淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2207202013021000
中文論文名稱 添加鐵離子提升電沈積程序從含Cu-EDTA廢水中回收銅的效率
英文論文名稱 Enhancing copper recovery from Cu-EDTA wastewater by electrodeposition with addition of iron
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 谷思佳
研究生英文姓名 Sabine Jessica Ouedraogo
學號 607485017
學位類別 碩士
語文別 英文
口試日期 2020-05-18
論文頁數 64頁
口試委員 指導教授-李奇旺
委員-陳孝行
委員-彭晴玉
中文關鍵字 置換/電沉積  化學置換/沉澱  氧化  銅回收  金屬-EDTA 
英文關鍵字 replacement-electrodeposition  chemical replacement-precipitation  oxidation  copper recovery  metal-EDTA 
學科別分類 學科別應用科學環境工程
中文摘要 配體的存在如EDTA 為處理金屬汙染的廢水帶來困難。電化學程序廣泛用於金屬汙染物的廢水處理以及金屬回收。在本研究中,銅回收是透過添加Fe(II) 或Fe(III) 離子作為替代季的置換和電沉積程序系統中的陽極為塗有釕和銥(Ti/Ru-Ir)的鈦板,陰極為不銹鋼板。
電壓、pH、鐵添加速率、鐵添加時間和陰極表面積對同時去除有機物和重金屬的影響在本研究中系統性的探討。隨著電壓的降低,銅的去除效率從20 V 的44.8%降至1 V 時的93.9 %。相反地,Cu(II) 的陰極回收率隨電壓的增加而增加,在1V 時為2.1 %,在20 V 時達到38.2 %。結果顯示,在低電壓下,釋放的Cu(II) 離子主要通過化學沉澱去除,而在高電壓下,則是以沉積去除。在固定電壓1 V 和3V 的實驗過程中觀察到綠色的汙泥,表明Fe(II) 可能以Fe(OH)2 的形式沉澱。
相反地,在10、15 和20 V 的固定電壓下觀察到褐色汙泥,表Fe(II) 被氧化成Fe(III),然後沉澱為Fe(OH)3。同時,隨著電壓的增加,總有機碳去除量增加。與除銅效率相反,回收效率隨電壓的增加而增加。
英文摘要 The presence of ligands such as EDTA causes difficulties for the treatment of metal-contaminated wastewaters. Electrochemical processes have been widely used for metal-contaminated wastewaters treatment as well as for the recovery of metals. In the present work, a replacement and electrodeposition processes with the addition of either Fe(II) or Fe(III) ions as a replacement agent were studied for copper recovery. A titanium plate coated with ruthenium and iridium (Ti/Ru-Ir) is employed as anode and a
stainless-steel plate as a cathode. The effects of voltage, pH, iron dosing rate, iron dosing time, and surface area of the cathode on the simultaneous removal of organic matters and heavy metals were systematically investigated. The removal efficiency of copper increased with decreasing of the voltage from 44.79 % at 20 V to 93.87 % at 1 V. In contrast, the cathodic recovery of Cu increased with increasing voltage, reaching 2.08 % at 1 V to 38.2 % at 20 V. The results elucidated that at the low voltage the liberated Cu (II) ions were mainly removed by chemical precipitation and by deposition at high voltage. A greenish sludge was observed during the experimentation for a fixed voltages of 1 V and
3 V, indicating that Fe(II) could precipitate as Fe(OH)2. In contrast, brownish sludge was observed for fixed voltages of 10, 15, and 20 V, indicating that Fe(II) is oxidized to Fe(III) followed by the precipitation to Fe(OH)3. At the same time with the increase of voltage, the increase of total organic carbon removal is observed. Contrary to copper removal efficiency, the recovery efficiency increases with
increasing voltage.
