§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2207201312500900
DOI 10.6846/TKU.2013.00872
論文名稱(中文) 新型圖樣化基板應用於氮化鎵發光二極體效率提升之研究
論文名稱(英文) The Study of the Novel Patterned Sapphire Substrate Applied for Enhancing the Efficiency of the GaN-based Light-emitting Diodes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 羅瑛蕙
研究生(英文) Ying-Hui Lo
學號 600401169
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-06-27
論文頁數 80頁
口試委員 指導教授 - 許世杰
委員 - 李宗憲
委員 - 吳宛玉
關鍵字(中) 發光二極體;圖樣化藍寶石基板;漸變折射層;氮化矽;光萃取效率
關鍵字(英) Light-Emitting Diode;Patterned Sapphire Substrate;Reflective Index-gradient;Silicon Nitride;Light Extraction Efficiency
第三語言關鍵字
學科別分類
中文摘要
本實驗乃利用Si3N4來取代SiO2作為漸變折射層材料(Reflective Index-gradient Material)並結合圖樣化藍寶石基板(Patterned Sapphire Substrate, PSS)技術來製備新型圖樣化基板應用於氮化鎵發光二極體(GaN-based LED)作效率提升之探討。此技術主要是藉由氮化鎵的水平式成長來降低缺陷密度並以漸變折射層及圖樣化基板來提升光萃取效率。從模擬結果可得知,相較於PSS-LED,使用了Si3N4作為漸變折射層的發光二極體其光萃取效率約提升62.7%。由TEM圖可觀察到貫穿差排(Threading Dislocation)出現於基板溝渠處,而圖樣化基板上方則因為水平式磊晶生成了疊層缺陷(Stacking Fault)以及磊晶縫合時所形成的單一貫穿差排,實驗結果也證實了氮化鎵確實是以水平式的方式作磊晶。
  此外,經由實驗發現因為Si3N4粗糙表面導致氮化鎵經水平式成長後於氮化鎵與圖樣化基板間存在著氣體孔洞,根據模擬結果發現氣體孔洞的存在會影響到元件的發光效率。分別以Snell’s Law以及不同點光源的位置作分析可獲得四個不同結構之發光二極體其光萃取效率大小分別為PSN-LED > PSA-LED > PSO-LED > PSS-LED。
英文摘要
We use silicon nitride (Si3N4) to replace silicon dioxide (SiO2) as the reflective index-gradient material to fabricate GaN-based patterned sapphire substrate light-emitting diodes. It can not only reduce the threading dislocations densities but also enhance the light extraction efficiency (LEE). From the simulation results, the light extraction efficiency enhance approximate 62.7% higher than the PSS-LED. The TEM images show the threading dislocations exist on the trench region and stacking faults produce on the top of the pattern because of the GaN growth laterally. And also we found one threading dislocation which induced from coalescence of GaN thin film on the pattern region only. These evidences prove that the GaN film indeed was grown laterally.
  After re-growing, we observed the air voids exist on the top of the textured Si3N4 layer which were due to the GaN epitaxial lateral overgrowth. According to the simulation result, it reveals that the air voids will affect the final luminous efficiency. The luminous efficiency ranking of the four different LEDs is PSN-LED > PSA-LED > PSO-LED > PSS-LED.
