§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2207201015481200
DOI 10.6846/TKU.2010.00742
論文名稱(中文) 在無線多頻道隨意網路下考量電量控制情況設計一分散式具區域感知之頻道分配媒體存取控制協定以提昇網路效能
論文名稱(英文) SMART: A Distributed Spatial-aware Multi-channel Assignment with Radio Transmission Power Control MAC Protocol for Multi-channel Wireless Ad Hoc Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 許博捷
研究生(英文) Po-Chieh Hsu
學號 697410917
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2010-06-18
論文頁數 44頁
口試委員 指導教授 - 林其誼(chiyilin@mail.tku.edu.tw)
委員 - 廖文華
委員 - 王三元
委員 - 林其誼(chiyilin@mail.tku.edu.tw)
委員 - 石貴平(kpshih@mail.tku.edu.tw)
關鍵字(中) IEEE 802.11
隨意無線網路
電量控制
頻道配置
多重頻道
關鍵字(英) IEEE 802.11
Ad Hoc Networks
Power Control
Channel Assignment
Multi-Channel MAC Protocols
第三語言關鍵字
學科別分類
中文摘要
在網路普及使用的情況下,出現無線頻寬不足的問題。節點傳輸速率降低的同時,也反應出在有限的頻寬上,網路產生壅塞的情形。因此如何有效使用頻寬已經成為許多學者研究的目標。在多種可增進網路效能的技術中,其中的兩種方式分別是使用多重頻道(Multi-Channel)和進行電量控制(Power Control)。本篇論文希望藉由合併此兩種技術,利用空間的切割(多重頻道)和同一空間內並行傳輸(電量控制),以減少壅塞的情況並增進網路效能。在頻道挑選方面,傳輸對可能面臨,當進行電量控制後,有多個頻道可以使用時,考量傳輸對間相對位置的干擾情況,作為頻道挑選的依據。在論文的最後,透過實驗模擬的結果得知,當此兩種技術合併使用時且透過論文內的頻道挑選機制,可以大大提升網路效能。
英文摘要
The bandwidth resource is a precious resource in wireless ad hoc networks. Many researches have been proposed to increase the utilization of bandwidth by using multi-channel mechanism or power control mechanism. In order to enhance the bandwidth utilization, power control and multi-channel mechanisms are both used in this paper. However, the different power should be used to transmit data on different channels due to the different network environments on each channel. In such a case, how to select a suitable channel to mitigate interference is an important issue. Therefore, this paper proposes a MAC protocol, named SMART MAC protocol, which selects a suitable channel for data transmission. The simulation results show that the proposed protocol can provide better network throughput.
第三語言摘要
論文目次
Table of Contents
第1章	緒論	- 1 -
1.1	前言	- 1 -
1.2	研究動機與目標	- 1 -
1.3	研究方法	- 2 -
1.4	論文架構	- 3 -
第2章	IEEE 802.11背景與相關論文之研究	- 4 -
2.1	IEEE 802.11 Standard	- 4 -
2.1.1	作法	- 4 -
2.1.2	優缺點	- 5 -
2.1.3	結論	- 5 -
2.2	Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver (MMAC)	- 6 -
2.2.1	作法	- 6 -
2.2.2	優缺點	- 9 -
2.2.3	結論	- 9 -
2.3	POWMAC: A Single-Channel Power-Control Protocol for Throughput Enhancement in Wireless Ad Hoc Networks	- 10 -
2.3.1	作法	- 10 -
2.3.2	優缺點	- 12 -
2.3.3	結論	- 12 -
2.4	A Multi-channel MAC Protocol with Power Control for Multi-hop Mobile Ad Hoc Networks (DCA-PC)	- 13 -
2.4.1	作法	- 13 -
2.4.2	優缺點	- 13 -
2.4.3	結論	- 14 -
第3章	預備知識	- 15 -
第4章	SMART: A Distributed Spatial-aware Multi-channel Assignment with Radio Transmission Power Control MAC Protocol for Multi-channel Wireless Ad Hoc Networks	- 17 -
4.1	SMART MAC Protocol	- 18 -
4.1.1	Network Model	- 18 -
4.1.2	Scheduling Interval	- 20 -
4.1.3	Power Control Strategy	- 21 -
4.1.4	Reduce Channel Wastage	- 24 -
