§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2207201302170100
DOI 10.6846/TKU.2013.00859
論文名稱(中文) 第一部分:利用斑馬魚研究早產兒視網膜病變 第二部分:細胞核因子C次單元對斑馬魚眼睛之重要性
論文名稱(英文) Part Ι: Hypoxia-Induced Retinal Neovascularization in Zebrafish Embryos: an Efficient Model of Retinopathy of Prematurity Part II: Importance of Zebrafish CCAAT Box Binding Transcription Factor (NF-Y) C Subunit During Eye Development
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 張櫂杬
研究生(英文) Chao-Yuan Chang
學號 600180011
學位類別 碩士
語言別 英文
第二語言別
口試日期 2013-05-23
論文頁數 108頁
口試委員 指導教授 - 陳曜鴻
委員 - 陳曜鴻
委員 - 王一中
委員 - 蔡振寧
關鍵字(中) 斑馬魚
早產兒視網膜病變
缺氧
nfyc
眼睛
關鍵字(英) zebrafish
Retinopathy of Prematurity
hypoxia
NF-YC
eye
第三語言關鍵字
學科別分類
中文摘要
一部分: 
早產兒視網膜病變是造成嬰兒眼睛失明主要原因之一,因局部缺氧所引發過度的血管新生,當血管侵犯到玻璃體時,會導致滲漏、出血、視網膜剝離等症狀。到目前為止,其治癒後情形改善仍有限,其中主要原因在於缺乏合適的疾病動物模式來加以研究和探討。本研究將血管發綠螢光基因轉殖斑馬魚 (fli1-EGFP) 浸泡於 CoCl2 中,用來模擬缺氧的環境。結果發現到斑馬魚視網膜血管有明顯異常增生的情形,接著我們注射特殊染劑進斑馬魚胚胎,發現到染劑因為這些不正常增生之血管而有滲漏的狀況。從 Q-RT-PCR 發現到vegfaa和vegfr2 表現上升至 2.00 及 3.74 倍,顯示利用化學方式模擬缺氧確實可以引發 VEGF 訊號的傳遞,進而形成不正常血管新生。於是我們利用 SU5416、bevacizumab 和 ranibizumab 已知可抗血管新生之藥物發現,因缺氧所造成的過渡生長的血管可以有效被抑制,甚至其染料滲漏的情形有顯著的改善。結果得知利用斑馬魚胚胎建立早產兒視網膜病變擁有很好的優勢,與臨床上所觀察得現象相當一致,同時這樣的動物疾病模式未來也可用於藥物篩選及開發。

第二部分: 
NF-Y 是 CCAAT 主要的結合轉錄因子,由 NF-YA、NF-YB、NF-YC 三種次單元所組成。本研究利用斑馬魚作為模式物種,來探討 nfyc 是否會影響眼睛的發育。nfyc 在斑馬魚存在有兩種型態:nfyc-tv1 (336 個胺基酸) 及 nfyc-tv2  (360 個胺基酸);其中又以nfyc-tv1與其他物種序列最相似。接著顯微注射反股寡核苷酸 (morpholino, MO) 抑制內生性 nfyc 的蛋白轉譯後,發現抑制 nfyc 會造成斑馬魚眼睛明顯縮小且比例會隨著注射濃度增加而上升。注射pax6a MO 之斑馬魚外觀與注射nfyc MO 相似,另外進行 pax6a 抗體染色,發現抑制 nfyc 會影響其視網膜神經節細胞分化。進一步以 pax6a 的探針進行原位雜合反應,發現抑制 nfyc 後的早期表現無明顯改變,晚期訊號看似些微下降或許是太多死細胞造成。至於利用西方點墨法發現抑制nfyc會造成 pax6a蛋白質表現上升。而抑制 nfyc 後進行BrdU 染色及 TUNEL assay,結果顯示抑制 nfyc 會導致眼睛細胞增生數量減少,且在腦部及眼睛有細胞凋亡的現象。綜合以上實驗結果,推測 nfyc 可能透過影響斑馬魚視神經的發育,進而對視網膜的分化造成影響。
英文摘要
Part I:
Retinopathy of prematurity (ROP), formerly known as retrolental fibroplasia, is a leading cause of infantile blindness worldwide. In this disease, the failure of central retinal vessels reaching to the retinal periphery creates a non-perfused peripheral retina that results in retinal hypoxia, neovascularization, haemorrhage, fibrosis and loss of vision. We established a ROP model using a green fluorescent vascular endothelium zebrafish transgenic line (fli-EGFP) treated with cobalt chloride (CoCl2, a hypoxia-inducing agent) and followed by GS4012 (a vascular endothelial growth factor inducer) from 24 hpf, and we found that numbers of vascular branches and sproutings were significantly increased in the central retinal vascular trunks 3-5 days after treatment. We also created an angiography method using tetramethyl rhodamine-dextran which displayed severe vascular leakage through the vessel wall into the surrounding retinal tissue. Furthermore, real-time quantitative PCR revealed expression of vegfaa and vegfr2 to increase by 2.00 and 3.74 folds in comparison with the corresponding control group, indicating increased VEGF signalling in hypoxic condition. Our model showed a rapid growth of neovascularization from the retinal vessels that resemble the clinical features of ROP. Specifically, according to the effect of SU5416 bevacizumab and ranibizumab, we demonstrated that hypoxia-induced angiogenesis in the retina also requires the effects of VEGF. Our findings also provide a simple and highly reproducible, clinically relevant ROP model using zebrafish embryos, which may be served as a platform for understanding the mechanisms of ROP development and progression, and provide an efficient way to screen candidate drugs in the future.

