淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2207201010495700
中文論文名稱 新型水旋風分離器之研究暨水旋風分離器粒子流動之模擬
英文論文名稱 Study of a new type hydrocyclone and simulation of particle fluid in a hydrocyclone
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 賴詠聖
研究生英文姓名 Yung-Sheng Lai
學號 697400959
學位類別 碩士
語文別 中文
口試日期 2010-07-16
論文頁數 114頁
口試委員 指導教授-吳容銘
委員-吳容銘
委員-黃國楨
委員-陳錫仁
委員-李篤中
委員-蔡子萱
中文關鍵字 水旋風分離器  粒子模擬 
英文關鍵字 Hydrocyclone  CFD  Simulation 
學科別分類
中文摘要 本研究採用直徑45 mm之水旋風分離器,分別進行實驗和模擬的分析,實驗方面使用馬鈴薯澱粉為粉體,討論不裝葉片與加裝不同葉片大小之影響,採用分析溢流與底流之粒徑分佈及分級效率,模擬方面以多相流VOF模式與紊流LES模式模擬空氣核心並分析流場流態,並模擬粒子在不同壁厚的伸入水旋風分離器之溢流管的流動情形。
實驗結果顯示,葉片會將0-40 微米粒子掃向水旋風分離器之內壁,使0-40 微米粒子的分級效率有明顯提高,且在高分流比與高進口端壓力下,可以使用較長與較高之葉片,可獲得更好的小粒徑粒子之分級效率,模擬部分發現當伸入水旋風分離器之溢流管越薄有越好的分級效率,但分流比0.72時1.5 mm壁厚反而會使0-35 微米粒子的分級效率變差,根據模擬結果,欲收集澄清液可使用適當的薄壁,欲分離大小粒徑可使用適當的厚壁。
英文摘要 In this study, we use 45 mm diameter hydrocyclone to experiment and simulation. In the experiment, we used potato starch as particles to realize its classification. The effects of variations in overflow diameter and underflow diameter on particle size distribution and separation efficiency were analyzed. In the simulation, the air core was simulated successfully by VOF model and LES model, and simulation particle fluid situation in different thickness vortex finder wall which is entering the hydrocyclone.
According to experiment results, the experiment results show that the vane will sweep 0-40 micrometer particle size to the inside wall of hydrocyclone. Let will enable the 0-40 micrometer size of the separation efficiency to have the distinct enhancement. In high flow split to and high inlet pressure, use longer and higher vane, can enable the small particle size of the separation efficiency better. In the simulation, can find thinner vortex finder wall which is entering the hydrocyclone have better separation efficiency. But in flow split 0.72, the 1.5 mm wall will cause 0-35 micrometer particle size of the separation efficiency worse. According to simulation results, use the suitable thin wall to collect clear fluid, use the suitable thick wall to separate the size of particle.
論文目次 目錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖表目錄 Ⅶ


第一章 緒論…………………………………………………………………….1
1-1 前言………………………………………………………………………1
1-2 研究動機與目的……………………………………………………...….3
第二章 文獻回顧……………………………………………………………….5
2-1 水旋風分離器之發展概述………………………………………………5
2-1-1 水旋風分離器之歷史概述…………………………………………5
2-1-2 水旋風分離器之結構簡介…………………………………………6
2-1-3 水旋風分離器之規格………………………………………………9
2-1-4 水旋風分離器之應用…………………………………………..10
2-1-5 水旋風分離器之優缺點…………………………………………..12
2-2 水旋風分離器之特殊現象…………………………………………..13
2-2-1 魚勾現象…………………………………………………………..13
2-2-2 空氣核心…………………………………………………………..14
2-2-3 短路流現象………………………………………………………..15
2-2-4 循環流……………………………………………………………..15
2-3 數值計算在水旋風分離器的應用……………………………………..17
2-4 計算軟體FLUENT在水旋風分離器的應用………………………….19
第三章 理論與數值方法……………………………………………………...22
3-1 水旋風分離器之分離原理……………………………………………..22
3-1-1 水旋風分離器之基本理論……………………………………......22
3-1-2 粒子在流體中沉降受力分析……………………………………..23
3-1-3 剪應力……………………………………………………………..27
3-2 水旋風分離器之基礎理論……………………………………………..29
3-2-1 平衡軌道理論(The Equilibrium Orbit Theory)…………………...29
3-2-2 無因次群………………………………………………………......30
3-3 水旋風分離器效率分析………………………………………………..33
3-3-1 幾何結構…………………………………………………………..33
3-3-2 物性參數…………………………………………………………..36
3-3-3 操作參數…………………………………………………………..37
3-4 FLUENT數值模擬……………………………………………...………40
3-4-1 模擬軟體與基本假設……………………………………………..40
3-4-2 幾何結構與網格建立……………………………………………..40
3-4-3 統御方程式………………………………………………………..43
3-4-4 多相流方程式……………………………………………………..43
3-4-5 流體流動模型……………………………………………………..47
3-4-6 邊界條件…………………………………………………………..49
3-4-7 離散化方法………………………………………………………..50
3-4-8 收斂準則…………………………………………………………..50
第四章 實驗裝置與方法……………………………………………………...51
4-1 實驗物料………………………………………………………………..51
4-2 實驗儀器………………………………………………………………..52
4-3 實驗裝置………………………………………………………………..54
4-4 實驗步驟………………………………………………………………..60
第五章 結果與討論…………………………………………………………...62
5-1 水旋風分離器基本式與無因次群……………………………………..62
5-2 壓降效應………………………………………………………………..69
5-3 不同葉片之影響………………………………………………………..72
5-3-1 葉片效應…………………………………………………………..72
5-3-2 葉片高度效應……………………………………………………..83
5-3-3 葉片長度效應……………………………………………………..89
5-3-4 結果討論…………………………………………………………..94
5-4 模擬結果………………………………………………………………..96
第六章 結論………………………………………………………………….105
符號說明……………………………………………………………………...107
參考文獻……………………………………………………………………...110

