淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2208200515404200
中文論文名稱 石灰石粒徑變異於間歇式加壓流體化石灰石床系統之性質分析
英文論文名稱 Effects of Limestone Particle Size Distribution on Fluidized Pulsed Limestone Bed System
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 葉智誠
研究生英文姓名 Chih-Cheng Yeh
學號 692331217
學位類別 碩士
語文別 中文
口試日期 2005-07-26
論文頁數 44頁
口試委員 指導教授-李柏青
委員-陳孝行
委員-李奇旺
中文關鍵字 間歇式加壓流體化石灰石床系統  粒徑 
英文關鍵字 fluidized pulsed limestone bed system  particle size 
學科別分類 學科別應用科學環境工程
中文摘要 本論文探討改變粒徑大小對於石灰石溶解量在間歇式加壓流體化石灰石床系統中之影響,並探討石灰石溶解量表示方式之差異。結果顯示較小的粒徑能夠提供較多的石灰石溶解量,且中和酸度的能力較強。高鐵離子濃度會因為沉澱物包覆於石灰石表面,使溶解量降低。低原水進流流量提供較長停留時間,對於石灰石溶解量較有幫助。比較以火焰式原子吸收光譜儀所測得之鈣離子濃度、鹼度變化量、出流水pH值與鹼度計算之碳酸系統濃度( )及利用電荷平衡所計算得之碳酸氫根濃度表示石灰石溶解量,其中以電荷平衡計算表示之石灰石溶解量值,較能顯示實際值。
英文摘要 The objective of this thesis is to estimate limestone dissolution in fluidized pulsed limestone bed system (FPLB system) that is affected by the limestone particle size. Four methods indicating limestone dissolution were also investigated. From the results, better limestone dissolution ability and acid water neutralization capacity were seem in FPLB of smaller particle size. Armoring on limestone particle was seen in the condition of higher ferric concentration and hence lower limestone dissolution rate was shown. Due to lower inflow rate, more limestone dissolved in the condition of long retention time. The method depicting the concentration of limestone dissolution is better represented through the way of charge balance due to the similarity performance of calcium concentration measured by atomic absorption instrument.
論文目次 第一章、 前言 1
1-1研究背景 1
1-2研究目的 3
第二章、 文獻回顧 5
2-1酸礦水的成因 5
2-2酸礦水對於環境的衝擊 5
2-3酸礦水的處理技術 6
2-4間歇式加壓流體化石灰石床系統簡介 7
2-5石灰石的溶解 8
2-6石灰石溶解量(Limestone Dissolution,LD)表示方式 9
2-6-1以火焰式原子光譜儀所測得之鈣濃度用以表示石灰石溶解量(LD(AA)) 10
2-6-2以鹼度-酸度計算鹼度變化量用以表示石灰石溶解量(LD(△ALK)) 10
2-6-3利用處理後水pH值及鹼度計算 用以表示石灰石溶解量(LD(CT)) 11
2-6-4 以電荷平衡計算 用以表示石灰石溶解量(LD(C.B.)) 12
第三章、 實驗設備與方法 16
3-1實驗設備 16
3-2實驗方法 21
3-3實驗材料 25
3-3-1石灰石 25
3-3-2氯化鐵溶液 25
3-3-3人工廢水 25
3-4分析設備 25
3-4-1火焰式原子吸收光譜儀 26
3-4-2 X光繞射儀 26
3-4-3掃瞄式電子顯微鏡 27
3-4-4離子層析儀 27
3-4-5篩分析機 28
第四章、 實驗結果與討論 29
4-1不同溶解量表示法之比較 29
4-2不同粒徑之石灰石在系統中之溶解狀況 32
4-3不同含鐵濃度廢水對於石灰石溶解量之影響 32
4-4不同原水進流流量石灰石溶解量的變化 37
第五章、 結論與建議 39
參考文獻 41

圖目錄
圖 1、酸礦水對於環境各層面的衝擊 6
圖 2、間歇式加壓流體化石灰石床系統圖 19
圖 3、間歇式加壓流體化石灰石床系統實際外觀 20
圖 4、實驗用沉澱槽 21
圖 5、實驗流程 24
圖 6、在鐵離子濃度為0 mM時,四種LD表示方法 31
圖 7、在鐵離子濃度為1.61 mM時,四種LD表示方法 31
圖 8、粒徑大小之溶解量變化圖(原水進流流量5 L/min,二氧化碳壓 力207 kPa,鐵離子濃度分別為0 mM及1.61 mM) 32
圖 9、粒徑大小之溶解量變化圖(原水進流流量10 L/min,二氧化碳壓力207 kPa,鐵離子濃度分別為0 mM及1.61 mM) 33
圖 10、以鐵離子濃度0 mM實驗後之石灰石SEM圖。(石灰石粒徑1.00 mm~0.71 mm,原水進流流量5 L/min,二氧化碳壓力207 kPa)。 34
圖 11、以鐵離子濃度1.61 mM實驗後之石灰石SEM圖。(石灰石粒徑1.00 mm~0.71 mm,原水進流流量5 L/min,二氧化碳壓力207 kPa)。 35
圖 12、以鐵離子濃度0 mM實驗後之石灰石XRD圖。(石灰石粒徑1.00 mm~0.71 mm,原水進流流量5 L/min,二氧化碳壓力207 kPa)。 36
圖 13、以鐵離子濃度1.61 mM實驗後之石灰石XRD圖。(石灰石粒徑1.00 mm~0.71 mm,原水進流流量5 L/min,二氧化碳壓力207 kPa)。 36
圖 14、不同流量在四種石灰石粒徑之溶解量比較(鐵離子濃度0 mM,二氧化碳壓力207 kPa) 37
圖 15、不同流量在四種石灰石粒徑之溶解量比較(鐵離子濃度0 mM,二氧化碳壓力207 kPa) 38