Part II:
Nuclear factor-Y (NF-Y) is a CCAAT-box-binding transcription factor which is composed of three subunits (NF-YA, NF-YB, and NF-YC). In this study, we used zebrafish as an animal model to study their roles during early developmental stage. While endogenous nfyc was knocked down by antisense morpholino of nfyc (nfyc-MO), a reduction in eye size was observed in nfyc-MO-injected embryos compared with wild-type embryos. Immunostaining with neuron-specific antibodies (Zn8 and Pax6a) revealed that nfyc-MO affected nfyc expression in ganglion cell layer, suggesting that nfyc is associated with the development of retinal neurons. Based on immunostaining with BrdU, a decrease in proliferating cells was found in eyes of nfyc-MO-injected embryos. TUNEL assay results revealed the apoptosis in head and eyes of nfyc-MO-injected embryos. Our in situ hybridization data didn’t showed significant differences in pax6a pattern, but protein level demonstrated that reverse correlation between NFYC and Pax6a. Taken together, our results suggested that zebrafish nfyc may affect the development of retinal neurons, and further affect zebrafish eye development.
第三語言摘要
論文目次
Abstract (Chinese) Ⅰ
Abstract (English) Ⅲ
Content	Ⅵ
Chart list Ⅶ

Part I
Introduction 2
Materials 8
Methods	9
Results	15
Discussion 21
Part II
Introduction 27
Materials 37
Methods	37
Results	45
Discussion 51
Reference 81

論文名稱:第一部分:利用斑馬魚研究早產兒視網膜病變
        第二部分:細胞核因子C次單元對斑馬魚眼睛之重要性

第二部分:細胞核因子C次單元對斑馬魚眼睛之
5 發育之重要性
	頁數:108
校系(所)組別:淡江大學	    化學	研究所
畢業時間及提要別:  101  學年度第  2  學期   碩士	學位論文提要
研究生:張櫂杬	指導教授:陳曜鴻 博士	
論文提要內容:  





第一部分: 
早產兒視網膜病變是造成嬰兒眼睛失明主要原因之一,因局部缺氧所引發過度的血管新生,當血管侵犯到玻璃體時,會導致滲漏、出血、視網膜剝離等症狀。到目前為止,其治癒後情形改善仍有限,其中主要原因在於缺乏合適的疾病動物模式來加以研究和探討。本研究將血管發綠螢光基因轉殖斑馬魚 (fli1-EGFP) 浸泡於 CoCl2 中,用來模擬缺氧的環境。結果發現到斑馬魚視網膜血管有明顯異常增生的情形,接著我們注射特殊染劑進斑馬魚胚胎,發現到染劑因為這些不正常增生之血管而有滲漏的狀況。從 Q-RT-PCR 發現到vegfaa和vegfr2 表現上升至 2.00 及 3.74 倍,顯示利用化學方式模擬缺氧確實可以引發 VEGF 訊號的傳遞,進而形成不正常血管新生。於是我們利用 SU5416、bevacizumab 和 ranibizumab 已知可抗血管新生之藥物發現,因缺氧所造成的過渡生長的血管可以有效被抑制,甚至其染料滲漏的情形有顯著的改善。結果得知利用斑馬魚胚胎建立早產兒視網膜病變擁有很好的優勢,與臨床上所觀察得現象相當一致,同時這樣的動物疾病模式未來也可用於藥物篩選及開發。

