淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2207202011172400
中文論文名稱 利用表面增強拉曼光譜法檢測葡萄糖溶液之研究
英文論文名稱 Study on detection of glucose solution by Surface Enhanced Raman Spectroscopy
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 宋承儒
研究生英文姓名 Cheng-Ju Sung
學號 607400032
學位類別 碩士
語文別 中文
口試日期 2020-06-22
論文頁數 82頁
口試委員 指導教授-許世杰
委員-林正嵐
委員-陳景翔
中文關鍵字 氧化還原循環  侷域性表面電漿共振  羅丹明-6G  葡萄糖 
英文關鍵字 SERS  AuFON substrates  LSPR  ORC  CV  R6G  glucose 
學科別分類
中文摘要 表面拉曼增益技術 (Surface enhance Raman scattering, SERS) 自從五十年前Fleischmann等人使用電化學對銀電極進行了數次的氧化還原反應,從而導致單層分子的拉曼訊號可被觀察得到,這是科學家第一次觀察到增強拉曼散射效應的結果。
自此以後許多表面拉曼增益技術的基板、添加層和製程的改進層出不窮,且研究範圍跨足生醫、生物、環境科學和化學等領域的應用。而使用表面拉曼增益技術應用於葡萄糖分子檢測已有十餘年,但大部分的研究皆需先製備一個自組裝表面層 (Self-assemble monolayer, SAM) 來抓取葡萄糖分子,才能進行後續的檢測。但與此同時大量文獻中也指出自組裝表面層容易減弱拉曼訊號且造成基板的生命週期縮短。
為了解決此一問題,本團隊提出這個新穎的構思利用電化學吸附的方法,在製作SERS基板的同時也能夠直接將葡萄糖分子吸附在基板表面上,達到快速一步檢測 (One-step identification) 之目的。此方法不僅利用電化學的技術將SERS基板進行改質和吸附偵測物,也同時避免SAM層所產生的劣化問題。技術指標將訂為WHO所規範的濃度11.1 mmol/L以下及SERS增強因子 (Enhance factor, EF) 達到〖10〗^9以上為目標。
英文摘要 In this report, our group summarizes our recent process toward developing sensors for R6G and in vitro glucose detection based on surface enhanced Raman scattering (SERS). Au film over nanosphere (AuFON) substrates was used as the SERS sensor platform in both cases. The corresponding optimal enhancement factor (EF) that is ca. 9×〖10〗^7.
For Au film over nanosphere (AuFON) substrates, oxidation-reduction cycle (ORC) used to rough the array of Au nanoparticles on the difference conditions, and choose the optimize condition to detect glucose. For glucose detection, a novel methods combined the electrochemistry. The glucose oxidation potential is used to catch glucose closer to the AuFON surface. Quantitative detection of glucose in solution, as well as complete and in situ inspecting was demonstrated.
This surface modification technology is used to detect the glucose signal, and the experimental target is achieved world health organization (WHO) published to determine whether it is diabetes, and can detect the concentration of glucose at least 0.01 M.
