法…………………………………………………10
2-2-1 溶膠-凝膠法之定義…………………………………10
2-2-2 溶膠-凝膠法之原理…………………………………11
2-2-3 溶膠-凝膠法之影響參數……………………………15
2-2-4 溶膠-凝膠法之優點…………………………………17
2-3 硼磷矽玻璃之文獻回顧………………………………………18
第三章 實驗步驟與方法………………………………………………32
3-1 實驗藥品………………………………………………………32
3-2 實驗方法………………………………………………………33
3-3 實驗流程圖……………………………………………………36
3-4 特性分析………………………………………………………37
3-4-1 X光繞射分析儀………………………………………38
3-4-2 傅利葉轉換紅外光光譜儀……………………………39
3-4-3 場發射掃描式電子顯微鏡……………………………40
3-4-4 熱重分析儀……………………………………………40
3-4-5 熱差分析儀……………………………………………40
3-4-6 阻抗分析儀……………………………………………41
3-4-7 含水率量測……………………………………………45
第四章 結果與討論……………………………………………………46
4-1 玻璃陶瓷相態之變化………………………………………46
4-2 玻璃陶瓷結構之分析…………………………………………52
4-3 玻璃陶瓷熱行為分析…………………………………………55
4-4 玻璃陶瓷電性分析……………………………………………57
第五章 結論……………………………………………………93
參考文獻………………………………………………………………95
附錄A…………………………………………………………………104

圖目錄
圖2-1 結晶材料與玻璃材料體積隨溫度變化之特性………………22
圖2-2氧化物在二度空間之示意圖…………………………………23
圖2-3含修飾子之玻璃結構…………………………………………24
圖2-4玻璃結晶示意圖………………………………………………25
圖2-5結晶化玻璃之製造過程………………………………………25
圖2-6溶膠凝膠法技術示意圖…………………………………………26
圖2-7添加FA之磷-矽酸鹽玻璃薄膜其導電度與活化能趨勢圖……27
圖3-1 粉體製備流程圖………………………………………………36
圖3-2 X光晶體繞射圖………………………………………………38
圖3-3 交流電流與交流電壓變化示意圖……………………………41
圖3-4 複數平面上的阻抗示意圖……………………………………43
圖4-1 BS14P10之XRD圖……………………………………………61
圖4-2 BS14P20之XRD圖……………………………………………62
圖4-3 BS14P30之XRD圖……………………………………………63
圖4-4 BS14P40之XRD圖……………………………………………64
圖4-5 BS14P50之XRD圖……………………………………………65
圖4-6 BS23P10之XRD圖……………………………………………66
圖4-7 BS23P20之XRD圖……………………………………………67
圖4-8 BS23P30之XRD圖……………………………………………68
圖4-9 BS23P40之XRD圖…………………………………………69
圖4-10 BS23P50之XRD圖…………………………………………70
圖4-11 BS14P10之FTIR圖…………………………………………71
圖4-12 BS14P20之FTIR圖…………………………………………71
圖4-13 BS14P30之FTIR圖…………………………………………72
圖4-14 BS14P40之FTIR圖……………………………………………72
圖4-15 BS14P50之FTIR圖…………………………………………73
圖4-16 BS23P10之FTIR圖…………………………………………73
圖4-17 BS23P20之FTIR圖…………………………………………74
圖4-18 BS23P30之FTIR圖……………………………………………74
圖4-19 BS23P40之FTIR圖……………………………………………75
圖4-20 BS23P50之FTIR圖……………………………………………75
圖4-21 BS14P10之熱行為圖…………………………………………76
圖4-22 BS14P20之熱行為圖…………………………………………76
圖4-23 BS14P30之熱行為圖…………………………………………77
圖4-24 BS14P40之熱行為圖………………………………………77
圖4-25 BS14P50之熱行為圖…………………………………………78
圖4-26 BS23P10之熱行為圖…………………………………………78
圖4-27 BS23P20之熱行為圖…………………………………………79
圖4-28 BS23P30之熱行為圖…………………………………………79
圖4-29 BS23P40之熱行為圖…………………………………………80
圖4-30 BS23P50之熱行為圖…………………………………………80
圖4-31 BS14不同磷含量在熱處理溫度700℃下的導電度值………81
圖4-32 BS14不同磷含量在熱處理溫度900℃下的導電度值………82
圖4-33 B2O3:SiO2=1:4在不同熱處理溫度下的塊體含水率……83
圖4-34 BS23不同磷含量在熱處理溫度700℃下的導電度值………84
圖4-35 BS23不同磷含量在熱處理溫度900℃下的導電度值………85
圖4-36 B2O3:SiO2=2:3在不同熱處理溫度下的塊體含水率……86
圖4-37 膠體中析出之BPO4粉體……………………………………87
圖4-38 水分子間的質子移動方式……………………………………87
圖4-39 14-20-700塊體剖面SEM圖…………………………………88
圖4-40 14-30-700塊體剖面SEM圖…………………………………88