第二部分: 
NF-Y 是 CCAAT 主要的結合轉錄因子,由 NF-YA、NF-YB、NF-YC 三種次單元所組成。本研究利用斑馬魚作為模式物種,來探討 nfyc 是否會影響眼睛的發育。nfyc 在斑馬魚存在有兩種型態:nfyc-tv1 (336 個胺基酸) 及 nfyc-tv2  (360 個胺基酸);其中又以nfyc-tv1與其他物種序列最相似。接著顯微注射反股寡核苷酸 (morpholino, MO) 抑制內生性 nfyc 的蛋白轉譯後,發現抑制 nfyc 會造成斑馬魚眼睛明顯縮小且比例會隨著注射濃度增加而上升。注射pax6a MO 之斑馬魚外觀與注射nfyc MO 相似,另外進行 pax6a 抗體染色,發現抑制 nfyc 會影響其視網膜神經節細胞分化。進一步以 pax6a 的探針進行原位雜合反應,發現抑制 nfyc 後的早期表現無明顯改變,晚期訊號看似些微下降或許是太多死細胞造成。至於利用西方點墨法發現抑制nfyc會造成 pax6a蛋白質表現上升。而抑制 nfyc 後進行BrdU 染色及 TUNEL assay,結果顯示抑制 nfyc 會導致眼睛細胞增生數量減少,且在腦部及眼睛有細胞凋亡的現象。綜合以上實驗結果,推測 nfyc 可能透過影響斑馬魚視神經的發育,進而對視網膜的分化造成影響。

關鍵字:斑馬魚、早產兒視網膜病變、缺氧、nfyc、眼睛







表單編號:ATRX-Q03-001-FM030-01
Title of Thesis:                                 Total pages:108
Part Ι: Hypoxia-Induced Retinal Neovascularization in Zebrafish Embryos: an Efficient Model of Retinopathy of Prematurity
Part II: Importance of Zebrafish CCAAT Box Binding Transcription Factor (NF-Y) C Subunit During Eye Development

Key word:
zebrafish, Retinopathy of Prematurity, hypoxia, NF-YC , eye 

Name of Institute: 
Graduate Institute of Chemistry, Tamkang University 

Graduate date: June, 2013            Degree conferred: M.S.

Name of student:   Chang, Chao-Yuan    Advisor:  Chen, Yau-Hung
                  張櫂杬                        陳曜鴻     
Abstract:
Part I:
Retinopathy of prematurity (ROP), formerly known as retrolental fibroplasia, is a leading cause of infantile blindness worldwide. In this disease, the failure of central retinal vessels reaching to the retinal periphery creates a non-perfused peripheral retina that results in retinal hypoxia, neovascularization, haemorrhage, fibrosis and loss of vision. We established a ROP model using a green fluorescent vascular endothelium zebrafish transgenic line (fli-EGFP) treated with cobalt chloride (CoCl2, a hypoxia-inducing agent) and followed by GS4012 (a vascular endothelial growth factor inducer) from 24 hpf, and we found that numbers of vascular branches and sproutings were significantly increased in the central retinal vascular trunks 3-5 days after treatment. We also created an angiography method using tetramethyl rhodamine-dextran which displayed severe vascular leakage through the vessel wall into the surrounding retinal tissue. Furthermore, real-time quantitative PCR revealed expression of vegfaa and vegfr2 to increase by 2.00 and 3.74 folds in comparison with the corresponding control group, indicating increased VEGF signalling in hypoxic condition. Our model showed a rapid growth of neovascularization from the retinal vessels that resemble the clinical features of ROP. Specifically, according to the effect of SU5416 bevacizumab and ranibizumab, we demonstrated that hypoxia-induced angiogenesis in the retina also requires the effects of VEGF. Our findings also provide a simple and highly reproducible, clinically relevant ROP model using zebrafish embryos, which may be served as a platform for understanding the mechanisms of ROP development and progression, and provide an efficient way to screen candidate drugs in the future.

