淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2208200511143600
中文論文名稱 曲線斜張橋之氣動力穩定研究
英文論文名稱 Study of Aerodynamic Stability of Curved Cable-Stayed Bridges
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 黃明慧
研究生英文姓名 Ming-Hui Huang
學號 692310864
學位類別 碩士
語文別 中文
口試日期 2005-06-23
論文頁數 92頁
口試委員 指導教授-林堉溢
委員-鄭啟明
委員-陳振華
中文關鍵字 纜索支撐橋梁  曲線斜張橋  風向角  餘弦法則  斜風理論 
英文關鍵字 cable-supported bridge  curved cable-stayed bridge  yaw angle  cosine rule  skew wind theory 
學科別分類 學科別應用科學土木工程及建築
中文摘要 隨著橋梁工程的發展,現今纜索支撐橋梁的設計除了基本的實用性外,也考慮到外型上的美觀。因此,興建了一些強調外型上美觀的曲線斜張橋,例如,最近興建於台北的饒河街人行橋,人行橋的主梁呈S曲線造型,主梁與拱圈之間由傾斜的鋼索連接以提高勁度。本論文針對此類型橋梁研究其氣動力行為。
當曲線橋梁受風作用時,其風向角是沿著橋軸連續變化的。由於傳統上的顫振與抖振理論是由直線橋梁發展而來,因此無法直接應用在此類橋梁上。在過去經常使用餘弦法則(cosine rule)以及斜風理論(skew wind theory)等近似理論來處理有風向角下的橋梁顫振臨界風速以及抖振反應。但是,這些近似理論僅能適用於風向角較小的情況下。
本論文針對曲線橋梁的顫振臨界風速及抖振反應發展出一套更為精確的分析方法,並對此結果與近似方法分析所得的結果加以比較討論。另外為了證明此方法實際可行,額外再建立一個等值的直線數值橋梁來與曲線橋梁作比較,研究結果指出,曲線橋梁的顫振臨界風速高於等值直線橋梁,而抖振反應則因曲線橋梁結構振態耦合的關係而高於等值直線橋梁。
英文摘要 Attributed to the developments of bridge engineering, modern cable-supported bridge design requires not only the basic functionality but also the aesthetical appearance. Therefore, some curved cable-stayed bridges emphasizing attractive appearance were built. The recent example is a pedestrian bridge which is under construction in Taipei. The geometry of this bridge is S-shape in the horizontal plane and linked with a vertical arch by the inclined cables to increase the bridge’s stiffness. The aerodynamic behavior of this type of bridges was investigated in this study.
As the curved bridge is subjected to wind excitation, the yaw angles along the bridge axis are continuously changing because of the curved nature. Traditional flutter and buffeting theories, developed for straight beams, cannot be directly applied for this type of bridges. In the past, for dealing with the buffeting responses and flutter critical wind speed in the case of the bridge subjected to yawed winds, the “cosine rule” and “skew wind theory” were often used. However, these approximate theories are only valid for the small yawed angles.
This study developed a more precise method for evaluating buffeting response and flutter critical wind speed for curved bridges. The results obtained from this approach and the approximate methods were also discussed. For practical use, an equivalent straight bridge structural model was also employed to compare with the curved bridge. The results show the flutter critical wind speed of the curved bridge is higher than that of the equivalent straight bridge. However, the buffeting responses of the curved bridge are larger for the contribution of the structural coupling.