第三語言摘要
論文目次
目錄
致謝 ........................................................................................................ V
目錄 ....................................................................................................... VI
圖目錄 ................................................................................................ IXX
表目錄 ................................................................................................ XIII
第一章 序論 ........................................................................................... 1
1.1 前言 ........................................................................................... 1
1.2 發光二極體之發展 .................................................................... 5
1.3 圖樣化藍寶石基板發光二極體簡介 ......................................... 8
1.4 圖樣化藍寶石基板技術之文獻回顧 ......................................... 9
1.5 研究動機與目的 ...................................................................... 14
第二章 圖樣化藍寶石技術之介紹與應用 .......................................... 19
2.1 藍寶石基板之材料特性 .......................................................... 19
2.2 氮化鎵磊晶與差排理論 .......................................................... 22
2.2.1 貫穿差排之形成機制 .................................................... 23
2.2.2 差排對元件之影響 ........................................................ 24
2.3 圖樣化藍寶石基板對發光二極體量子效率之影響 ............... 25
2.4 濕式蝕刻製作圖樣化藍寶石基板之優缺點 ........................... 27
VII
2.5 漸變折射率 .............................................................................. 29
第三章 實驗方法與架構 ...................................................................... 32
3.1 圖樣化藍寶石基板之製備 ...................................................... 32
3.2 發光二極體元件之製作 .......................................................... 36
3.3製程儀器及原理 ....................................................................... 37
3.3.1電漿輔助化學氣相沉積系統 .......................................... 37
3.3.2高密度活性離子蝕刻系統 .............................................. 38
3.3.3 有機金屬化學氣相沉積系統 ......................................... 39
3.3.4 電子槍及熱蒸鍍系統 .................................................... 41
3.4 量測儀器與原理 ...................................................................... 41
3.4.1 場發射鎗掃描式電子顯微鏡 ......................................... 41
3.4.2 穿透式電子顯微鏡 ........................................................ 42
3.4.3 光激發螢光光譜 ............................................................ 44
3.4.4 L-I-V系統 ....................................................................... 45
第四章 結果分析與討論 ...................................................................... 48
4.1 漸變折射層之PSS-LED光學模擬結果與分析 ..................... 48
4.2 具有氣體孔洞之圖樣化藍寶石基板發光二極體之製備 ........ 53
4.2.1 以活性離子蝕刻製備表面粗糙之圖樣化氮化矽 .......... 53
4.2.2 以濕式蝕刻製備圖樣化藍寶石基板 ............................. 55
VIII
4.3 具有氣體孔洞之圖樣化藍寶石基板發光二極體結果分析 .... 58
4.3.1 掃描式電子顯微鏡分析 ................................................. 59
4.3.2 穿透式電子顯微鏡分析 ................................................. 60
4.3.3 變溫PL量測分析 .......................................................... 63
4.3.4 光學模擬結果與分析 .................................................... 66
第五章 結論與未來工作 ...................................................................... 71
5.1 結論 ......................................................................................... 71
5.2 未來工作.................................................................................. 72
參考文獻 ............................................................................................... 73
IX
圖目錄
圖1.1 發光二極體之發光原理 ............................................................. 2
圖1.2 直接能隙與間接能隙比較圖 ..................................................... 2
圖1.3 Ⅲ-V族氮化物能隙與晶格常數之關係圖 ................................. 3
圖1.4半導體材料之能隙發光光譜圖 .................................................. 3
圖1.5 提升發光二極體效率之各種製程方式 ...................................... 7
圖1.6 圖樣化藍寶石基板結構示意圖 ................................................. 8
圖1.7氣體孔洞示意圖 ........................................................................ 14
圖1.8 Wurtzite結構示意圖 .............................................................. 15
圖1.9 氮化鎵之(0001)面與Sapphire之(0001)面原子排列關係............................................................................................................... 15
圖1.10內部全反射示意圖 .................................................................. 16
圖2.1 藍寶石的晶體結構 ................................................................... 20
圖2.2藍寶石之蝕刻晶面結構 (a)俯視圖 (b)側視圖 ..................... 20
圖2.3 (a) 邊緣差排(b) 螺旋差排 ................................................... 24
圖2.4 電子與電洞之輻射結合 ........................................................... 25
圖2.5 圖樣化藍寶石基板磊晶的示意圖與不同深度圖樣化藍寶石基板磊晶之TEM 圖 .................................................................................. 26
圖2.6 圖樣化藍寶石基板光萃取示意圖 ........................................... 27
X
圖2.7 (a)蝕刻前:塗佈光阻 (b)定義圖型 (c)濕式蝕刻與底切情形............................................................................................................... 28
圖2.8 濕式蝕刻過程示意圖 ............................................................... 28
圖2.9 (a) 疏→密之折射現象 (b) 密→疏之折射現象 .................. 31
圖3.1 圖樣化藍寶石基板之製作流程示意圖 .................................... 35
圖3.2圖樣化藍寶石之氮化鎵磊晶結構 ............................................ 37
圖3.3電漿輔助化學氣相沉積系統 .................................................... 38
圖3.4介電材料活性離子蝕刻系統 .................................................... 39
圖3.5有機金屬化學氣相沉積法反應原理示意圖 ............................. 40
圖3.6有機金屬化學氣相沉積系統 .................................................... 40
圖3.7 電子槍及熱蒸鍍系統 ............................................................... 41
圖3.8 場發射鎗掃描式電子顯微鏡系統 ........................................... 42
圖3.9 明/暗視野原理示意圖 ............................................................. 43
圖3.10 穿透式電子顯微鏡系統 ......................................................... 44
圖3.11 電子躍遷示意圖 ..................................................................... 45
圖3.12 L-I-V量測系統 ...................................................................... 47
圖4.1 光學模擬模型 ...............................................................................