Part II:
Nuclear factor-Y (NF-Y) is a CCAAT-box-binding transcription factor which is composed of three subunits (NF-YA, NF-YB, and NF-YC). In this study, we used zebrafish as an animal model to study their roles during early developmental stage. While endogenous nfyc was knocked down by antisense morpholino of nfyc (nfyc-MO), a reduction in eye size was observed in nfyc-MO-injected embryos compared with wild-type embryos. Immunostaining with neuron-specific antibodies (Zn8 and Pax6a) revealed that nfyc-MO affected nfyc expression in ganglion cell layer, suggesting that nfyc is associated with the development of retinal neurons. Based on immunostaining with BrdU, a decrease in proliferating cells was found in eyes of nfyc-MO-injected embryos. TUNEL assay results revealed the apoptosis in head and eyes of nfyc-MO-injected embryos. Our in situ hybridization data didn’t showed significant differences in pax6a pattern, but protein level demonstrated that reverse correlation between NFYC and Pax6a. Taken together, our results suggested that zebrafish nfyc may affect the development of retinal neurons, and further affect zebrafish eye development.
























表單編號:ATRX-Q03-001-FM031-01
Content
Abstract (Chinese)	Ⅰ
Abstract (English)	Ⅲ
Content	Ⅵ
Chart list	Ⅶ

Part I
Introduction	2
Materials	8
Methods	9
Results	15
Discussion	21
Part II
Introduction	27
Materials	37
Methods	37
Results	45
Discussion	51
Reference	81



Chart list
Fig. 1. Comparative five days post-fertilization dose-survival curves of zebrafish	55
Fig. 2 CoCl2 induced ectopic SIV in both Tg(fli1:eGFP) and WT zebrafish embryos.	56
Fig. 3 CoCl2 treated zebrafish show an increased vegfaa and vegfr2 mRNA expression.	57
Fig. 4 Confocal analysis of mock Tg(fli1a:efgp) zebrafish taken at 40x objective with LSM 780	58
Fig. 5 Confocal comparison of control wildtype with CoCl2 and GS4012 with a two day time-lapse	59
Fig. 6 Fluorescent dye leakage analysis of 3dpf wildtype and treated zebrafish using 10,000MW Dextran.	60
Fig. 7 Fluorescent dye leakage analysis of 5dpf wildtype and treated zebrafish using 10,000MW Dextran	61
Fig. 8 Fluorescent dye leakage analysis of 5dpf wildtype and treated zebrafish using 2,000,000MW tetramethylrhodamine.	62
Fig. 9 Confocal analysis of zebrafish treated with 5mM CoCl2 and 0.5μM SU5416	63
Fig. 10 Fluorescent TAMRA dye injections of 10mM CoCl2 and 0.5μM SU5416 co-treated zebrafish at 3dpf (left) and 5dpf (right).	64
Fig. 11 Fluorescent TAMRA dye injections in different condition	65
Fig. 12 Angiogenesis and the Role of CoCl2 and VEGF	66
Fig. 13 Alignment of NF-YC amino acid sequences of 6 organisms	67
Fig. 14 Phylogenetic tree of evolutionary relationship based on alignments of NF-YC	68
Fig. 15 Sequence of ATG MO and the levels of phenotypes.	69
Fig. 16 Both NF-YC and Pax6a have each transcription binding site on the promoter region.	70
Fig. 17 Knocking down nf-yc and pax6a showed similar phenotypes.	71
Fig. 18 Antibody staining of both NF-YC and Zn8 in WT embryo	72
Fig. 19 Antibody staining of both Pax6a and Zn8 in WT embryo	73
Fig. 20 Antibody staining of both NF-YC and Zn8 in WT embryo and nf-yc-morphants.	74
Fig. 21 Antibody staining of both Pax6a and Zn8 in WT embyo and nf-yc-morphants	75
Fig. 22 mRNA expression of pax6a in WT embryos and nf-yc-morphants.	76
Fig. 23 mRNA expression of nf-yc in pax6a-morphants showed significant increased.	77
Fig. 24 mRNA expression of six3b in nf-yc-morphants didn’t show significant changes.	78
Fig. 25 Western blotting analysis of the protein extracted from WT embryos and nf-yc-morphants using antibody against Pax6a protein	79
Fig. 26 Knocking NF-YC down results in cell apoptosis in the eye	80
Fig. 27 Knocking NF-YC down results in cell proliferation being inhibited	81



Table 1 qPCR primer sequences	82
Table 2 Amino acid sequences similarity (%)	83
Table 3 Dose response of phenotypes caused by nf-yc-MO injections	84
Table 4 Dose response of different degree of phenotypes caused by nf-yc-MO injections	85
Table 5 Dose response of phenotypes resued co-injection of nf-yc-MO and capped zebrafish nf-yc mRNA	86
參考文獻
Adamis, A. P., Patel, M., Altaweel, M., Bressler, N. M., Cunningham, J. E. T., Davis, M. D., Goldbaum, M., Gonzales, C., Guyer, D. R., Barrett, K., and Macugen Diabetic Retinopathy Study, G. (2006). Changes in Retinal Neovascularization after Pegaptanib (Macugen) Therapy in Diabetic Individuals. Ophthalmology 113, 23-28.