4.1.5	Avoid Excessive Interference	- 25 -
4.1.6	Increase Interference Tolerance	- 26 -
4.1.7	Channel Assignment Policy	- 27 -
第5章	實驗	- 29 -
5.1	比較分析	- 29 -
第6章	結論	- 35 -
Reference	- 36 -
附錄-英文論文	- 39 -

List of Figures
Fig. 1.	電量調整對於環境影響之實驗場景。	- 2 -
Fig. 2.	電量調整對於環境影響。	- 3 -
Fig. 3.	802.11 DCF Mode[11] 。	- 5 -
Fig. 4.	802.11 Power Saving Mode[2] 。	- 6 -
Fig. 5.	MMAC通訊協定架構[2] 。	- 7 -
Fig. 6.	在多重頻道上遺失控制封包。	- 8 -
Fig. 7.	POWMAC通訊協定基本架構。	- 11 -
Fig. 8.	Data Collision and ACK Collision 示意圖。	- 11 -
Fig. 9.	解決遺漏封包的問題。	- 19 -
Fig. 10.	電量控制後產生隱藏節點問題。	- 19 -
Fig. 11.	TPCS Interference Model。	- 21 -
Fig. 12.	Channel Wastage。	- 25 -
Fig. 13.	造成在節點A過多的干擾。	- 26 -
Fig. 14.	過多的 Idle Interval。	- 26 -
Fig. 15.	Nest的使用目的。	- 28 -
Fig. 16.	Active Transmission Stations。	- 31 -
Fig. 17.	封包成功接收的比率。	- 32 -
Fig. 18.	Aggregate Network Throughput。	- 33 -
Fig. 19.	Different Packets Arrival Rate。	- 34 -

List of Tables
Table 1. 實驗相關參數。	- 29 -
參考文獻
[1]	S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A New Multi-Channel MAC Protocol with On-Demand Channel Assignment for Mobile Ad Hoc Networks.” in Proceedings of Int’I Symposium on Parallel Architectures. Algorithms and Networks, pp. 232-237, 2000.
[2]	J. So and N.-H. Vaidya, “Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using a Single Transceiver,” in Proceedings of the ACM Symposium on Mobile Ad Hoc Networking And Computing (MOBIHOC 2004), pp. 222–233, 2004.
[3]	K.-P. Shih, Y.-D. Chen, and C.-C. Chang, “Adaptive Range-Based Power Control for Collision Avoidance in Wireless Ad Hoc Networks,” in Proceedings of the IEEE International Conference on Communications (ICC 2007), Glasgow, Scotland, UK, Jun. 24-27, 2007.
[4]	A. Muqattash and M. Krunz, “POWMAC: A Single Channel Power Control Protocol for Throughput Enhancement in Wireless Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 5, pp. 1067-1084, May, 2005.
[5]	S.-L. Wu, Y.-C. Tseng, C.-Y. Lin, Lin, J.-P. Sheu, “A Multichannel MAC Protocol with Power Control for Multi-Hop Mobile Ad Hoc Networks,” Computer Journal, vol. 45, no. 1, pp. 101-110, 2002.
[6]	K. Xu, M. Gerla, and S. Bae, “How Effective Are the IEEE 802.11 RTS/CTS Handshake in Ad Hoc Networks,” IEEE Global Telecommunications Conference (GLOBECOM), 2002.
[7]	A. Acharya, A. Misra, and S. Bansal, “MACA-P: A MAC for Concurrent Transmissions in Multi-Hop Wireless Networks,” in Proceedings of IEEE Pervasive Computing and Communication (PerCom 2003) , pp. 505–508, March, 2003.
[8]	W.-T. Chen, J.-C. Liu, T.-K. Huang, and Y.-C. Chang, “TAMMAC: An Adaptive Multi-Channel MAC Protocol for MANETs,” IEEE Transactions on Wireless Communications, vol.7, no.11, pp. 4541-4545, 2008.
[9]	T.-S. Rappaport and L.-B. Milstein, “Effects of Radio Propagation Path Loss on DS-CDMA Cellular Frequency Reuse Efficiency for the Reverse Channel,” IEEE Transactions on Vehicular Technology, vol. 41, pp. 231–242, Aug., 1992.