表目錄
表2-1 常見玻璃成分及其用途………………………………………28
表2-2 各元素之離子強度場…………………………………………29
表2-3 週期表內可製備醇鹽之元素…………………………………30
表2-4 文獻中參數之比較……………………………………………31
表3-1 實驗所需藥品…………………………………………………32
表3-2 玻璃陶瓷組成表………………………………………………35
表3-3 分析儀器………………………………………………………37
表4-1 氧化硼/氧化矽比1:4,不同磷含量之組成在不同熱處理溫度下的相態………………………………………………………………89
表4-2 氧化硼/氧化矽比2:3,不同磷含量之組成在不同熱處理溫度下的相態………………………………………………………………89
表4-3 FTIR中,不同鍵結所對應之波數位置…………………………90
表4-4 FTIR中,不同晶相所對應之鍵結波數位置……………………91
表4-5 各組成在不同條件下的導電度值(S/cm)……………………92
參考文獻 [1] J. J. Ebelmen, Ann., 57, 331 (1846).

[2] R. Roy, “Aids in Hydrothermal Experimentation: II, Methods of Making Mixtures for Both "Dry" and "Wet" Phase Equilibrium Studies”, J. Am. Ceram. Soc., 39, 145 (1956).

[3] Standard definitions of terms relating to glass products, ASTM C162-71, 17, 1978, 112.

[4] H.F.Mark, et al. ”Enclopedia of chemical technology”,3rd. edition, John Wiley and Sons Inc, New York, 11, 1980, 883-884.

[5] Robert H. Doremus, “Glass Science”, 2nd edition, John Wiley and Sons Inc, New York, 1994.

[6] A. Winter, ” Glass Formation”, J. Am. Ceram. Soc., 40, 54 (1957).

[7] Gan Fuxi, “New glass-forming systems and their practical application”, J. Non-cryst. Solids, 123, 385 (1990).

[8] T. Komatsu, H. Ur, and R. H. Doremus, ”Infrared transmission and glass formation in AgI-AgF-AlF3”, J. Non-cryst. Solids, 69, 309 (1985).

[9] E. Thile, C. Wiecker, and W. Wiecker, Silikattech, 15, 109 (1964).

[10] Z. Zhang and J. H. Kennedy, “Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems”, Solid State Ionics, 38, 218 (1990).

[11] P. Duwez and C. C. Tsuei, “Semiconducting amorphous phase in tellurium-copper-gold alloys”, J. Noncryst. Solids, 2, 82 (1970).

[12] H. Rawson, “Inorganic Glass-Forming Systems”, Academic Press, London, 1967.

[13] W.H. Zachariasen, “the atomic arrangement in glass”, J. Am. Ceram. Soc., 54, 3841 (1932).

[14] W.D. Kingery, H.K. Bowen and D.R. Uhlmann, “Introduction to ceramics”, 2nd, John Wiley and Sons Inc, New York, 1976.

[15] A. Dietzel, Z. electrochem, 48, 9 (1942).

[16] W. Vogel, “Chemistry of Glass”, Am. Ceram. Soc., Inc. Columbus, Ohio, 1985.

[17] W. Holand and G. Beall, “Glass-Ceramic Technology”, Am. Ceram. Soc., 2002.

[18] Michel W. Barsoum, “Fundamentals of Ceramics”, Institute of Physics Publishing, 2003.

[19] Terry A. Ring, “Fundamentals of Ceramic Powder Processing and Synthesis”, Academic Press, 1996.