Alon, T., Hemo, I., Itin, A., Pe'er, J., Stone, J., and Keshet, E. (1995). Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature medicine 1, 1024-1028.

Alvarez, Y., Kennedy, B. N., Cederlund, M. L., Cottell, D. C., Bill, B. R., Ekker, S. C., Torres-Vazquez, J., Weinstein, B. M., Hyde, D. R., and Vihtelic, T. S. (2007). Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC developmental biology 7, 114-114.

Avanesov, A., and Malicki, J. (2004). Approaches to study neurogenesis in the zebrafish retina. Methods in cell biology 76, 333-384.

Baldessari, D., and Mione, M. (2008). How to create the vascular tree?(Latest) help from the zebrafish. Pharmacology & therapeutics 118, 206-230.

Barnett, J. M., Yanni, S. E., and Penn, J. S. (2010). The development of the rat model of retinopathy of prematurity. Documenta ophthalmologica 120, 3-12.

Benatti, P., Basile, V., Merico, D., Fantoni, L. I., Tagliafico, E., and Imbriano, C. (2008). A balance between NF-Y and p53 governs the pro-and anti-apoptotic transcriptional response. Nucleic acids research 36, 1415-1428.

Benatti, P., Dolfini, D., Vigano, A., Ravo, M., Weisz, A., and Imbriano, C. (2011). Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Research 39, 5356-5368.

Benfante, R., ANTONINI, R., Vaccari, M., Flora, A., Chen, F., Clementi, F., and Fornasari, D. (2005). The expression of the human neuronal alpha3 Na+, K+-ATPase subunit gene is regulated by the activity of the Sp1 and NF-Y transcription factors. Biochem J 386, 63-72.

BERNADT, C. T., NOWLING, T., WIEBE, M. S., and RIZZINO, A. (2005). NF-Y behaves as a bifunctional transcription factor that can stimulate or repress the FGF-4 promoter in an enhancer-dependent manner. Gene expression 12, 193-212.

Berry, M., Grosveld, F., and Dillon, N. (1992). A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature 358, 499-502.

Bhattacharya, A., Deng, J. M., Zhang, Z., Behringer, R., de Crombrugghe, B., and Maity, S. N. (2003). The B subunit of the CCAAT box binding transcription factor complex (CBF/NF-Y) is essential for early mouse development and cell proliferation. Cancer research 63, 8167-8172.

Bill, B. R., Petzold, A. M., Clark, K. J., Schimmenti, L. A., and Ekker, S. C. (2009). A primer for morpholino use in zebrafish. Zebrafish 6, 69-77.

Bucher, P. (1990). Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. Journal of molecular biology 212, 563-578.

Cao, R., Jensen, L. D. E., Soll, I., Hauptmann, G., Cao, Y., Sodertorns, h., and Institutionen for, l. (2008). Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PloS one 3, e2748.

Ceribelli, M., Benatti, P., Imbriano, C., and Mantovani, R. (2009). NF-YC complexity is generated by dual promoters and alternative splicing. Journal of Biological Chemistry 284, 34189-34200.

Chan-Ling, T., Tout, S., Hollander, H., and Stone, J. (1992). Vascular changes and their mechanisms in the feline model of retinopathy of prematurity. Investigative ophthalmology & visual science 33, 2128-2147.

Chawla, D., Agarwal, R., Deorari, A., Paul, V. K., Chandra, P., and Azad, R. V. (2012). Retinopathy of prematurity. The Indian Journal of Pediatrics 79, 501-509.

Chen, J., and Smith, L. E. (2007). Retinopathy of prematurity. Angiogenesis 10, 133-140.

Chen, Y.-H., Lin, Y.-T., and Lee, G.-H. (2009). Novel and unexpected functions of zebrafish CCAAT box binding transcription factor (NF-Y) B subunit during cartilages development. Bone 44, 777-784.

Chen, Y. H., Wang, Y. H., Chang, M. Y., Lin, C. Y., Weng, C. W., Westerfield, M., and Tsai, H. J. (2007). Multiple upstream modules regulate zebrafish myf5 expression. BMC developmental biology 7, 1.