論文目次 CONTENTS
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Literature reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 CuEDTA complexation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Replacement-precipitation process . . . . . . . . . . . . . . . . . . . . . 7
2.3 CuEDTA removal by electrocoagulation process . . . . . . . . . . . . . 10
2.4 Photoelectrocatalytic process for CuEDTA removal . . . . . . . . . . . 11
2.5 Removal of CuEDTA by microelectrolysis process . . . . . . . . . . . . 13
2.6 CuEDTA removal by electrodeposition method . . . . . . . . . . . . . . 15
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Chemicals and wastewater . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Electrodes materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 Fe(III) as a replacement agent . . . . . . . . . . . . . . . . . . . 21
3.4.2 Fe(II) as a replacement agent . . . . . . . . . . . . . . . . . . . 22
3.4.3 Copper recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Current efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Flame atomic absorption spectrometry (AAS) . . . . . . . . . . 26
3.5.2 TOC analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 Fe(III) as replacement agent . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Fe(II) as replacement agent . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Effect of voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Effect of dissolved oxygen . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Effect of pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Effects of Fe dosage . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.5 Effect of Fe dosing rate . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.6 Effect of cathode surface area . . . . . . . . . . . . . . . . . . . 50
5 Conclusions and recommendations . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

LIST OF TABLES
2.1 Stability constant for complexation of metals ions by EDTA . . . . . . 4
2.2 Electrodeposition process for Cu recovery . . . . . . . . . . . . . . . . . 17
3.1 Chemicals material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

LIST OF FIGURES
2.1 Copper species as a function of pH at chemical equilibrium using the modelling software Mineql+. Temperature = 25oC. Initial concentration of Cu = 1 mg/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 EDTA species as a function of pH at chemical equilibrium using the modelling software Mineql+. Temperature = 25 oC. Initial concentration of Cu = 1 mg/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 CuEDTA species as a function of pH at chemical equilibrium using the modelling software Mineql+. Temperature = 25oC. Initial concentration of Cu = 1 mg/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 CuEDTA and Fe(II)EDTA species as a function of pH at chemical equilibrium using the modelling software Mineql+. Temperature = 25oC. Initial concentration of Cu, Fe(II), and EDTA = 1 mg/L. . . . . . . 9
2.5 CuEDTA and Fe(III)EDTA species as a function of pH at chemical equilibrium using the modelling software Mineql+. Temperature = 25oC. Initial concentration of Cu, Fe(III), and EDTA = 1 mg/L. . . . . . 10
3.1 Schematic diagram of the experimental setup . . . . . . . . . . . . . . . 21
4.1 Removal efficiency of Cu and TOC from CuEDTA wastewater as a function of voltage, with controlled pH value of 3, a reaction time of 75 min, and Cu:EDTA:Fe(III) molar ratio = 1:1:6. The system was under N2 purging conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Removal efficiency of Cu and TOC from CuEDTA wastewater as a function of voltage, with controlled pH value of 8, a reaction time of 75 min, and Cu:EDTA:Fe(III) molar ratio = 1:1:6. The system was under N2 purging conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Current efficiency as a function of voltage, with controlled pH value of 3 and 8, a reaction time of 75 min, Cu:EDTA:Fe(III) molar ratio = 1:1:6, and current varying from 0.01 A to 1.24 A at pH 3 and form 0.01 to 1.84 A at pH 8. The system was under N2 purging conditions. . . . . 33
4.4 Removal efficiency of Cu and TOC from CuEDTA wastewater as a function of voltage, with a reaction time of 75 min, control pH of 8, and final Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under N2
purging conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Current efficiency as a function of voltage, with controlled pH value of 8, a reaction time of 75 min, Cu:EDTA:Fe(III) molar ratio = 1:1:6,
and current varying from 0.015 A to 1.18 A. The system was under N2 purging conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Effect of dissolved oxygen on Cu and TOC removal from CuEDTA wastewater by comparison of system with and without nitrogen purging, with a reaction time of 75 min, control pH of 8, voltage fixed at 20 V, and final Cu:EDTA:Fe(II) molar ratio = 1:1:6. . . . . . . . . . . . . . . 39