[10]	R. Huang, H. Zhai, C. Zhang, and Y. Fang, “SAM-MAC: An Efficient Channel Assignment Scheme for Multi-Channel Ad Hoc Networks,” Computer Networks Journal, vol.52, no. 8, pp. 1634-1646, 2008.
[11]	Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.11-1999, 1999. 
[12]	F. Ye, S. Yi, and B. Sikdar, “Improving Spatial Reuse of IEEE 802.11 Based Ad Hoc Networks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ), vol. 2, 2003, pp. 1013–1017.
[13]	Kuei-Ping Shih, Chau-Chieh Chang, and Yen-Da Chen, “MRPC: A Multi-Rate Supported Power Control MAC Protocol for Wireless Ad Hoc Networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2009), 2009, pp. 1–6.
[14]	G. Holland, N. Vaiday, and P. Bahl, “A rate-adaptive MAC protocol for multi-hop wireless networks,” in Proceedings of the ACM International Conference on Mobile Computing and Networking (MOBICOM), Jul. 2001, pp. 236–251.
[15]	Ping Zhou and Xudong Wang and Rao, R., “Asymptotic Capacity of Infrastructure Wireless Mesh Networks,” IEEE Transactions on Mobile Computing, vol. 7, pp. 1011–1024, Aug., 2008.
[16]	Alicherry, M. and Bhatia, R. and Li Erran Li, “Joint Channel Assignment and Routing for Throughput Optimization in Multiradio Wireless Mesh Networks,” IEEE Journal on Selected Areas in Communications, vol. 24, pp. 1960–1971, Nov., 2006.
[17]	Chieochan, S. and Hossain, E. and Diamond, J., “Channel assignment schemes for infrastructure-based 802.11 WLANs: A survey,” IEEE Journal on Communications Surveys Tutorials, vol. 12, pp. 124–136, Jan., 2010.
[18]	Dongmei Zhao, “Throughput Fairness in Infrastructure-Based IEEE 802.11 Mesh Networks,” IEEE Transactions on Vehicular Technology, vol. 56, pp. 3210–3219, Sept., 2007.
[19]	Lopez-Aguilera, E. and Heusse, M. and Grunenberger, Y. and Rousseau, F. and Duda, A. and Casademont, J., “An Asymmetric Access Point for Solving the Unfairness Problem in WLANs,” IEEE Transactions on Mobile Computing, vol. 7, pp. 1213–1227, Oct., 2008.
[20]	Feng Zhang and Todd, T.C. and Dongmei Zhao and Kezys, V., “Power saving access points for IEEE 802-11 wireless network infrastructure,” IEEE Transactions on Mobile Computing, vol. 5, pp. 144–156, Feb., 2006.
[21]	Durvy, M. and Dousse, O. and Thiran, P., “On the fairness of large CSMA networks,” IEEE Journal on Selected Areas in Communications, vol. 27, pp. 1093–1104, Sept., 2009.
[22]	Menon, R. and Mackenzie, A. and Buehrer, R. and Reed, J., “Interference avoidance in networks with distributed receivers,” IEEE Transactions on Communications, vol. 57, pp. 3078–3091, Oct., 2009.
[23]	Lin Dai and Wei Chen and Cimini, L.J. and Letaief, K.B., “Fairness improves throughput in energy-constrained cooperative Ad-Hoc networks,” IEEE Transactions on Wireless Communications, vol. 8, pp. 3679–3691, Jul., 2009.
[24]	Xinming Zhang and Jun Lv and Xiaojun Han and Dan Keun Sung, “Channel efficiency-based transmission rate control for congestion avoidance in wireless ad hoc networks,” IEEE Journals on Communications Letters, vol. 13, pp. 706–708, Sept., 2009.
[25]	Dong Zheng and Man-On Pun and Weiyan Ge and Junshan Zhang and Poor, H.V., “Distributed opportunistic scheduling for ad hoc communications with imperfect channel information,”  IEEE Transactions on Wireless Communications, vol. 7, pp. 5450–5460, Dec., 2008.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信