Chow, R. L., and Lang, R. A. (2001). Early eye development in vertebrates. Annual review of cell and developmental biology 17, 255-296.

Corey, D. R., and Abrams, J. M. (2001). Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol 2, 1015.

Coustry, F., Maity, S. N., Sinha, S., and de Crombrugghe, B. (1996). The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit. Journal of Biological Chemistry 271, 14485-14491.

Coutinho, P., Pavlou, S., Bhatia, S., Chalmers, K. J., Kleinjan, D. A., and van Heyningen, V. (2011). Discovery and assessment of conserved Pax6 target genes and enhancers. Genome research 21, 1349-1359.

D., M. J., and L., Y. Y. (2008). - Using Morpholinos to control gene expression. Curr Protoc Mol Biol 26.

Driever, W., Stemple, D., Schier, A., and Solnica-Krezel, L. (1994). Zebrafish: genetic tools for studying vertebrate development. Trends in Genetics 10, 152-159.

Dyer, M. A. (2003). Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. CELL CYCLE-LANDES BIOSCIENCE- 2, 350-357.

Elkon, R., Linhart, C., Sharan, R., Shamir, R., and Shiloh, Y. (2003). Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome research 13, 773-780.

Ellis, L. M., Takahashi, Y., Liu, W., and Shaheen, R. M. (2000). Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. The oncologist 5 Suppl 1, 11-15.

Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O'Rourke, J., Mole, D. R., Mukherji, M., Metzen, E., Wilson, M. I., and Dhanda, A. (2001). < i> C. elegans</i> EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell 107, 43-54.

Ferrara, N. (2005). The role of VEGF in the regulation of physiological and pathological angiogenesis. In,  (Basel: Birkhauser Basel), pp. 209-231.

Flynn, J. T. (1992). The premature retina: a model for the in vivo study of molecular genetics? Eye (London, England) 6 ( Pt 2), 161-165.

Foster, A., and Gilbert, C. (1992). Epidemiology of childhood blindness. Eye (London, England) 6 ( Pt 2), 173-176.

Gariano, R. F., and Gardner, T. W. (2005). Retinal angiogenesis in development and disease. Nature (London) 438, 960.

George, N. S., Edward, F., and Catherine, E. W. (2000). Zebrafish angiogenesis: A new model for drug screening. Angiogenesis 3, 353.

GNESUTTA, N. B., and MANTOVANI, R. (2012). The NF-Y/p53 liaison: Well beyond repression. Biochimica et biophysica acta Reviews on cancer 1825, 131-139.

Goessling, W., North, T. E., and Zon, L. I. (2007). Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nature methods 4, 551-553.

Goldberg, M. A., Dunning, S. P., and Bunn, H. F. (1988). Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412-1415.

Good, W. V., Hardy, R. J., Dobson, V., Palmer, E. A., Phelps, D. L., Quintos, M., Tung, B., and Early Treatment for Retinopathy of Prematurity Cooperative, G. (2005). The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics 116, 15-23.

Gross, J. M., Perkins, B. D., Amsterdam, A., Egana, A., Darland, T., Matsui, J. I., Sciascia, S., Hopkins, N., and Dowling, J. E. (2005). Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170, 245-261.

Hara, A., Niwa, M., Aoki, H., Kumada, M., Kunisada, T., Oyama, T., Yamamoto, T., Kozawa, O., and Mori, H. (2006). A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride. Brain research 1109, 192-200.

Hill, A. J., Teraoka, H., Heideman, W., and Peterson, R. E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences 86, 6-19.

Hitchcock, P. F., Macdonald, R. E., VanDeRyt, J. T., and Wilson, S. W. (1996). Antibodies against Pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish.

Johnston, M., Noden, D., Hazelton, R., Coulombre, J., and Coulombre, A. (1979). Origins of avian ocular and periocular tissues. Experimental eye research 29, 27-43.

Jorge, R., Costa, R. A., Calucci, D., Cintra, L. P., and Scott, I. U. (2006). Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study). Retina (Philadelphia, Pa) 26, 1006-1013.

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental dynamics 203, 253-310.

Kushner, B. J., Essner, D., Cohen, I. J., and Flynn, J. T. (1977). Retrolental Fibroplasia: II. Pathologic Correlation. Archives of Ophthalmology 95, 29-38.

Lele, Z., and Krone, P. (1996). The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnology advances 14, 57-72.

Levine, E. M., and Green, E. S. (2004). Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Paper presented at: Seminars in cell & developmental biology (Elsevier).