(a) CSS-LED (b) PSS-LED (c) PSN-LED (d) PSO-LED ................... 49
圖4.2 偵測器收光方式示意圖 ........................................................... 50
圖4.3 偵測器全收光之模擬結果 ....................................................... 51
XI
圖4.4 偵測器(a)上收光 (b)下收光之模擬結果 .............................. 52
圖4.5 PSS-110經活性離子蝕刻120 s後之SEM圖 .............................
(a) top view (b) cross section .................................................... 54
圖4.6 PSS-220經活性離子蝕刻220 s後之SEM圖 .............................
(a) top view (b) cross section .................................................... 54
圖4.7 PSS-330經活性離子蝕刻260 s後之SEM圖 .............................
(a) top view (b) cross section .................................................... 54
圖4.8為PSS-110在溫度260℃下經硫磷酸混合液蝕刻4.5 min後之SEM圖(a) top view (b) cross section (c) tilt 30o ................. 56
圖4.9為PSS-220在溫度260℃下經硫磷酸混合液蝕刻4.5 min後之SEM圖(a) top view (b) cross section (c) tilt 30o ................. 57
圖4.10為PSS-330在溫度260℃下經硫磷酸混合液蝕刻4.5 min後之SEM圖(a) top view (b) cross section (c) tilt 30o .................................... 58
圖4.11 PSS-110磊晶後之cross-sectional SEM圖 ....................... 59
圖4.12 PSS-220磊晶後之cross-sectional SEM圖 ....................... 60
圖4.13 PSS-330磊晶後之cross-sectional SEM圖 ....................... 60
圖4.14 PSS-330之STEM圖 ................................................................ 61
圖4.15 PSS-330暗視野之TEM圖(a) 6 KX (b) 12 KX ................... 62
圖4.16 PSS-330明視野之TEM圖(a) 6 KX (b) 12 KX ................... 62
XII
圖4.17 PSS-110之變溫PL光譜圖 .................................................... 63
圖4.18 PSS-220之變溫PL光譜圖 .................................................... 64
圖4.19 PSS-330之變溫PL光譜圖 .................................................... 64
圖4.20 四種不同圖樣化結構之模擬結果.......................................... 68
圖4.21 光線路徑示意圖 (a) CSS (b) PSS (c) 漸變折射層 (d) 中間層折射率小於Sapphire ................................................................... 68
圖4.22點光源設置位置(a) between (b) center (c) edge ......... 70
圖4.23 點光源模擬結果 ..................................................................... 70
XIII
表目錄
表1.1 LED照明應用領域及優點 ....................................................... 4
表1.2 圖樣化藍寶石基板之相關文獻 ................................................ 10
表2.2 單晶型態之藍寶石材料基本物性 ............................................ 21
表4.1 光學模擬之建模條件 ................................................................ 50
參考文獻
[1] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Applied Physics Letters, vol. 81, pp. 1246-1248 (2002) 
[2] B.G. Streetman, and S. Banerjee, “Solid State Electronic Devise,”5th Ed., Prentice Hall, Inc (2000)
[3] E.F. Schubert, “Light-Emitting Diodes,” 2nd ed., Cambridge University Press, New York (2006) 
[4] I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Japanese Journal of Applied Physics, vol. 36, pp. 5393–5408 (1997)
[5] 郭浩中、賴芳儀、郭守義,「LED原理與應用」,五南出版社,西元2009年。
[6] H. J. Round, “A note on carborundum,” Electrical World 49: 309 (1907)
[7] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, vol. 64, pp. 1687 (1994)
[8] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” Journal of Physics D: Applied Physics, vol. 43, pp. 354002 (2010)
[9] H.W. Huang, C.C. Kao, J.T. Chu, H.C. Kuo, S.C. Wang, and C.C. Yu, “Improvement of InGaN–GaN light-emitting diode performance with a nano-roughened p-GaN surface,”  IEEE Photonics Technology Letters, vol. 17, pp. 983 (2005)