論文目次 目錄
致謝 I
摘要 II
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 理論基礎 4
2.1 SERS基板發展 4
2.2 現今葡萄糖檢測方式 11
2.3 SERS基板應用於葡萄糖發展 15
2.4 SERS基板應用於分糖 21
第三章 實驗方法與步驟 22
3.1 實驗材料 22
3.2 實驗裝置與原理 24
3.2.1 電化學分析儀 24
3.2.2 拉曼光譜儀 25
3.3 分析儀器與原理 27
3.3.1 掃瞄式電子顯微鏡 & 能量色散X射線分析 27
3.3.2 光學顯微鏡 28
3.3.3 原子力顯微鏡 29
致謝 I
摘要 II
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 理論基礎 4
2.1 SERS基板發展 4
2.2 現今葡萄糖檢測方式 11
2.3 SERS基板應用於葡萄糖發展 15
2.4 SERS基板應用於分糖 21
第三章 實驗方法與步驟 22
3.1 實驗材料 22
3.2 實驗裝置與原理 24
3.2.1 電化學分析儀 24
3.2.2 拉曼光譜儀 25
3.3 分析儀器與原理 27
3.3.1 掃瞄式電子顯微鏡 & 能量色散X射線分析 27
3.3.2 光學顯微鏡 28
3.3.3 原子力顯微鏡 29
3.3.4 微型光譜儀 31
3.4 實驗步驟 33
第四章 實驗結果與討論 44
4.1 以表面處理SERS基板檢測R6G之分析 44
4.1.1 不同操作條件對於SERS增益效果分析與討論 45
4.1.2 SERS基板偵測極限分析和增益效果計算 48
4.1.3 SERS基板之粗糙度探討和表面形貌分析 50
4.1.4 SERS基板表面形貌之分析 52
4.1.5 SERS基板表面形貌及元素分析與討論 56
4.2 以表面處理SERS基板檢測葡萄糖之分析與討論 58
4.2.1 葡萄糖對於雷射強度和時間影響之分析 58
4.2.2 葡萄糖濃度對拉曼訊號和偵測極限分析與討論 60
4.3 及時偵測葡萄糖之SERS系統分析及討論 62
4.3.1 葡萄糖循環伏安結果和吸附反應分析 62
4.3.2 葡萄糖最佳吸附電位和時間之分析和討論 67
第五章 結論 75
第六章 參考文獻 77

圖目錄
圖 2-1拉曼實驗裝置示意圖 10
圖 2-2奈米金粒子沉積狀況SEM圖 (a) 無沉積金奈米顆粒; (b) 沉積金奈米顆粒1分鐘; (c) 沉積金奈米顆粒2分鐘; (d) 沉積金奈米顆粒3分鐘; (e) 沉積金奈米顆粒4分鐘; (f) 沉積金奈米顆粒5分鐘。 10
圖 2-3全球每年糖尿病死亡統計圖 11
圖 2-4電化學血糖計主流示意圖 (A) 葡萄糖氧化酶電極測量法和 (B) 葡萄糖脫氫酶電極測量法 13
圖 2-5不同厚度之金銀層對於拉曼訊號比較 (a) 純金 (b) 純銀 (c) 金銀合金 (d) 綜合比較圖 18
圖 2-6 SAM層用於吸附葡萄糖分子簡圖 20
圖 3-1電化學分析儀 24
圖 3-2拉曼光譜設備 26
圖 3-3拉曼光譜結合電化學工作站簡圖 26
圖 3-4掃瞄式電子顯微鏡 & 能量色散X射線微量分析 28
圖 3-5光學顯微鏡 29
圖 3-6原子力顯微鏡系統 30
圖 3-7原子力顯微鏡示意圖 31
圖 3-8微型光譜儀架構 32
圖 3-9奈米金電極示意圖 (a) 金電極俯視圖 (b) 金電極拆解圖 34
圖 3-10電極後處理製程簡圖 (R6G) 35
圖 3-11氧化-還原循環簡圖 (a) 金電極俯視圖 (b) 氧化-還原循環裝置簡圖 37
圖 3-12電極後處理製程簡圖 (葡萄糖) 38
圖 3-13葡萄糖分子於電化學時產生之反應簡圖 40
圖 3-14拉曼光譜結合電化學工作站簡圖 43
圖 4-1不同的電解質和氧化還原循環條件在Au NP基板(R6G)上SERS信號的強度 46
圖 4-2 不同氧化還原循環條件在Au NP基板(R6G)上SERS信號的強度 47
圖 4-3 SERS基板上羅丹明6G的偵測極限 49
圖 4-4不同條件下SERS基板之表面形貌和粗糙度 (A) 未粗糙化金電極 (B) 0.5 M CV3 (C) 0.25 M CV9 (D) 0.1 M CV6 51
圖 4-5不同條件對於SERS基板表面形貌之SEM圖 (a) 0.5 M CV3之SEM圖 (b) 0.5 M CV3之Image J分析圖 (c) 0.5 M CV6之SEM圖 (d) 0.5 M CV6之Image J分析圖 (e) 0.5 M CV9之SEM圖 (f) 0.5 M CV9之Image J分析圖 53
圖 4-6掃描圈數6圈之25000倍SEM圖 54
圖 4-7掃描圈數6圈之50000倍SEM圖 54
圖 4-8 掃描圈數2圈之25000倍SEM圖 55
圖 4-9印刷電極橫截面圖 56
圖 4-10雷射和時間對葡萄糖拉曼訊號影響 (a) 放置時間 (b) 雷射持續照射時間 59
圖 4-11葡萄糖偵測極限拉曼圖 61
圖 4-12葡萄糖對拉曼訊號之關係圖 61
圖 4-13 0.5 M葡萄糖、0.5 M氫氧化鈉溶液電化學循環伏安法電化學視窗 63
圖 4-14金表面催化葡萄糖氧化示意圖 65
圖 4-15 0.5 M葡萄糖、0.5 M氫氧化鈉溶液電化學循環伏安法 (a) 不同圈數對上拉曼訊號之影響 (b)不同圈數對上拉曼訊號之影響 66
圖 4-16金表面催化葡萄糖氧化拉曼圖 67
圖 4-17葡萄糖氧化實驗結果 (a) 訊號對波數作圖 (b) 訊號對時間做圖 69
圖 4-18葡萄糖氧化實驗訊號對時間做圖 70
圖 4-19金表面催化葡萄糖氧化拉曼圖 71
圖 4-20葡萄糖氧化實驗結果 (a) 訊號對波數作圖 (b) 訊號對電位做圖 73
圖 4-21葡萄糖氧化實驗訊號對時間做圖 74

表目錄
表 2-1利用SERS檢測之文獻整理一覽 8
表 2-2常見血糖計比較表 15