Li, Q., Herrler, M., Landsberger, N., Kaludov, N., Ogryzko, V. V., Nakatani, Y., and Wolffe, A. P. (1998). Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. The EMBO journal 17, 6300-6315.

Li, W. W., Hutnik, M., and Gehr, G. (2008). Antiangiogenesis in haematological malignancies. British journal of haematology 143, 622-622.

Li, X.-Y., Mantovani, R., Hooft van Huijsduijnen, R., Andre, I., Benoist, C., and Mathis, D. (1992a). Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic acids research 20, 1087-1091.

Li, X., van Huijsduijnen, R. H., Mantovani, R., Benoist, C., and Mathis, D. (1992b). Intron-exon organization of the NF-Y genes. Tissue-specific splicing modifies an activation domain. Journal of Biological Chemistry 267, 8984-8990.

Liberati, C., di Silvio, A., Ottolenghi, S., and Mantovani, R. (1999). NF-Y binding to twin CCAAT boxes: role of Q-rich domains and histone fold helices. Journal of molecular biology 285, 1441-1455.

Lieschke, G. J., and Currie, P. D. (2007). Animal models of human disease: zebrafish swim into view. Nature reviews Genetics 8, 353-367.

Liu, X.-H., Kirschenbaum, A., Yao, S., Stearns, M. E., Holland, J. F., Claffey, K., and Levine, A. C. (1999). Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line. Clinical & experimental metastasis 17, 687-694.

Los, M., Roodhart, J. M., and Voest, E. E. (2007). Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. The Oncologist 12, 443-450.

Luo, W., Williams, J., Smallwood, P. M., Touchman, J. W., Roman, L. M., and Nathans, J. (2004). Proximal and distal sequences control UV cone pigment gene expression in transgenic zebrafish. Journal of Biological Chemistry 279, 19286-19293.

Major, R. J., and Poss, K. D. (2008). Zebrafish heart regeneration as a model for cardiac tissue repair. Drug Discovery Today: Disease Models 4, 219-225.

Malicki, J. (2000). Genetic analysis of eye development in zebrafish. Vertebrate Eye Development, 257-282.

Malicki, J., Neuhauss, S., Schier, A. F., Solnica-Krezel, L., Stemple, D. L., Stainier, D., Abdelilah, S., Zwartkruis, F., Rangini, Z., and Driever, W. (1996). Mutations affecting development of the zebrafish retina. Development 123, 263-273.

Malicki, J. J., Pujic, Z., Thisse, C., Thisse, B., and Wei, X. (2002). Forward and reverse genetic approaches to the analysis of eye development in zebrafish. Vision research 42, 527-533.

Mantovani, R. (1999). The molecular biology of the CCAAT-binding factor NF-Y. Gene 239, 15-27.

Martin, D., Maguire, M., Ying, G., Grunwald, J., Fine, S., and Jaffe, G. (2011). Ranibizumab and bevacizumab for neovascular age-related macular degeneration. The New England journal of medicine 364, 1897.

Marziali, G., Perrotti, E., Ilari, R., Testa, U., Coccia, E. M., and Battistini, A. (1997). Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiation. Molecular and cellular biology 17, 1387-1395.

Matsumoto, M., Makino, Y., Tanaka, T., Tanaka, H., Ishizaka, N., Noiri, E., Fujita, T., and Nangaku, M. (2003). Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. Journal of the American Society of Nephrology 14, 1825-1832.

McGrath, P. (2012). Zebrafish : methods for assessing drug safety and toxicity: Hoboken, N.J. : John Wiley & Sons, c2012).

McNabb, D. S., Xing, Y., and Guarente, L. (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes & development 9, 47-58.

Minchenko, A., Bauer, T., Salceda, S., and Caro, J. (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Laboratory investigation; a journal of technical methods and pathology 71, 374.

Ozaki, H., Seo, M.-S., Ozaki, K., Yamada, H., Yamada, E., Okamoto, N., Hofmann, F., Wood, J. M., and Campochiaro, P. A. (2000). Blockade of Vascular Endothelial Cell Growth Factor Receptor Signaling Is Sufficient to Completely Prevent Retinal Neovascularization. American Journal of Pathology 156, 697-707.

Peng, Y., and Jahroudi, N. (2003). The NFY transcription factor inhibits von Willebrand factor promoter activation in non-endothelial cells through recruitment of histone deacetylases. Journal of Biological Chemistry 278, 8385-8394.