[20] M. N. Rahaman, “Ceramic Processing and Sintering”, Marcel Dekker, 2nd edition, 2003.

[21] J. Terence Maloney, “Glass in the modern world: A study in materials development”, Aldus, 1967.

[22] Horst Scholze, Glass: Nature, “Structure, and Properties”, Springer, 1991.

[23] Masayuki Yamane, Yoshiyuki Asahara, “Glasses for Photonics”, Cambridge University Press, New Ed edition, 2005.

[24] S.D. Stookey, U.S. Patent 2,920,971.

[25] Brinker, C. Jeffrey, “Sol-gel science : the physics and chemistry of sol-gel processing”, Boston : Academic Press, 1990.

[26] Y.A. Attia, “Sol-Gel Processing and Applications”, Springer, 1995.

[27] Michel A. Aegerter, M. Mennig, “Sol-Gel Technologies for Glass Producers and Users”, Springer, 2004.

[28] John D. Wright, Nico A. J. M. Sommerdijk, “Sol-Gel Materials: Chemistry and Applications”, Taylor & Francis Group, 2001.

[29] C. J. Brinker and G. W. Scherer, “Sol-Gel Science”, Acadmic Press, 2nd edition, 1990.

[30] R. C. Mehrotra, “Synthesis and reactions of metal alkoxides”, J. Non-Cryst. Solid, 100, 1 (1988).

[31] A. J. Learn, “Modeling of the Reaction for Low Pressure Chemical Vapor Deposition of Silicon Dioxide”, J. Electrochem. Soc., 132, 390 (1985).

[32] R. H. Vogel, S. R. Butler, F. J. Feigl, J. electronic Materials, 14, 329 (1985)

[33] A. J. Learn, “Phosphorus Incorporation Effects in Silicon Dioxide Grown at Low Pressure and Temperature”,J. Electrochem. Soc., 132, 405 (1985).

[34] D. Foster, A. J. Learn, T. Kamins, “Silicon Films Deposited in a Vertical-Flow Reactor”, Solid State Tech., 29, 227 (1986).

[35] M. Huffman, A. Navritsky, F. S. Pintchovsk, “Thermochemistry and Structure of Low Pressure Chemically Vapor Deposited and Bulk SiO2-P2O5 and SiO2-GeO2 Glasses”, J. Electrochem. Soc., 133, 431 (1986).

[36] D. S. Williams, E. A. Dein, “LPCVD of Borophosphosilicate Glass from Organic Reactants”, J. Electrochem. Soc., 134, 657 (1987).

[37] A. Yeckel, S. Middleman, “A Model of Growth Rate Nonuniformity in the Simultaneous Deposition and Doping of a Polycrystalline Silicon Film by LPCVD”, J. Electrochem. Soc., 134, 1275 (1987).

[38] J. F. MacDowell and G. H. Beall, in Materials Research Society Symposium Proceedings, Boston, “Advanced Electronic Packing Materials”, edited by A. T. Barfknecht, J. P. Partridge, C. J. Chen and Che-Yu Li, vol. 167 (MRS, 1989)

[39] Idem, in “Proceeding of the 1st International Science and Technology Conference, Materials and Processes for Microelectronic Systems”, Ceramic Transactions, edited by K. M. Nair, R. Pohanka and R. C. Buchanan, Vol. 15 (American Ceramic Soc. 1989) p.259.

[40] H. Dislich, ” Neue Wege zu Mehrkomponentenoxidgläsern”, Angew. Chem., 83, 428 (1971).

[41] M. Prassas and L. Hench, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. Hench and D. R. Ulrich (Noyes, New Jersey, 1984) p.100.

[42] K. S. Chou, “Preparation of monolithic borophosphosilicate glass by the sol-gel method”, J. Non-Cryst. Solids, 110, 122 (1989).

[43] P. F. James, “Glass ceramics: new compositions and uses”, J. Non-Cryst. Solids, 181, 1 (1995).

[44] P. N. Kumta, M. A. Sriram, “Novel low-temperature synthesis of glasses and glass-ceramics in the B2O3-SiO2-P2O5 system”, J. Mater. Sci., 28, 1097 (1993).