表 2-3利用SERS進行葡萄糖檢測之文獻一覽表 16
表 3-1氧化-還原循環條件 36
表 3-2葡萄糖氧化-還原循環條件 38
表 4-1 RMS粗糙度對不同操作條件之關係 51
表 4-2能量色散X射線微量分析 (a) 0.5 M CV3 (b) 0.5 M CV6 (c) 0.5 M CV9 57

參考文獻 [1] C. D. Salzberg and J. J. Villa, "Infrared refractive indexes of silicon germanium and modified selenium glass," JOSA, vol. 47, no. 3, pp. 244-246, 1957.
[2] K. Krishnan, "The Raman effect in X-Ray scattering," Nature, vol. 122, no. 3086, p. 961, 1928.
[3] M. Fritsch and L. F. Medrano, "The spatial diffusion of a knowledge base: Laser technology research in West Germany, 1960-2005," Jena economic research papers, 2010.
[4] K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, "Toward a glucose biosensor based on surface-enhanced Raman scattering," J Am Chem Soc, vol. 125, no. 2, pp. 588-93, Jan 15 2003, doi: 10.1021/ja028255v.
[5] C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, and R. P. Van Duyne, "A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference," Analytical Chemistry, vol. 76, no. 1, pp. 78-85, 2004.
[6] D. A. Stuart et al., "Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy," Analytical Chemistry, vol. 77, no. 13, pp. 4013-4019, 2005.
[7] Z.-S. Wu, G.-Z. Zhou, J.-H. Jiang, G.-L. Shen, and R.-Q. Yu, "Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering," Talanta, vol. 70, no. 3, pp. 533-539, 2006.
[8] D. A. Stuart et al., "In vivo glucose measurement by surface-enhanced Raman spectroscopy," Analytical chemistry, vol. 78, no. 20, pp. 7211-7215, 2006.
[9] N. C. Shah, O. Lyandres, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, "Lactate and sequential lactate− glucose sensing using surface-enhanced Raman spectroscopy," Analytical chemistry, vol. 79, no. 18, pp. 6927-6932, 2007.
[10] J. M. Yuen, N. C. Shah, J. T. Walsh Jr, M. R. Glucksberg, and R. P. Van Duyne, "Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model," Analytical chemistry, vol. 82, no. 20, pp. 8382-8385, 2010.
[11] K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh Jr, M. R. Glucksberg, and R. P. Van Duyne, "In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days," Analytical chemistry, vol. 83, no. 23, pp. 9146-9152, 2011.
[12] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical physics letters, vol. 26, no. 2, pp. 163-166, 1974.
[13] D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 84, no. 1, pp. 1-20, 1977.
[14] J. Langer et al., "Present and Future of Surface-Enhanced Raman Scattering," ACS nano, 2019.
[15] R. P. N. E. Pettinger B. Lipkowski J., Adsorption of Molecules at Metal Electrodes. New York, 1992.