4.7 Removal efficiency of Cu and TOC from CuEDTA wastewater as a function of pH, with a reaction time of 75 min, voltage fixed at 20 V, and Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under N2 purging conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Current efficiency as a function of pH, fixed voltage at 20 V, a reaction
time of 75 min, Cu:EDTA:Fe(III) molar ratio = 1:1:6, and current varying from 1.075 A to 1.62 A. The system was under N2 purging conditions. 42
4.9 Dissolved Fe as a function of pH, with addition of Fe by syringe pump for 70 min and a reaction time of 75 min, a fixed voltage at 20 V, and Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under N2 purging conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.10 Sludge collected at different control pH values . . . . . . . . . . . . . . 43
4.11 Fe(II) species as a function of pH at chemical equilibrium using the modelling software Mineql+. Temperature = 25oC. Initial concentration of Cu = 1 mg/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.12 Removal efficiency of Cu and TOC from CuEDTA wastewater as a function of Fe molar ratio, with a reaction time of 75 min, pH controlled at 8 voltage fixed at 20 V, and Cu:EDTA:Fe(II) molar ratio ranging from 0 to 10.The system was under N2 purging conditions. . . . . . . . . . . 46
4.13 Cu removal and recovery and TOC removal from CuEDTA wastewater as a function of Fe dosing time, pH controlled at 8 voltage fixed at 20V, and Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under N2 purging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.14 Current efficiency as a function of reaction time, controlled pH value of 8, fixed voltage at 20 V, a reaction time varying from 40 to 180 min, Cu:EDTA:Fe(III) molar ratio = 1:1:6, and current varying from 1.46 A to 1.76 A. The system was under N2 purging conditions. . . . . . . . . 49
4.15 Removal and recovery efficiency of Cu and TOC as a function of Fe dosing time, pH controlled at 8, voltage fixed at 20 V,reaction time of 180 min, and Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under N2 purging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.16 Cu removal from CuEDTA wastewater as a function of voltage, with comparison of initial and larger surface area of cathode, a reaction time of 75 min, pH controlled at 8, and final Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under nitrogen purging. . . . . . . . . . . . . . . 52
4.17 Cu recovered from CuEDTA wastewater as a function of voltage, with comparison of initial and larger surface area of cathode, a reaction time of 75 min, pH controlled at 8, and final Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under nitrogen purging. . . . . . . . . . . . . . . 53
4.18 TOC removal from CuEDTA wastewater as a function of voltage, with comparison of initial and larger surface area of cathode, a reaction time of 75 min, pH controlled at 8, and final Cu:EDTA:Fe(II) molar ratio = 1:1:6. The system was under nitrogen purging conditions. . . . . . . . . 54
5.1 Graphical abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
參考文獻 [1] O. B. Akpor, (2014) “Heavy Metal Pollutants in Wastewater Effluents: Sources, Effects and Remediation” Advances in Bioscience and Bioengineering 2(4):37. doi: 10.11648/j.abb.20140204.11.
[2] J. Paul Chen and L. L. Lim, (2005) “Recovery of precious metals by an electrochemical deposition method” Chemosphere 60(10): 1384–1392. doi: 10.1016/j.chemosphere.2005.02.001.
[3] S. Jiang, F. Fu, J. Qu, and Y. Xiong, (2008) “A simple method for removing chelated copper from wastewaters: Ca(OH)2-based replacement-precipitation” Chemosphere 73(5): 785–790. doi: 10.1016/j.chemosphere.2008.06.010.
[4] F. G. Kari and W. Giger, (1996) “Speciation and fate of ethylenediaminetetraacetate (EDTA) in municipal wastewater treatment” Water Research 30(1): 122–134. doi: 10.1016/0043-1354(95)00125-5.
[5] F. Ju and Y. Hu, (2011) “Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis” Separation and Purification Technology 78(1): 33–41. doi: 10.1016/j.seppur.2011.01.014.
[6] R. S. Yeh, Y. Y. Wang, and C. C. Wan, (1995) “Removal of CuEDTA compounds via electrochemical process with coagulation” Water Research 29(2): 597–599. doi: 10.1016/0043-1354(94)00169-8.
[7] X. Zhao, L. Guo, B. Zhang, H. Liu, and J. Qu, (2013) “Photoelectrocatalytic oxidation of CuII-EDTA at the TiO 2 electrode and simultaneous recovery of CuII by electrodeposition” Environmental Science and Technology 47(9): 4480–4488. doi: 10.1021/es3046982.
[8] G. Chen, (2004) “Electrochemical technologies in wastewater treatment” Separation and Purification Technology 38(1): 11–41. doi: 10.1016/j.seppur.2003.10.006.
[9] Y. H. Chou, J. H. Yu, Y. M. Liang, P. J. Wang, C. W. Li, and S. S. Chen, (2015) “Recovery of Cu(II) by chemical reduction using sodium dithionite” Chemosphere 141: 183–188. doi: 10.1016/j.chemosphere.2015.07.016.