圖表目錄
頁次
圖目錄
第二章
圖2-1 水旋風結構圖…………………………………………………...………8
圖2-2 水旋風分離器兩種基本設計之結構(a)長錐形;(b)短錐形…………..10
圖2-3 水旋風分離器之魚勾現象…………………………………….………13
第三章
圖3-1 三種渦流的速度分佈圖(Puprasert et al. 2004)………………………..28
圖3-2 粒子的離心力與流體的阻力相等之示意圖(kawatra et al. 1996)…....29
圖3-3 零速包絡面圖(kawatra et al. 1996)…………………………………....30
圖3-4 水旋風分離器之基本結構…………………………………………….35
圖3-5 水旋風分離器結構圖………………………………………………….41
圖3-6 水旋風分離器之網格………………………………………………….42
第四章
圖4-1 馬鈴薯澱粉累積粒徑分佈圖………………………………………….51
圖4-2 幫浦之水力揚程圖…………………………………………………….52
圖4-3 水旋風分離器之尺寸圖……………………………………………….55
圖4-4 with standard vane(WSV)葉片尺寸圖…………………………………56
圖4-5 vane height long(VHL)葉片尺寸圖…………………………………….57
圖4-6 vane height short(VHS)葉片尺寸圖……………………………………57
圖4-7 vane length long(VLL)葉片尺寸圖.........................................................58
圖4-8 vane length short(VLS)葉片尺寸圖........................................................58
圖4-9 整體實驗裝置圖.....................................................................................59
第五章
圖5-1 葉片在水旋風分離器內部之位置圖(WSV)..........................................63
圖5-2 不同進口端壓力下進口端、溢流端與底流端之流體流量...................64
圖5-3 進口流速在不同進口端壓力之關係圖.................................................65
圖5-4 特性速度在不同進口端壓力之關係圖.................................................66
圖5-5 雷諾數在不同進口端壓力之關係圖.....................................................67
圖5-6 尤拉數在不同進口端壓力之關係圖.....................................................68
圖5-7 不同進口端壓力之溢流端粒徑分佈圖(S分流比1.2)..........................69
圖5-8 不同進口端壓力之底流端粒徑分佈圖(S分流比1.2)..........................70
圖5-9 不同進口端壓力之分級效率曲線圖(S分流比1.2)..............................71
圖5-10 分流比1進口端壓力0.6 kg/cm2下之累積粒徑分佈圖(S and WSV).73
圖5-11 分流比1進口端壓力0.9 kg/cm2下之累積粒徑分佈圖(S and WSV).73
圖5-12 分流比1進口端壓力1.2 kg/cm2下之累積粒徑分佈圖(S and WSV).74
圖5-13 分流比1進口端壓力0.6 kg/cm2下之分級效率曲線圖(S and WSV).76
圖5-14 分流比1進口端壓力0.9 kg/cm2下之分級效率曲線圖(S and WSV).76
圖5-15 分流比1進口端壓力1.2 kg/cm2下之分級效率曲線圖(S and WSV).77
圖5-16 葉片在水旋風分離器內部之位置圖(WSVU).....................................78
圖5-17 分流比1進口端壓力0.6 kg/cm2下之分級效率曲線圖(S and WSVU)................................................................................................................79
圖5-18 分流比1進口端壓力0.9 kg/cm2下之分級效率曲線圖(S and WSVU)................................................................................................................79
圖5-19 分流比1.2進口端壓力0.6 kg/cm2下之分級效率曲線圖(S and WSV)...................................................................................................................81
圖5-20 分流比1.2進口端壓力0.9 kg/cm2下之分級效率曲線圖(S and WSV)...................................................................................................................81
圖5-21 分流比1.2進口端壓力1.2 kg/cm2下之分級效率曲線圖(S and WSV)...................................................................................................................82
圖5-22 分流比1進口端壓力0.6 kg/cm2下之分級效率曲線圖(S、WSV and VHS)....................................................................................................................84
圖5-23分流比1進口端壓力0.9 kg/cm2下之分級效率曲線圖(S、WSV and VHS)....................................................................................................................84
圖5-24分流比1進口端壓力1.2 kg/cm2下之分級效率曲線圖(S、WSV and VHS)....................................................................................................................85
圖5-25分流比1.2進口端壓力0.6 kg/cm2下之分級效率曲線圖(S、WSV and VHL)....................................................................................................................87
圖5-26分流比1.2進口端壓力0.9 kg/cm2下之分級效率曲線圖(S、WSV and VHL)....................................................................................................................87
圖5-27分流比1.2進口端壓力1.2 kg/cm2下之分級效率曲線圖(S、WSV and VHL)....................................................................................................................88
圖5-28分流比1.2進口端壓力0.9 kg/cm2下之分級效率曲線圖(S、WSV and VLS)....................................................................................................................90
圖5-29分流比1.2進口端壓力1.2 kg/cm2下之分級效率曲線圖(S、WSV and VLS)....................................................................................................................90
圖5-30分流比1.2進口端壓力0.6 kg/cm2下之分級效率曲線圖(S、WSV and VLL)....................................................................................................................92
圖5-31分流比1.2進口端壓力0.9 kg/cm2下之分級效率曲線圖(S、WSV and VLL)....................................................................................................................92
圖5-32分流比1.2進口端壓力1.2 kg/cm2下之分級效率曲線圖(S、WSV and VLL)....................................................................................................................93
圖5-33 加裝葉片之雙進料水旋風分離器示意圖...........................................95
圖5-34模擬使用之水旋風分離器結構圖.........................................................97
圖5-35 空氣體積分率分佈圖(a)壁厚W 1.5 mm (b)壁厚W 2.5 mm (c)壁厚W 4.5mm (d)壁厚W 6.5 mm...................................................................................98
圖5-36 壓力分佈圖(a)壁厚W 1.5 mm (b)壁厚W 2.5 mm (c)壁厚W 4.5mm (d)壁厚W 6.5 mm.............................................................................................99
圖5-37 速度分佈圖(a)壁厚W 1.5 mm (b)壁厚W 2.5 mm (c)壁厚W 4.5mm
(d)壁厚W 6.5 mm...........................................................................................100
圖5-38 速度向量分佈圖(a)壁厚W 1.5 mm (b)壁厚W 2.5 mm (c)壁厚W 4.5mm (d)壁厚W 6.5 mm.................................................................................101
圖5-39 模擬不同壁厚W之分級效率曲線圖(分流比0.85)..........................104
圖5-40 模擬不同壁厚W之分級效率曲線圖(分流比0.72)..........................104