論文目次 目錄 I
表目錄 IV
圖目錄 V

第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究內容 3
1.4 論文架構 4
第二章 文獻回顧 6
2.1 前言 6
2.2 橋梁風力效應 6
2.2.1 顫振效應(Flutter)與顫振導數 7
2.2.2 抖振效應(Buffeting)與風力係數 8
2.2.3 扭轉不穩定(Torsional instability) 9
2.2.4 渦流振動(Vortex shedding) 10
2.2.5 風馳效應(Galloping) 11
2.3 餘弦法則(Cosine Rule) 12
2.4 斜風理論(Skew Wind Theory) 13
第三章 曲線橋梁顫振效應理論 17
3.1 前言 17
3.2 顫振效應之數值分析模式 17
3.2.1 顫振擾動力 17
3.2.2 橋樑運動方程式 20
3.2.4 橋梁顫振臨界風速分析方法 23
3.3 斜風理論之顫振分析模式 27
3.4 餘弦法則之顫振分析模式 30
第四章 曲線橋梁抖振效應理論 33
4.1 前言 33
4.2 抖振效應之數值分析模式 33
4.2.1 抖振效應推導原理與步驟 33
4.2.2 抖振擾動力(Buffeting force) 35
4.3 抖振反應分析方法 40
第五章 數值分析 48
5.1 前言 48
5.2 饒河街人行橋數值分析 48
5.2.1 饒河街人行橋基本資料 48
5.2.2 饒河街人行橋數值模型 49
5.2.3 振態分析 50
5.2.4 顫振分析 52
5.2.5 抖振分析 53
5.3 Model_Line與Model_Scurve數值分析 54
5.3.1 數值模型 54
5.3.2 振態分析 55
5.3.3 顫振分析 56
5.3.4 抖振分析 56
第六章 結論與建議 60
6.1 結論 60
6.2 建議 61

表目錄
表 2.1 顫振導數代表之物理意義 67
表5.1 橋面板材料性質 67
表5.2 拱圈材料性質 68
表5.3 橋墩材料性質 68
表5.4 鋼索材料性質 68
表5.5 橋面板材料性質 69
表5.6 人行橋振態 70
表5.7 人行橋之顫振臨界風速 71
表5.8 Model_Line振態 71
表5.9 Model_Scurve振態 71
表5.10 Model_Line與Model_Scurve之顫振臨界風速 72

圖目錄
圖 2.1 扭轉發散幾何示意圖 73
圖2.2 Cos Rule幾何示意圖 73
圖2.3 風力係數方向定義 74
圖 2.4 風力係數比值 74
圖2.5 Skew Wind theory幾何示意圖 75
圖 2.6 青馬橋顫振實驗架構示意圖 75
圖 3.1 數值模擬之橋樑斷面受風力示意圖 76
圖3.2 顫振理論幾何示意圖 76
圖4.3 抖振理論幾何示意圖1 77
圖4.4 顫振理論幾何示意圖2 77
圖4.5 顫振理論幾何示意圖3 78
圖5.1 饒河街人行橋風力係數 79
圖5.2 饒河街人行橋顫振導數(1) 80
圖5.2 饒河街人行橋顫振導數(2) 81
圖5.3 饒河街人行橋平面圖 82
圖5.4 饒河街人行橋立面圖 82
圖5.5 饒河街人行橋立體圖 82
圖5.6 饒河街人行橋斷面圖 83
圖5.7 饒河街人行橋數值模型 83
圖5.8 饒河街人行橋支承墊自由度示意圖 84
圖5.9 饒河街人行橋支承墊數值模擬示意圖 84
圖5.10 饒河街人行橋垂直向振態圖 85
圖5.11 饒河街人行橋拖曳向振態圖 85
圖5.12 饒河街人行橋扭轉向振態圖 86
圖5.13 饒河街人行橋垂直向抖振反應 87
圖5.14 饒河街人行橋拖曳向抖振反應 87
圖5.15 饒河街人行橋扭轉向抖振反應 87
圖5.16 Model_Line與Model_Scurve之數值模型 88
圖5.17 Model_Line振態圖 89
圖5.18 Model_Scurve振態圖 90
圖5.19 Model_Line與Model_Scurve垂直向抖振反應 91
圖5.20 Model_Line與Model_Scurve拖曳向抖振反應 91
圖5.21 Model_Line與Model_Scurve扭轉向抖振反應 92
圖5.22 Model_Scurve扭轉向抖振反應 92


參考文獻 1. Zhu﹐L.D., Xu,Y.L., Zhang,F., Xiang,H.F., “Tsing Ma bridgedeck under skew wind – Part I : Aerodynamic coefficients”, Journal of Wind Engineerring and Industrial Aerodynamics, pp781-805, (2002)
2. Zhu,L.D., Xu,Y.L., Xiang,H.F., “Tsing Ma bridgedeck under skew wind – Part II : flutter derivatives ”, Journal of Wind Engineerring and Industrial Aerodynamics, pp807-837,(2002)
3. Xu,Y.L., Zhu,L.D., Xiang,H.F., “Buffeting response of long suspension bridges to skew winds”, Wind and Structures, Vol.6, No.3, pp.179-196, (2003)
4.蘇佳禾 ,“斜張橋斷面模型與全橋模型風洞實驗之比較研究”,私立淡江大學土木工程研究所碩士論文(2004).