[10] C. V. Hoof, J. D. Boeck, K. Attenborough, S. Beerten, E. Beyne, J. Fransaer, W. Ruythooren, P. Merken, and J. P. Celis, (2002) “Electrodeposition for the synthesis of microsystems” Journal of Micromechanics and Microengineering
10(2): 101–107. doi: 10.1088/0960-1317/10/2/301.
[11] T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, R. A. Van Leeuwen, and J. A. Switzer, (1996) “Electrochemical Deposition of Copper(I) Oxide Films” Chemistry of Materials 8(10): 2499–2504. doi: 10.1021/cm9602095.
[12] Y. Oztekin and Z. Yazicigil, (2006) “Recovery of metals from complexed solutions by electrodeposition” Desalination 190(1-3): 79–88. doi: 10.1016/j.desal.2005.07.017.
[13] S. Jiang, J. Qu, and Y. Xiong, (2010) “Removal of chelated copper from wastewaters by Fe2+-based replacement-precipitation” Environmental Chemistry Letters 8(4): 339–342. doi: 10.1007/s10311-009-0230-1.
[14] J. Radjenovic and D. L. Sedlak, (2015) “Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water” Environmental Science and Technology 49(19): 11292–
11302. doi: 10.1021/acs.est.5b02414.
[15] C. Oviedo and J. Rodr´ıguez, (2003) “EDTA: The chelating agent under environmental scrutiny” Quimica Nova 26(6): 901–905. doi: 10 . 1590 / S0100 -40422003000600020.
[16] J. K. Yang and A. P. Davis, (2000) “Photocatalytic oxidation of Cu(II) - EDTA with illuminated TiO2: Kinetics” Environmental Science and Technology 34(17): 3789–3795. doi: 10.1021/es990874p.
[17] B. A. AbiD, M. M. BrbootI, and N. M. Al-ShuwaikI, (2011) “Removal of heavy metals using chemicals precipitation” Engineering and Technology Journal 29(3): 595–612.
[18] W. Guan, B. Zhang, S. Tian, and X. Zhao, (2018) “The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA” Applied Catalysis B: Environmental 227: 252–257. doi: 10.1016/j.apcatb.2017.12.036.
[19] P. Wu, J. Zhou, X. Wang, Y. Dai, Z. Dang, N. Zhu, P. Li, and J. Wu, (2011) “Adsorption of Cu-EDTA complexes from aqueous solutions by polymeric Fe/Zr pillared montmorillonite: Behaviors and mechanisms” Desalination 277(1-3):288–295. doi: 10.1016/j.desal.2011.04.043.
[20] Y.-H. Chen. “Replacement and precipitation reactions driven by Fe(II) and Fe(III) through decoupling Cu-EDTA complexes for enhanced Cu removal”. (Master’s thesis). Department of Water Resources and Environmental Engineering, Tamkang University, Taiwan, 2019.
[21] S. Lan, F. Ju, and X. Wu, (2012) “Treatment of wastewater containing EDTACu(II) using the combined process of interior microelectrolysis and Fenton oxidationcoagulation” Separation and Purification Technology 89: 117–124. doi:10.1016/j.seppur.2012.01.009.
[22] R. S. Juang and L. C. Lin, (2000) “Treatment of complexed copper(II) solutions with electrochemical membrane processes” Water Research 34(1): 43–50. doi: 10.1016/S0043-1354(99)00112-8.
[23] F. Akbal and S. Camcidotless, (2011) “Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation” Desalination 269(1-3): 214–222. doi: 10.1016/j.desal.2010.11.001.
[24] X. Zhao, J. Zhang, and J. Qu, (2015) “Photoelectrocatalytic Oxidation of Cucyanides and Cu-EDTA at TiO2 nanotube electrode” Electrochimica Acta 180: 129–137. doi: 10.1016/j.electacta.2015.08.103.
[25] X. Zhao, L. Guo, and J. Qu, (2014) “Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor” Chemical Engineering Journal 239: 53–59. doi: 10.1016/j.cej.2013.10.088.