[45] R. Hsu, P. N. Kumta, T. P. Feist, “Modified oxide sol-gel (MOSG) synthesis of borophoshosilicate glasses and glass-ceramics”, J. Mater. Sci., 30, 3123 (1995).
[46] J. Y. Kim, P. N. Kumta, “Modified Sol-Gel Based Approaches for Synthesizing Borophoshosilicate Glasses and Glass-Ceramics”, J. Phys. Chem. B. 102, 5744 (1998).

[47] Bo Li, Zhenxing Yue, Ji Zhou, Zhilun Gui, Longtu Li, “Low dielectric constant borophosphosilicate glass–ceramics derived from sol–gel process”, Mater. Lett. 54, 25-29 (2002).

[48] Y. Abe, H. Shimakawa, L. -L. Hench, “Protonic conduction in alkaline earth metaphosphate glasses containing water”, J. Non-Cryst. Solids, 51, 357 (1982).

[49] Y. Abe, H. Hosono, Y. Ohta, L. -L. Hench, “Protonic conduction in oxide glasses: simple relations between electrical conductivity, activation energy, and the o-h bonding state”, Phys. Rev. B, 38, 10166 (1988).

[50] Y. Abe, H. Hosono, W. -H. Lee, T. Kasuga, “Electrical conduction due to protons and alkali-metal ions in oxide glasses”, Phys. Rev. B, 48, 15621 (1993).

[51] M. Kotama, H. Hosono, Y. Abe and L. -L. Hench, “Evidence for Protonic Conduction in Alkali-Free Phosphate Glasses”, J. Electrochem. Soc., 138, 2928 (1991).

[52] M. D’apuzzo, A. Aronne, S. Esposito, P. Pernice, “Sol-Gel Synthesis of Humidity-Sensitive P2O5-SiO2 Amorphous Films”, J. Sol-gel Sci. Tech., 17, 247 (2000).

[53] M. Nogami, Y. Daiko, T. Akai, T. Kasuga, “Dynamics of Proton Transfer in the Sol-Gel-Derived P2O5-SiO2 Glasses”, J. Phys. Chem. B, 105, 4653 (2001).

[54] A. Matsuda, T. Kanzaki, Y. Kotani, M. Tatsumisago, T. Minami, “Proton conductivity and structure of phosphosilicate gels derived from tetraethoxysilane and phosphoric acid or triethylphosphate”, Solid State Ionics, 139, 113 (2001).

[55] A. Matsuda, T. Kanzaki, M. Tatsumisago, T. Minami, “Comparison of structure and proton conductivity of phosphosilicate gels derived from several kinds of phosphorus-containing compounds”, Solid State Ionics, 145, 161 (2001).

[56] A. Matsuda, T. Kanzaki, K. Tadanaga, M. Tatsumisago, T. Minami, “Medium temperature range characterization as a proton conductor for phosphosilicate dry gels containing large amounts of phosphorus”, Electrochimica Acta, 47, 939 (2001).

[57] A. Matsuda, T. Kanzaki, K. Tadanaga, M. Tatsumisago, T. Minami, “Proton conductivities of sol–gel derived phosphosilicate gels in medium temperature range with low humidity”, Solid State Ionics, 154, 687 (2002).

[58] M. Nagami, Y. Abe, “Evidence of water-cooperative proton conduction in silica glasses”, Phys. Rev. B, 55, 12108 (1997).

[59] C. Wang, M. Nogami, Y. Abe, “Protonic Conduction in P2O5-SiO2 Glasses Prepared by Sol-Gel Method”, J. Sol-Gel Sci. Tech., 14, 273 (1999).

[60] C. Wang, M. Nogami, “Effect of formamide additive on protonic conduction of P2O5–SiO2 glasses prepared by sol–gel method”, Materials Letters, 42, 225 (2000).

[61] A. Matsuda, Y. Nono, K. Tadanaga, T. Minami, M. Tatsumisago, ” Proton conductivity at medium temperature range and chemical durability of phosphosilicate gels added with a third component”, Solid State Ionics, 162, 253 (2003).

[62] A. Adamczyk, M. Handke, “The spectroscopic studies of gel-derived glasses and glass-ceramics in the Na2O (Li2O)-B2O3-P2O5- SiO2 system”, J. Molecular Structure, 596, 47 (2001).