[16] H. Chu, Y. Huang, and Y. Zhao, "Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection," APPLIED SPECTROSCOPY, vol. 62, no. 8, pp. 922-931, 2008.
[17] (2019). In National Institute of Diabetes and DigestiVe and Kidney Diseases.
[18] Z. Logminiene, A. Norkus, and L. Valius, "Direct and indirect diabetes costs in the world," Medicina, vol. 40, no. 1, pp. 16-26, 2004.
[19] G. G. Baralia, A. Pallandre, B. Nysten, and A. M. Jonas, "Nanopatterned self-assembled monolayers," Nanotechnology, vol. 17, no. 4, p. 1160, 2006.
[20] W. H. Organization, "Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation," 2006.
[21] L. Zeiri, B. Bronk, Y. Shabtai, J. Czege, and S. Efrima, "Silver metal induced surface enhanced Raman of bacteria," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 208, no. 1-3, pp. 357-362, 2002.
[22] W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, "Characterization of the surface enhanced Raman scattering (SERS) of bacteria," The journal of physical chemistry B, vol. 109, no. 1, pp. 312-320, 2005.
[23] Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, no. 1, pp. 5-9, 2005.
[24] L. Jensen and G. C. Schatz, "Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory," The Journal of Physical Chemistry A, vol. 110, no. 18, pp. 5973-5977, 2006.
[25] Z. Sun et al., "Three-dimensional colloidal crystal-assisted lithography for two-dimensional patterned arrays," Langmuir, vol. 23, no. 21, pp. 10725-10731, 2007.
[26] K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, "Raman scattering of aryl isocyanide monolayers on atomically flat Au (1 1 1) single crystal surfaces enhanced by gap-mode plasmon excitation," Chemical Physics Letters, vol. 460, no. 1-3, pp. 205-208, 2008.
[27] S. Efrima and L. Zeiri, "Understanding SERS of bacteria," Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, vol. 40, no. 3, pp. 277-288, 2009.
[28] K. L. Rule and P. J. Vikesland, "Surface-enhanced resonance Raman spectroscopy for the rapid detection of Cryptosporidium parvum and Giardia lamblia," Environmental science & technology, vol. 43, no. 4, pp. 1147-1152, 2009.
[29] X. Yang, A. Y. Zhang, D. A. Wheeler, T. C. Bond, C. Gu, and Y. Li, "Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber," Analytical and bioanalytical chemistry, vol. 402, no. 2, pp. 687-691, 2012.
[30] R. A. Halvorson and P. J. Vikesland, "Surface-enhanced Raman spectroscopy (SERS) for environmental analyses," ed: ACS Publications, 2010.
[31] T.-Y. Liu et al., "Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood," Nature communications, vol. 2, p. 538, 2011.
[32] K. Ikeda, S. Suzuki, and K. Uosaki, "Enhancement of SERS background through charge transfer resonances on single crystal gold surfaces of various orientations," Journal of the American Chemical Society, vol. 135, no. 46, pp. 17387-17392, 2013.
[33] L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. Chen, "Innovative fabrication of a Au nanoparticle-decorated SiO 2 mask and its activity on surface-enhanced Raman scattering," Analyst, vol. 139, no. 8, pp. 1929-1937, 2014.
[34] C. Zhang et al., "SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure," Optics express, vol. 23, no. 19, pp. 24811-24821, 2015.
[35] (2017). In National Institute of Diabetes and DigestiVe and Kidney Diseases.
[36] 广州万孚生物技术有限公司, "血糖检测仪," CN, 2012-04-25.
[37] J. L. Smith, "The pursuit of noninvasive glucose: Hunting the deceitful turkey," Revised and Expanded, copyright, 2015.
[38] D. Bruen, C. Delaney, L. Florea, and D. Diamond, "Glucose sensing for diabetes monitoring: recent developments," Sensors, vol. 17, no. 8, p. 1866, 2017.
[39] B. Guerci et al., "Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs," Diabetes care, vol. 26, no. 3, pp. 582-589, 2003.
[40] H. Lee et al., "Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module," Science Advances, vol. 3, no. 3, p. e1601314, 2017.
[41] T. O'brien, M. Troutman-Jordan, D. Hathaway, S. Armstrong, and M. Moore, "Acceptability of wristband activity trackers among community dwelling older adults," Geriatric Nursing, vol. 36, no. 2, pp. S21-S25, 2015.
