§ 瀏覽學位論文書目資料
系統識別號 U0002-2207201010592800
DOI 10.6846/TKU.2010.01324
論文名稱(中文) 六標準差管理之成本效益模式建立
論文名稱(英文) The cost/benefit model development for Six Sigma Management
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 管理科學研究所碩士班
系所名稱(英文) Graduate Institute of Management Science
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 廖珮妤
研究生(英文) Pei-Yu Liao
學號 697620549
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-06-03
論文頁數 62頁
口試委員 指導教授 - 李旭華(HXL120@gmail.com)
委員 - 林長青(tclim8@mail.tku.edu.tw)
委員 - 陳瑞陽
關鍵字(中) 改善投資
六標準差水準
不良率
品質成本
製程能力指數
關鍵字(英) Investment in Improvement
Six Sigma Level
Defective Proportion
Cost of Quality
Process Capability Indices
第三語言關鍵字
學科別分類
中文摘要
本論文主要是研究將發展投資於品質改善之成本效益模式,在不完美生產系統中,衡量品質改善的影響及預測其投資的效益。品質改善投資的產出需要各種廣泛的衡量,並且能被量化,分析品質投資與投資產生之效益的關係,將更幫助決策者作品質改善投資的判斷。Six Sigma不僅為數值上的目標,確認核心流程與關鍵顧客、界定顧客需求,且是企業界做事的方法,可應用於高品質計畫,衍生成生產力提昇計畫、顧客滿意計畫,但需考慮Six Sigma改善投資專案對成本效益的影響,以及與經營績效相結合。
    此6 Sigma專案之品質投資模式的發展將以不完美之生產系統為架構,以減少品質特性的變異(Sigma),提升至aσ水準,以提升六標準差品質水準;以及降低平均值和目標值之間差距(即bσ差距),提昇製程能力,乃至於降低產品保證成本。另一方面,減少品質特性的變異以及平均值和目標值之間差距亦降低產品不良率,其將連結於製造成本、前置成本、效益損失等項目。並且探討 Six Sigma 改善專案與成本效益結合之聯結模式,可幫助研究者與企業界發展並應用Six Sigma 管理與效益面相結合之理論與實務。最後舉一數值分析範例,運用Sequential Quadratic Programming (SQP)之方法,用以獲得Six Sigma 專案改善投資模式的最佳解。說明此研究主題之意義與驗證結果,獲得之具體結果,可作為後續研究及實務應用之參考。
英文摘要
This study is to invest in the development of cost-effectiveness of quality improvement model related to Six Sigma Management, in an imperfect production system, to measure the impact of quality improvement and forecast the effectiveness of their investment. Quality improvement of the investment needs a wide variety of output measurement, and should be quantified. The analysis of the quality of benefits arising from investment and investment relationship will help improve the investment decision-makers to make quality judgment. Six Sigma is not only numerical goal, but also identify core processes and key customers to define customer needs. These business methods can be applied to high-quality program, productivity improvement programs, customer satisfaction plan by considering Six Sigma to improve the investment project on the impact of cost-effectiveness, and can be combined with the performance.
    This quality of six Sigma project investment model of development will follow the production system architecture to reduce the quality characteristics of the variation (improve six Sigma level), raised to aσ level to enhance Six Sigma quality standards; and reduce the deviation between the average and the target value (i.e. the value of bσ), to enhance process capability, and even reduce the cost of product warranties. On the other hand, reduce the quality characteristics of the variability and the distance between average and target values are also lower product defect rate, which will link the manufacturing cost, lead to cost and efficiency losses and other projects. The Six Sigma improvement projects and cost-effective combination models can be explored to help researchers and business with the development and application of Six Sigma management in the theory and practice. Finally a numerical example is given, using Sequential Quadratic Programming (SQP) methods, to obtain the investment pattern of the optimal solution for Six Sigma project.
第三語言摘要
論文目次
目錄……………………………………………………………………v
圖目錄…………………………………………………………………vii
表目錄…………………………………………………………………viii
通用符號一覽表………………………………………………………ix
第1章  緒論……………………………………………………………1
    1.1研究動機與目的………………………………………………1
     1.2基本假設………………………………………………………5
     1.3本文結構………………………………………………………6
第2章  相關文獻探討….………………………………………………9
     2.1六標準差...................................................................................10
2.2累積成品產出率……………………………………………..13
     2.3製程能力指數………………………………………………...16
2.4品質成本……………………………………………………..20
第3章  Six Sigma專案投資模式發展………………………………..24
3.1Six Sigma專案改善投資…………………………………….25
3.2製造成本……………………………………………………..25
3.3前置成本……………………………………………………..28
     3.4效益損失……………………………………………………..28
     3.5 保證成本…………………………………………………….30
     3.6 銷售金額…………………………………………………….38
     3.7 Six Sigma專案改善投資總效益模式…………………….....40
3.8最佳化………………………………………………………...42
第4章  數值分析和實例……………………………………………...44
4.1六標準差之專案改善投資前的成本效益模式之實例............44
 4.2六標準差之專案改善投資後的成本效益模式之實例………49
第5章  結論與後續研究……………………………………………..54
   5.1主要研究成果…………………………………………............54
   5.2未來研究方向…………………………………………………56
參考文獻………………………………………………………………..57
圖  目  錄
圖號                                                   頁次
圖1.1  6 Sigma 專案連結成本效益與經營績效效..............8
圖2.1  最適品質成本曲線……………………………………………23
表  目  錄
表號                                                   頁次
表3.1製程能力指數表…………………………………………………39
表4.1相關輸入值………………………………………………………44
表4.2其他原始數值……………………………………………………44
表4.3原始六標準差專案改善前相關成本與效益……………………45
表4.4六標準差專案改善後相關成本與效益…………………………50
參考文獻
參考文獻   
[1] Albright, T. L. and Roth, H. P., 1992. The Measurement of Quality Costs: An Alternative Paradigm, Accounting Horizons, 6(2), 15-27.