[10] J. Shakya, J.Y. Lin, and H.X. Jiang, “Time-resolved electroluminescence studies of III-nitride ultraviolet photonic-crystal lightemitting diodes,” Applied Physics Letters, vol. 85, pp. 2104 (2004)
[11] C.C. Kao, H.C. Kuo, H.W. Huang, J.T. Chu, Y.C. Peng, Y.L. Hsieh, C.Y. Luo, S.C. Wang, C.C. Yu, and C.F. Lin, “Light output enhancement in a nitride-based light-emitting diode with 22 degree undercut sidewalls,” IEEE Photonics Technology Letters, vol. 17, pp. 19 (2005)
[12] 吳麗雲,「圖案化藍寶石基板之濕式蝕刻」,國立中央大學,碩士論文,西元2006年。
[13] S.M. Pan, R.C. Tu, Y.M. Fan, R.C. Yeh, and J.T. Hsu, “Improvement of InGaN–GaN Light-Emitting Diodes With Surface-Textured Indium–Tin–Oxide Transparent Ohmic Contacts,” IEEE Journal of Quantum Electronics, vol. 15, No. 5 (2003)
[14] M. Kappelt and Bimberg, “Wet Chemical Etching of High Quality V-Grooves with {111} A Sidewalls on (001) InP,” Journal of The Electrochemical Society, vol.143, pp.3271 (1996)
[15] 日商日亞化學股份有限公司,「具備凹凸成型基板之半導體發光元件發明」,專利案號-091116475,西元2002年。
[16] K. Tadatomo, H. Okagwa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metal organic vapor phase epitaxy,” Japanese Journal of Applied Physics, vol. 40, pp. L583 (2001)
[17] A. Bell, R. Liu, F. A. Ponce, H. Amano, I. Akasaki, and D. Cherns, “Light emission, and microstructure of Mg-doped AlGaN grown on patterned sapphire,”  Applied Physics Letters, vol. 82, pp. 349 (2003)
[18] S.J. Kim, “Vertical electrode GaN-based light-emitting diode fabricated by selective wet etching technique,” Japanese Journal of Applied Physics, vol. 44, pp. 2921 (2005)
[19] S.J. Kim, Y.S. Choi, Y.H. Han, and C.Y. Kim, “Vertical chip of GaN-based light-emitting diode formed on sapphire substrate,” Physica Status Solidi(a) , vol. 202, pp. 2034 (2005)
[20] S.J. Kim, “Improvement of GaN-based light-emitting diode by indium-tin-oxide transparent electrode, and vertical electrode,” IEEE Photonics Technology Letters, vol. 17, pp. 8 (2005)
[21] S.J. Kim, “Vertical chip of GaN-based blue light-emitting diode,” Solid-State Electronics, vol. 49, pp. 1153 (2005)
[22] W.K. Wang, D.S. Wuu, S.H. Lin, P. Han, R.H. Horng, T.C. Hsu, D.T.C. Huo, M.J. Jou, Y.H. Yu, and A. Lin, “Efficiency Improvement of Near-Ultraviolet InGaN LEDs Using Patterned Sapphire Substrates,” IEEE Journal of Quantum Electronics, vol. 41, No. 11 (2005)
[23] W.C. Lai, Y.Y. Yang, Y.H. Chen, and J.K. Sheu, “GaN-Based Light-Emitting Diodes With Air Gap Array and Patterned Sapphire Substrate,” IEEE Journal of Quantum Electronics, vol. 23, No. 17 (2011)
[24] S.J. Chang, Y.C. Lin, Y.K. Su, C.S. Chang, T.C. Wen, S.C. Shei, J.C. Ke, C.W. Kuo, S.C. Chen, C.H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrate,” Solid-State Electronics,vol.47, pp.1539-1542 (2003)
[25] Y.P. Hsu, S.J. Chang, Y.K. Su, J.K. Sheu, C.T. Lee, T.C. Wen, L.W. Wu, C.H. Kuo, C.S. Chang, S.C. Shei, “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs ,” Journal of Crystal Growth, vol.261, pp.466-470 (2004)
[26] Z.H. Feng, Y.D. Qi, Z.D. Lu, Kei May Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metal organic vapor-phase epitaxy,” Journal of Crystal Growth, vol.272 ,pp.327-332 (2004)
[27] Y.J. Lee, T.C. Hsu, H.C. Kuo, S.C.Wang, Y.L. Yang, S.N. Yen, Y.T. Chu, Y.J. Shen, M.H. Hsieh, M.J. Jou, B.J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN–GaN LEDs fabricated on stripe patterned sapphire substrates,” Materials Science and Engineering B, vol.122, pp.184-187 (2005)