[42] A. J. Berger, I. Itzkan, and M. S. Feld, "Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 53, no. 2, pp. 287-292, 1997.
[43] A. J. Berger, T.-W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, "Multicomponent blood analysis by near-infrared Raman spectroscopy," Applied optics, vol. 38, no. 13, pp. 2916-2926, 1999.
[44] J. Shao et al., "In vivo blood glucose quantification using Raman spectroscopy," PloS one, vol. 7, no. 10, p. e48127, 2012.
[45] M. F. Mrozek and M. J. Weaver, "Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy," Analytical chemistry, vol. 74, no. 16, pp. 4069-4075, 2002.
[46] K. Sooraj, M. Ranjan, R. Rao, and S. Mukherjee, "Sers based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays," Applied Surface Science, vol. 447, pp. 576-581, 2018.
[47] K. V. Kong, Z. Lam, W. K. O. Lau, W. K. Leong, and M. Olivo, "A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose," Journal of the American Chemical Society, vol. 135, no. 48, pp. 18028-18031, 2013.
[48] K. V. Kong, C. J. H. Ho, T. Gong, W. K. O. Lau, and M. Olivo, "Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates," Biosensors and Bioelectronics, vol. 56, pp. 186-191, 2014.
[49] X. Zhang, N. C. Shah, and R. P. Van Duyne, "Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS)," Vibrational Spectroscopy, vol. 42, no. 1, pp. 2-8, 2006.
[50] C. Y. Fu, Z. Y. Koh, K. W. Kho, T. Praveen, and M. Olivo, "The effect of design parameters of metallic substrate on the reproducibility of SERS measurement for biosensing," in Biosensing II, 2009, vol. 7397: International Society for Optics and Photonics, p. 739717.
[51] R. Botta, A. Rajanikanth, and C. Bansal, "Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS)," Sensing and bio-sensing research, vol. 9, pp. 13-16, 2016.
[52] X.-H. Pham et al., "Glucose detection using 4-mercaptophenyl boronic acid-incorporated silver nanoparticles-embedded silica-coated graphene oxide as a SERS substrate," BioChip Journal, vol. 11, no. 1, pp. 46-56, 2017.
[53] D. Yao, C. Li, A. Liang, and Z. Jiang, "A facile SERS strategy for quantitative analysis of trace glucose coupling glucose oxidase and nanosilver catalytic oxidation of tetramethylbenzidine," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 216, pp. 146-153, 2019.
[54] A. Maton, Human biology and health. Prentice Hall, 1997.
[55] P. Graves and D. Gardiner, "Practical raman spectroscopy," Springer, 1989.
[56] J. Goldstein, Practical scanning electron microscopy: electron and ion microprobe analysis. Springer Science & Business Media, 2012.
[57] K. Chang, "2 Americans and a German Are Awarded Nobel Prize in Chemistry," New York Times, 2014.
[58] K. Ritter and M. Rising, "Americans, 1 German win chemistry Nobel,"" AP News, 2014.
[59] K. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and J. M. Martinis, "Conducting atomic force microscopy for nanoscale tunnel barrier characterization," Review of scientific instruments, vol. 75, no. 8, pp. 2726-2731, 2004.
[60] J. F. James, R. S. Sternberg, and S. A. Rice, "The design of optical spectrometers," PhT, vol. 23, no. 12, p. 55, 1970.
[61] J. James, Spectrograph design fundamentals. Cambridge University Press, 2007.
[62] J. Browning, How to Work with the Spectroscope: A Manual of Practical Manipulation with Spectroscopes of All Kinds. Cambridge University Press, 2010.
[63] P. Christopher and E. Loewen, "Diffraction grating handbook," Newport Corporation, pp. 67-69, 2005.
[64] E. Hesse and J. Creighton, "Investigation by surface-enhanced Raman spectroscopy of the effect of oxygen and hydrogen plasmas on adsorbate-covered gold and silver island films," Langmuir, vol. 15, no. 10, pp. 3545-3550, 1999.
[65] 鄒霖凱, "利用金奈米粒子電極進行無酶葡萄糖電化學生物檢測," 碩士, 化學系所, 國立中興大學, 台中市, 2016.


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2025-07-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2025-07-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信