Pugh, C. W., and Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine 9, 677-684.

Robu, M. E., Larson, J. D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S. A., and Ekker, S. C. (2007). p53 activation by knockdown technologies. PLoS genetics 3, e78.
Ronchi, A., Bellorini, M., Mongelli, N., and Mantovani, R. (1995). CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA. Nucleic acids research 23, 4565-4572.

Ronchi, A., Berry, M., Raguz, S., Imam, A., Yannoutsos, N., Ottolenghi, S., Grosveld, F., and Dillon, N. (1996). Role of the duplicated CCAAT box region in gamma-globin gene regulation and hereditary persistence of fetal haemoglobin. The EMBO journal 15, 143.

Roy, B., and Lee, A. S. (1995). Transduction of calcium stress through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp78/BiP promoter. Molecular and cellular biology 15, 2263-2274.

Sinha, S., Maity, S. N., Lu, J., and de Crombrugghe, B. (1995). Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proceedings of the National Academy of Sciences 92, 1624-1628.

Smith, L. E., Wesolowski, E., McLellan, A., Kostyk, S. K., D'Amato, R., Sullivan, R., and D'Amore, P. A. (1994). Oxygen-induced retinopathy in the mouse. Investigative Ophthalmology & Visual Science 35, 101.

Smith, L. E. H. (2002). Pathogenesis of retinopathy of prematurity. Acta Padiatrica 91, 26-28.

Soules, K. A., and Link, B. A. (2005). Morphogenesis of the anterior segment in the zebrafish eye. BMC developmental biology 5, 12.

Sukbuntherng, J., Cropp, G., Hannah, A., Wagner, G. S., Shawver, L. K., and Antonian, L. (2001). Pharmacokinetics and interspecies scaling of a novel VEGF receptor inhibitor, SU5416. The Journal of pharmacy and pharmacology 53, 1629-1636.

Tabach, Y., Milyavsky, M., Shats, I., Brosh, R., Zuk, O., Yitzhaky, A., Mantovani, R., Domany, E., Rotter, V., and Pilpel, Y. (2005). The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Molecular systems biology 1.

The Committee for the Classification of Retinopathy of, P., and The Committee for the Classification of Retinopathy of, P. (1984). An International Classification of Retinopathy of Prematurity. Archives of Ophthalmology 102, 1130-1134.

Tsay, H.-J., Wang, Y.-H., Chen, W.-L., Huang, M.-Y., and Chen, Y.-H. (2007). Treatment with sodium benzoate leads to malformation of zebrafish larvae. Neurotoxicology and teratology 29, 562-569.

Uusitalo‐JARvinen, H. (2012). Oxygen induced retinopathy (OIR) mouse model. Acta Ophthalmologica 90, 0-0.

van Rooijen, E., Voest, E. E., Logister, I., Bussmann, J., Korving, J., van Eeden, F. J., Giles, R. H., and Schulte-Merker, S. (2010). von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Disease models & mechanisms 3, 343-353.

Walther, C., and Gruss, P. (1991). Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435-1449.

Wang, Y. H., Li, C. K., Lee, G. H., Tsay, H. J., Tsai, H. J., and Chen, Y. H. (2008). Inactivation of zebrafish mrf4 leads to myofibril misalignment and motor axon growth disorganization. Developmental Dynamics 237, 1043-1050.

Weinstein, B. M. (2002). Plumbing the mysteries of vascular development using the zebrafish. Seminars in Cell & Developmental Biology 13, 515-522.

Westfield, M. (1995). The zebrafish book. Univ of Oregon, Eugene, OR.

Wood, J. L., and Russo, A. F. (2001). Autoregulation of cell-specific MAP kinase control of the tryptophan hydroxylase promoter. Journal of Biological Chemistry 276, 21262-21271.

Yanni, S. E., and McCollum, G. W. (2008). Rodent Models of Oxygen-Induced Retinopathy. In,  (Dordrecht: Springer Netherlands), pp. 57-80.

Yoshioka, Y., Suyari, O., and Yamaguchi, M. (2008). Transcription factor NF‐Y is involved in regulation of the JNK pathway during Drosophila thorax development. Genes to Cells 13, 117-130.

Yuan, Y., Hilliard, G., Ferguson, T., and Millhorn, D. E. (2003). Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. The Journal of biological chemistry 278, 15911-15916.

Zhu, Z., Shendure, J., and Church, G. M. (2005). Discovering functional transcription-factor combinations in the human cell cycle. Genome research 15, 848-855.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信