表目錄
表 1、FPLB系統8分鐘,每分鐘各管動作 18
表 2、單一流量之實驗組合 22
表 3、實驗分析項目及說明 23

參考文獻 林志平, 1998, 石灰石溶解之研究, 碩士論文, 台灣大學化學工程學研究所.
APHA (American Public Health Association, American Water Works Association and Water Environment Federation), 1998. Standard Methods for the Examination of Water and Wastewater, 19th ed. Washington, D.C: APHA.
Barton, C. D. and A. D. Karathanasis, 1999. Renovation of a failed constructed wetland treating acid mine drainage. Environmental Geology, 39(1), 39-50.
Batty, L. C. and P. L. Younger, 2004. The use of waste materials in the passive remediation of mine water pollution. Surveys in Geophysics, 25(1), 55-67.
Berhorn, G. H. and G. R. Hunzeker, 2001. Passive treatment alternatives for remediating abandoned-mine drainage. Remediation Journal, 11(3), 111-127.
Burke, S. P. and S. A. Banwart, 2002. A geochemical model for removal of (II)(aq) from mine water discharges. Applied Geochemistry, 17(4), 431-443.
Cravotta III, C. A. and M. K. Trahan, 1999. Limestone drains to increase pH and remove dissolved metals from acid mine drainage. Applied Geochemistry, 14(5), 581-606.
DeNicola, D. M., M. G. Stapleton, 2002. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects. Environmental Pollution, 119(3), 303-315.
Dvorak, D. H., R. S. Hedin, H. M. Edenborn and P. E. Mclntire, 1992. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors. Biotechnology and Bioengineering, 40(5), 609-616.
Fernández, C. C., G. Vleugels, K. Torfs, and R. Van Grieken, 2002. The processes dominating Ca dissolution of limestone when exposed to ambient atmospheric condition as determined by comparing dissolution models. Environmental Geology, 43(1-2), 160-171.
Gray, N. F. 1997. Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology, 30(1-2), 62-71.
Hammarstrom, J. M., P. L. Sibrell, H. E. Belkin, 2003. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA. Applied Geochemistry, 18(11), 1705-1721.
Manahan, S. E., 2000. Environmental Chemistry, 7th ed. 70-72. Lewis Publishers, U.S.A..
Maree, J.P., and P. du Plessis (1994). Neutralization of acid mine water with calcium carbonate. Water Science and Technology, 29(9), 285-296.
Menendez, R., J. L. Clayton, P. E. Zurbuch, S. M. Sherlock, H. W. Rauch, and J. J. Renton, 2000.Sand-size limestone treatment of streams impacted by acid mine drainage. Water, Air, and Soil Pollution, 124(3-4), 411-428
Nairn, R. W. and M. N. Mercer, Alkalinity generation and metals retention in a successive alkalinity producing system. Mine Water and the Environment, 19(2), 124-135.
Plummer, L.N., T. M. L. Wigley, and D. L. Parkhurst, 1978. The kinetics of calcite dissolution in CO2–water systems at 5° to 60°C and 0.0 to 1.0 atm CO2. American Journal of Science, 278, 179-216.
Sasowsky, I. D., A. Foos, and C. M. Miller, 2000. Lithic Controls on The removal of iron and remediation of acidic mine drainage. Water Resources, 34(10), 2742-2746.
Sun, Qingyun, L. M. McDonald, Jr and J. G. Skousen, 2000. Effects of armoring on limestone neutralization of AMD. West Virginia Surface Mine Drainage Task Force Symposium Papers, 10p.
Vinci, B. J. and T. W. Schmidt, 2001. Passive, periodic flushing technology for mine drainage treatment systems. Proc. 18th ASMR Conf., Albuquerque, NM, p469-585
Vories, K. C. 2002. The surface mining control and reclamation act: a response to concerns about placement of coal combustion by-products at coal mimes. Mine Placement of Coal Combustion Waste Meeting, OSM Response to Concerns About Placement of CCBs, 13p.
Watten, B. J., 1999. Process and apparatus for carbon dioxide pretreatment and accelerated limestone dissolution for treatment of acidified water. U.S. Patent 5914046 Washington, D.C.: U.S. DOC.
Watten, B. J., P. L. Sibrell, and M. F. Schwartz, 2004. Effect of acidity and elevated Pco2 on acid neutralization within pulsed limestone bed reactors receiving coal mine drainage. Environment Engineering Science, 21(6), 786-802.
Watzlaf, G. R., K. T. Schroeder, and C. L. Kairies, 2000. Long-term performance of anoxic limestone drains. Mine Water and the Environment, 19(2), 98-110.
Zipper C. and C. Jage, 2001. Passive treatment of acid-mine drainage with vertical-flow system. Powell River Project / Virginia Cooperative Extension Publications, U.S.A..
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-08-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-08-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信