[28] D.S. Wuu, W.K. Wang, W.C. Shih, R.H. Horng, C.E. Lee, W.Y. Lin, J.S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrate,” IEEE Photonics technology letters, vol. 17, no. 2 (2005)
[29] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, “Enhancing the Output Power of GaN-Based LEDs Grown on Wet-Etched Patterned Sapphire Substrates,” IEEE Photonics technology letters, vol. 18, no. 10 (2006)
[30] D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Applied Physics Letters, vol.89, 161105 (2006)
[31] W.K. Wang, S.Y. Huang, S.H. Huang, K.S. Wen, D.S. Wuu, “Fabrication and efficiency improvement of micropillar InGaN/Cu light emitting diodes with vertical electrodes,” Applied Physics Letters, vol.88, 181113 (2006)
[32] J.H. Lee, J.T. OH, I.S. Choi, Y.C. Kim, “Growth and Characteristics of InGaN/GaN Films Grown on Hemispherical Patterned Sapphire by Using MOCVD,” Journal of the Korean Physical Society, vol.51, pp.S249-S252 (2007)
[33] C.E. Lee, Y.J. Lee, H.C. Kuo, M.R. Tsai, B.S. Cheng, T.C. Lu, S.C. Wang, C.T. Kuo, “Enhancement of Flip-Chip Light-Emitting Diodes With Omni-Directional Reflector and Textured Micropillar Arrays,” IEEE Photonics technology letters, vol. 19, no. 16 (2007)
[34] C.F. Shen, S.J. Chang, Member, W.S. Chen, T.K. Ko, C.T. Kuo, S.C. Shei, “Nitride-Based High-Power Flip-Chip LED With Double-Side Patterned Sapphire Substrate,” IEEE Photonics technology letters, vol. 19, no. 10 (2007)
[35] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, G. Wang, “Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching,” Solid-State Electronics, vol.52, pp.962-967 (2008)
[36] J.H. Lee, J.T. OH, Y.C. Kim, J.H. Lee, “Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire,” IEEE Photonics technology letters, vol. 20, no. 18 (2008)
[37] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Journal of Applied Physics, vol.103, 014314 (2008)
[38] D.S. Wuu, H.W. Wu, S.T. Chen, T.Y. Tsai, X. Zheng, R.H. Horng, “Defect reduction of laterally regrown GaN on GaN/patterned sapphire substrates,” Journal of Crystal Growth, vol.311, pp.3063-3066 (2009)
[39] Y.K Su, J.J. Chen, C.L. Lin, S.M. Chen, W.L. Li, C.C. Kao, “Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates,” Journal of Crystal Growth, vol.311, pp.2973-2976 (2009)
[40] S.M. Jeong, S. Kissinger, D.W. Kim, S.J. Lee, J.S Kim, H.K Ahn, C.R. Lee, “Characteristic enhancement of the blue LED chip by the growth and fabrication on patterned sapphire (0 0 0 1) substrate,” Journal of Crystal Growth, vol.312, pp. 258-261 (2010)
[41] J.H. Cheng, Y.C.S. Wu, W.C. Liao, B.W. Lin, “Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slant angle of patterned sapphire,” Applied Physics Letters, vol.96, 051109 (2010)
[42] W.C. Lai, Y.Y. Yang, Y.H. Chen, J.K. Sheu, “GaN-based light-emitting diode with air gap array and pattern sapphire substrate,” IEEE Photonics Technology Letters, vol.23 , no.17 (2011)
[43] B.W. Lin, C.Y. Hsieh, B.M. Wang, W.C. Hsu, Y.C.S. Wu, “Improved performance of GaN-based LEDs by covering top c-plane of patterned sapphire substrate with oxide layer,” Electrochemical and Solid-State Letters, vol.14(8), pp.J48-J50 (2011)
[44] C.H. Chiu, L.H. Hsu, C.Y. Lee, C.C. Lin, B.W. Lin, S.J. Tu, Y.H. Chen, C.Y. Liu, W.C. Hsu, Y.P. Lan, J.K. Sheu, T.C. Lu, G.C. Chi, H.C. Kuo, S.C. Wang, C.Y. Chang, “Light extraction enhancement of GaN-based light-emitting diodes using crown-shaped patterned sapphire substrates,” IEEE Photonics Technology Letters, vol.24 ,no. 14 (2012)