[63] P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, “Acid catalyst concentration effect on structure and ion relaxation studies of Li2O–P2O5–B2O3–SiO2 glasses synthesized by sol–gel process”, J. Non-cryst. Solids, 351, 583 (2005).

[64] P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, “Effect of acid catalyst concentration on structure and conductivity studies of quaternary lithium-based glasses synthesized by sol–gel route”, Mater. Letters, 59, 934 (2005).

[65] A. Grandjean, M. Malki, C. Simonnet, “Effect of composition on ionic transport in SiO2–B2O3–Na2O glasses”, J. Non-cryst. Solids, 352, 2731 (2006).

[66] J. S. Thokchom, B. Kumar, “Microstructural effects on the superionic conductivity of a lithiated glass-ceramic”, Solids State Ionics, 177, 727 (2006).

[67] David W.L., Hukins, “X-ray diffraction by disordered and ordered systems”, Pergamon Press, Oxford, 1981.

[68] G. Socrates, “Infrared and Raman Characteristics Group Frequencies”, John Wiley and Sons, Ltd, 3rd edition.

[69] Robert Edward Lee, “Scanning electron microscopy and X-ray microanalysis”, PTR Prentice Hall, Englewood Cliffs, N.J., 1993.

[70] J. R. Macdonald, “Impedance Spectroscopy: Emphasizing Solid Materials and Systems”, Wiley, New York, 1987.

[71] J. Zarzycki, “Structural aspects of sol-gel synthesis”, J. Non-Cryst. Solids 121, 110 (1990).

[72] A. D. Irwin, J. S. Holmgren, T. W. Zerda, J. Jones, “Spectroscopic investigations of borosiloxane bond formation in the sol-gel process”, J. Non-Cryst.Solids, 89, 191 (1987).

[73] M. Nogami,Y. Moriya, “Glass formation of the SiO2-B2O3 system by the gel process from metal alkoxides”, J. Non-Cryst. Solids, 48, 359 (1982).

[74] C. J. Brinker, D. M. Haaland, ” Oxynitride Glass Formation from Gels”, J. Am. Ceram. Soc. , 66, 758 (1983).

[75] D. R. McKenzie, R. C. McPhedran, N. Savvides, D. J. H. Cockayne, “Analysis of films prepared by plasma polymerization of acetylene in a D.C. magnetron”, Thin Solid Films, 108, 247 (1983).

[76] F. Babonneau, L. Coury, J. Livage, “Aluminum sec-butoxide modified with ethylacetoacetate: An attractive precursor for the sol-gel synthesis of ceramics”, J. Non-Cryst. Solids, 121, 153 (1990).

[77] H. -X. Han, B. J. Feldman, “Structural and optical properties of amorphous carbon nitride”, Solid State Commun., 65, 921(1988).

[78] T. Woignier, J. Phalippou, J. Zarzycki, “Monolithic aerogels in the systems SiO2-B2O3, SiO2-P2O5, SiO2-B2O3-P2O5”, J. Non-Cryst. Solids, 63, 117 (1984).

[79] M.Prassas, L. Hench, “Ultrastructure Porcessing of Ceramics, Glasses and Composites”; L. Hench, , D. R. Ulrich, Eds.; Wiley: New York; 1984 .

[80] Cozar O, Ardelean I, Bratu I, et al., “IR and EPR studies on some lithium-borate glasses with vanadium ions”, J. Mol Struct, 563, 421 (2001).

[81] A. Adamczyk, M. Handke, “The isotopic effect and spectroscopic studies of boron orthophosphate (BPO4)”, J. Mol Struct, 555, 159 (2000).

[82] R. Hubin, P. Tarte, ”Spectre d'absorption infra-rouge des pyrophosphates et pyroarséniates cubiques d'éléments tétravalents XIVP2O7 et XIVAs2O7”, Spectrochim. Acta, 23, 1815 (1967).

[83] E. I. Kamitsos, A. P. Patsis, M. A. Karakassides, G. D. Chryssikos, “Infrared reflectance spectra of lithium borate glasses”, J. Non-cryst. Solids, 126, 52 (1990).

[84] A. A. Kornyshev, A. M. Kuznetsov, E. Spohr and J. Ulstrup, “Kinetics of Proton Transport in Water”, J. Phys. Chem. B, 107, 3351 (2003).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-08-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-08-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信