5. Scanlan, R.H., “Estimates of skew wind speeds for bridgeFlutter”, Journal of Bridge Engineering, Vol.4, pp. 95-98 (1999)
6. Kubo, Y., Miyazaki, M. and Kato, K., “Effects of end plates And blockage of structural members on drag forces”, Journalof Wind Engineerring and Industrial Aerodynamics, Vol 32, pp. 329-342 (1989)
7. 謝政宏,“氣動力參數對長跨徑橋梁顫振臨界風速的影響 ”,私立淡江大學土木工程研究所碩士論文(1999).
8. Scanlan, R. H. and Tomko, J. J., “Airfoil and Bridge Deck Flutter Derivatives,” Journal of Eng. Mech. Div., ASCE, Vol. 97, pp.1717-1737 (1971).
9. Vickery, B. J., “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream,” Journal of Fluid Mesh.25, pp. 481-494 (1966).
10. Saito, T., Shiraishi, N. and Ishizaki, H., “On Aerodynamic stability of double-decked / trussed girder for cable-stayed “Higashi-Kobe Bridge” ,”Journal of Wind Engineering and Industrial Aerodynamics, Vol 33, pp. 323-332 (1990).
11. Santo, H. P., Branco, F. B., “Wind forces on bridges –numerical vs. experimental methods,” Journal of Wind Eng. and Industrial Aerodynamics, Vol 32, pp. 145-159 (1989).
12. Scanlan, R. H. and Gade, R. H., “Motion of Suspended Bridge Spans under Gusty Wind, ”Journal of the Structural Division, ASCE, pp.1867-1883 (1977).
13. Simiu, E. and Scanlan, R. H.,“Wind Effects on Structures, ” John Wiley & Sons. (1986).
14. Hikami, Y. and Shiraishi, N., “Rain-Wind Induced Vibrations of Cable Stayed Bridges,”Journal of Wind Engineering and Industrial Aerodynamics, Vol. 29, pp.409-418(1988).
15. Yoshimura, T., Savage, M. G., Tanaka, H. and Wakasa, T.,“A device for suppressing wake galloping of stayed-cables for cable-stayed bridges,”Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, pp.497-506(1993).
16. Scanlan, R. H.,“Interpreting Aerolastic Models of Cable-Stayed Bridges,”Journal of Engineering Mechanics,ASCE, Vol. 113(4), pp. 555-576(1987).
17. Tanaka, H., Yamamura, N. and Tatsumi, M., “Coupled Mode Flutter Analysis Using Flutter Derivatives,”Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41-44,pp.1279-1290(1992).
18. Kaimal, J. C., 1972, "Spectrum Charactertics of Surface-Layer Turbulence," J. Royal Meteorol. Soc., 98, pp.563-589.
19. Lumley, J. L. and Panofsky, H. A., 1964, ”The Structure of Atmospheric Turbulence”, Wiley, New York.
20. Sarkar, P. P., Jones, N. P. and Scanlan, R. H., “System identificatioin for estimation of flutter derivatives,”Journal of Wind Eng. and Industrial Aerodynamics, 41-44, pp.1243-1254 (1992).
21. Scanlan, R. H., Beliveau, J. G. and Budlong, K. S., “Indicial aerodynamic functions for bridge decks,”J. Engrg. Mech., ASCE, 100(4), pp.657-672(1974).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-08-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-08-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信