[45] W.A. Melton and J.I. Pankove “GaN growth on sapphire” Journal of Crystal Growth, Vol. 178, No. 1, pp. 168-173 (1997)
[46] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters, vol. 48, pp. 353 (1986)
[47] B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. Denbaars, and J.S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Applied Physics Letters, vol. 68, pp. 643 (1996)
[48] P. Bhattacharya “Semiconductor Optoelectric Devices,” Prentice Hall (1994)
[49] S.M. Sze “Physics of Semiconductor Devices,” 2nd Ed., Wiley, New York (1981)
[50] D. Hull “Introduction to Dislocations,” 2nd Ed., Pergamon Press, Oxford (1975)
[51] X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, J.S. Speck, and S.J. Rosner, “Structural origin of Vdefects, and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Applied Physics Letters, vol. 72, pp.692 (1998)
[52] S. Keller, G. Parish, J.S. Speck, S.P. DenBaars, and U.K. Mishra,“Dislocation reduction in GaN films through selective island growth of InGaN,” Applied Physics Letters, vol. 77, pp. 2665 (2000)
[53] J.W. Matthews, ‘‘Epitaxial Growth,’’ Academic, New York.
[54] M. Kneissl, T. L. Paoli, P. Kiesel, D. W. Treat, M. Teepe, N. Miyashita and N. M. Johnson, “Two-section InGaN multiple-quantum-well laser diode with integrated
electroabsorption modulator,” Applied Physics Letters, vol. 80, 3283 (2002)
[55] C.H. Jeong, D.W. Kim, J.W. Bae, Y.J. Sung, J.S. Kwak, Y.J. Park and G.Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Materials Science & Engineering, B93, pp. 60-63 (2002)
[56] C.C. Sun, C.Y. Lin and T.X. Lee, “Enhancement of light extraction of GaN-based light-emitting diodes with a microstructure array,” Optical Engineering, vol. 43, pp. 1700 (2004)
[57] 劉瑞祥,「基礎光學纖維」,復文書局,西元1986年。
[58] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute and S. N. Mohammad, “Electrical, thermal and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” Journal of Applied Physics, vol. 93, no. 2, pp. 1087-1094 (2003) 
[59] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M. Shur and R. Gaska, “SiO2-passivated lateral-geometry GaN transparent Schottky-barrier detectors,” Applied Physics Letters, vol. 77, pp. 863 (2000)
[60] 陳怡如,“利用濕式蝕刻粗化藍寶石基材之表面並應用於發光二極體之致成”,國立中央大學,碩士論文,西元2007年。
[61] N.M. Lin, S. J. Chang, “GaN-Based LEDs With Air Voids Prepared by One-Step MOCVD Growth, ” IEEE Photonics Technology Letters, vol.29 ,no. 18 (2011)
[62] H.K. Cho, J.Y. Lee, K.S. Kim, G.M.Yang, J.H.Song, P.W.Yu,“Effect of buffer layers and stacking faults on the reduction of threading dislocation density in GaN overlayers grown by metalorganic chemical vapor deposition” Journal of Applied Physics , vol.89 (2001)
[63] E. Y. Lin, C. Y. Chen, T. S. Lay, Z. X. Peng, T. Y. Lin, T. C. Wang, J. D. Tsay “Optical polarization and internal quantum efficiency for InGaN quantum wells on a-plane GaN” Physica B, vol. 405 pp. 1857–1860 (2010) 
[64] Satoshi Watanabe, Norihide Yamada, Masakazu Nagashima, Yusuke Ueki, Chiharu Sasaki, Yoichi Yamada, Tsunemasa Taguchi, Kazuyuki Tadatomo, Hiroaki Okagawa, and Hiromitsu Kudo “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes” Applied Physics Letters, vol. 83, pp. 4906 (2003)
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信