[2] Boyles, R. A., 1991. The Taguchi capability index, Journal of Quality Technology. Vol. 23, pp. 107-126.

[3] Boyles, R. A. 1994. Process capability with asymmetric tolerances, Communication in Statistics: Simulation and Computation. vol. 23, no. 3, pp. 615-643.

[4] Besterfield, D.H., Besterfield, M.C., Besterfield, B.H. and M.S., Besterfield. 1999. Total Quality Management, Prentice-Hall International Inc.

[5] Breygogle III, F. W., 2003. Implementing Six Sigma: Smarter Solutions Using Statistical Method, 2nd ed., New York: Wiley Europe. 

[6] Charbonneau, H. C., & Webster, G. L. 1978. Industrial Quality Control. Englewood Cliffs, New Jersey, United States: Prentice-Hall, Inc.

[7] Crosby, P.B., 1979. Quality is Free. McGraw-Hill, New York, 14-15.

[8] Chan, L.K., Cheng, S.W., Spiring, F.A. 1988. A new measure of process capability. Cpm. J. Qual. Tech. 20(3), 162–175.

[9] Chen, W.H., 1996. The effects of SPC on the target of process quality improvement. Journal of Quality Technology, 28, 224-232.

[10] Deming, W. E. 1986. Out of the Crisis. Massachusetts Institute of     Technology, Center for Advanced Engineering Study, Cambridge, Mass.

[11] Deleveaux, V. J., 1997. Analytical models for the justification of investment in continuous quality improvement.  Ph. D. Thesis, Penn State.

[12] Feigenbaum, A.V. 1961. Total Quality Control, New York, McGraw-Hill Co.

[13] Freeman WJ. 1995. Societies of Brains. Mahwah NJ: Lawrence Erlbaum Associates.

[14] Gill, P. E., W. Murray and M. H. Wright, 1981. Pratical Optimization, Academic Press, London.

[15] Goyal, S. K. and A. Gunasekaran, 1990. Effect of dynamic process quality control on the economics of production. International Journal of Operations & Production Management, 10, 69-77.

[16] Gunasekaran, A., 1995. Optimal investment and lot-sizing policies for improved productivity and quality. International Journal of Production Research 33, 261–278.

[17] Grace, A. and M.A. Branch, 1996. Optimization Toolbox, The Mathworks, Inc., Natick, MA.

[18] Hong, J. D. and Hayya, J. C. , 1995. Joint Investment in Quality Improvement and Setup Reduction. Computers and Operations Research, Vol. 22, No. 6 pp. 567-574.

[19] Hong, J.D., 1997. Optimal production cycles, procurement schedules, and joint investment in an imperfect production system. European Journal of Operational Research 100, 413–428.

[20] Harry, M. J., 1998. Six Sigma: A Breakthrough Strategy for Profitability. Quality Progress, 60-64.

[21] Harry, M. and Schroeder, R., 2000. Six Sigma – The Breakthrough Management Strategy Revolutionizing the Word’s Top Corporations, New York.

[22] Juran, J. M., 1951. Quality Control Handbook. McGraw Hill, New York.

[23] Juran, J. M., 1974. Quality Control Handbook, 3rd edition. McGraw Hill, New York.

[24] Kalro, A. H. and Gohil, M. M. , 1982. A Lot Size Model with Backlogging when the Amount Received is Uncertain. International Journal of Production Research, Vol. 20, No. 6, pp. 775-786.

[25] Kane, V.E. 1986. Process capability indices. J. Qual. Tech. 18, 41–52.