[26] Y. Chen, X. Zhao, W. Guan, D. Cao, T. Guo, X. Zhang, and Y. Wang, (2017) “Photoelectrocatalytic oxidation of metal-EDTA and recovery of metals by electrodeposition with a rotating cathode” Chemical Engineering Journal 324:
74–82. doi: 10.1016/j.cej.2017.05.031.
[27] J. N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, and J. Naja, (2017) “Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches” Desalination 404: 1–21. doi: 10.1016/j.
desal.2016.10.011.
[28] M. Bharath, B. M. Krishna, and M. K. B, (2018) “A Review of Electrocoagulation Process for Wastewater Treatment” International Journal of ChemTech Research 11(03): 289–302. doi: 10.20902/ijctr.2018.110333.
[29] S. Xie, W. Shao, H. Zhan, Z. Wang, C. Ge, Q. Li, and W. Fu, (2020) “Cu(II)- EDTA removal by a two-step Fe(0) electrocoagulation in near natural water: Sequent transformation and oxidation of EDTA complexes” Journal of Hazardous Materials 392: 122473. doi: 10.1016/j.jhazmat.2020.122473.
[30] Z. Zhao, W. Dong, H. Wang, G. Chen, J. Tang, and Y. Wu, (2018) “Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes” Journal of Hazardous Materials 350(October 2017): 128–135. doi: 10.1016/j.jhazmat.2018.02.025.
[31] I. Kabda¸sli, T. Arslan, T. Olmez-Hanci, I. Arslan-Alaton, and O. T¨unay, (2009) ¨ “Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes” Journal of Hazardous Materials 165(1-3): 838–845. doi: 10.1016/j.jhazmat.2008.10.065.
[32] G. G. Bessegato, T. T. Guaraldo, J. F. de Brito, M. F. Brugnera, and M. V. B. Zanoni, (2015) “Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications” Electrocatalysis 6(5): 415–441. doi: 10.
1007/s12678-015-0259-9.
[33] R. Daghrir, P. Drogui, and D. Robert, (2012) “Photoelectrocatalytic technologies for environmental applications” Journal of Photochemistry and Photobiology A: Chemistry 238: 41–52. doi: 10.1016/j.jphotochem.2012.04.009.
[34] H. Zeng, S. Liu, B. Chai, D. Cao, Y. Wang, and X. Zhao, (2016) “Enhanced Photoelectrocatalytic Decomplexation of Cu-EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction” Environmental Science and Technology 50(12): 6459–6466. doi: 10.1021/acs.est.6b00632.
[35] X. Yang, (2009) “Interior microelectrolysis oxidation of polyester wastewater and its treatment technology” Journal of Hazardous Materials 169(1-3): 480–485. doi: 10.1016/j.jhazmat.2009.03.123.
[36] D. Zhou, Y. Hu, Q. Guo, W. Yuan, J. Deng, and Y. Dang, (2019) “Decomplexation efficiency and mechanism of Cu(II)–EDTA by H 2 O 2 coupled internal micro-electrolysis process” Environmental Science and Pollution Research 26(2): 1015–1025. doi: 10.1007/s11356-016-8216-6.
[37] R. H. Chen, L. Y. Chai, Y. Y. Wang, H. Liu, Y. D. Shu, and J. Zhao, (2012) “Degradation of organic wastewater containing Cu-EDTA by Fe-C micro-electrolysis” Transactions of Nonferrous Metals Society of China (English Edition)
22(4): 983–990. doi: 10.1016/S1003-6326(11)61274-0.
[38] R. D. Armstrong, M. Todd, J. W. Atkinson, and K. Scott, (1996) “Selective electrodeposition of metals from simulated waste solutions” Journal of Applied
Electrochemistry 26(4): 379–384. doi: 10.1007/BF00251322.
[39] J. H. Chang, A. V. Ellis, C. T. Yan, and C. H. Tung, (2009) “The electrochemical phenomena and kinetics of EDTA-copper wastewater reclamation by electrode position and ultrasound” Separation and Purification Technology 68(2):
216–221. doi: 10.1016/j.seppur.2009.05.014.
[40] C.-H. Yang, W.-C. Lin, and W.-T. Liao, (2008) “Copper Recovery from EDTA Chelating - Copper Wastewater in a Fluidized Bed” The Canadian Journal of Chemical Engineering 83(3): 409–417. doi: 10.1002/cjc .5450830303.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信