[26] Klefsjo, B., H. Wiklund, and R. L. Edgeman, 2001. Six sigma seen as a methodology for total quality management. Measuring Business Excellence, 5(1), 31-35.

[27] K. S. Chen, L. Y. Ouyang, C. H. Hsu, C. C. Wu, 2009, Quality and Quantity 43:463–469.

[28] Leschke, J.P., Weiss, E.N., 1997. Multi-item setup-reduction investment—allocation problem with continuous investmentcost functions. Management Science 43, 890–894.

[29] Lee, H. H., M. J. Chandra and V. J. Deleveaux, 1997. Optimal batch size and investment in multistage production systems with scrap. Production Planning and Control, 8, 586-596.  

[30] Lee, H.-H., 2005a. Cost/benefit model for investments in inventory and preventive maintenance in imperfect production system. Computers and
Industrial Engineering 48, 55–68.  

[31] Lee, H.-H., 2005b. Cost model with rolled throughput yield for six sigma management. Journal of Quality 33, 231–237.

[32] Lee, H.-H., 2006. Investment model development for repetitive inspections and measurement equipment in imperfect production production systems. International Journal of Advanced Manufacturing Technology. 31, 278–282.

[33] Lee, H. H., 2008. The investment model in preventive maintenance in multi-level production systems. Int. J. Production Economics 112  816–828

[34] Lee, H. H., 2009.Quality Management. Tsang-Hai Inc., ROC.

[35] Massey, V. 1957. Federation Proc., 16, 218.

[36] McFadden, F. R., 1993. Six - sigma quality programs. Quality Progress, 37-42, 

[37] Munro, R. A., 2000. Linking s ix sigma with QS-9000. Quality Progress, 47-53.

[38] Oakland, J.S., 1993. Total Quality Management, British Library Cat. In Publication Data.

[39] Porteus, E.L., 1986a. Optimal lot sizing, process quality improvement and setup cost reduction. Operations Research 34, 137–144.

[40] Porteus, E.L., 1986b. Investing in new parameter values in the discounted EOQ model. Naval Research Logistics Quarterly 33, 39–48.

[41] Pearn, W.L., Kotz, S., Johnson, N.L. 1992. Distributional and inferential properties of process capability indices. J. Qual. Tech. 24, 216–231.

[42] Pearn, W.L., Kotz, s., AND Johnson, N.L. 1994. Application of Clements Method for Calculating Second and Tird Generation Process Capability Indices for Non-normal Pearsonian Populations. Quality Engineering, 7(1), 139-145.

[43] Pande, P. S., Neuman, R. P. and Gavanagh, R. R. (2000). The Six Sigma Way, McGraw-Hill, New York.

[44] Pearn, W.L.(2004). A Quality-Yield Measure for Production   Processes with Very Low Fraction Defective. Int. J. Prod. Res., Vol. 42, No. 23, 4909–4925

[45] Rosenblatt, M. J. and Lee, H. L. , 1986. Economic Production Cycles with Improvement Production Processes. IIE Transitions, Vol. 18, No. 1, pp. 48-55

[46] Richardson, T.L. 1996. Total Quality Management, Delmar Publishers.

[47] Silver, E. A. , 1976. Establishing the Order Quantity when the Amount Received is Uncertain. INFOR, Vol. 14, No. 1, pp. 32-39.

[48] Shih. W. , 1980. Optimal Inventory Policies when Stockouts Result from Defective Products,” International Journal of Production Research, Vol. 18, No. 6, pp.677-686.

[49] Subramanyam, E. S. and Kumaraswamy, S. , 1981. EOQ Formula under Varying Marking Policies and Conditions. IIE Transitions, Vol. 19, No. 13, pp. 312-314.

[50] Smith, G., 1993. Benchmarking success at Motorola. Copyright Society of Management Accountants of Canada.

[51] Snee, R. D., 2000. Impact of Six Sigma on quality engineering. Quality Engineering, 12 (3), ix-xiv 

[52] Taguchi, G., 1986. Introduction to Quality Engineering, Asian Productivity Organization, Tokyo, Japan.

[53] Taguchi, G., Elsayed, E. A., and Hsaing, T.(1989). Quality Engineering in Production Systems, McGraw-Hill.

[54] Taguchi, G., 1993, Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream, ASME Press, New York.

[55] Tatikonda, M.V., 1999. An empirical study of platform and derivative product development projects. Journal of Product Innovation Management 16 _1., 3–26.
[56] Trevino, J., Hurley, B.J., Friedrich, W., 1993. A mathematical model for the economic justification of setup time reduction. International Journal of Production Research 31, 191–202.

[57] Tang, L.L., Lin, C.M., 2002. The Relation Study Between Cost of Quality Practice and TQM Manufacturing Performance. Chung Hua Journal of Management. Vol.3 No.3,57-73
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信