表目錄
表5-1 分流比1.2時不同進口壓力與葉片之體積流率...................................63
參考文獻 參考文獻

Ahmed, M. M., Ibrahim, G. A., and Farghaly, M. G. (2009) “Performance of a three-product hydrocyclone.” International Journal of Mineral Processing, 91, 34-40.

Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009a) “Experimental study of flow patterns in deoiling hydrocyclone.” Minerals Engineering, 22, 319-323.

Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009b) “Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles.” Chemical Engineering and Technology, 32, 55-63.

Bamrungsri, P., Puprasert, C., Guigui, C., Marteil, P., Bréant, P., & Hébrard, G. (2008) “Development of a simple experimental method for the determination of the liquid field velocity in conical and cylindrical hydrocyclones.” Chemical Engineering Research and Design, 86, 1263-1270.

Bhaskar, K. U., Murthy, Y. R., Raju, M. R., Tiwari, S., Srivastava, J. K., and Ramakrishnan, N. (2007) “CFD Simulation and Experimental Validation Studies on hydrocyclone,” Minerals Engineering, 20, 60-71.

Boysan, F., Ayers, W. H., and Swithenbank, J. (1982) “Fundamental Mathematical Modeling Approach to Cyclone Design,” Transactions of the Institution of Chemical Engineers, 60, 222-230.

Bradley, D., (1965) “The Hydrocyclone,” Perga mmon Press, London.

Da Matta, V. M., and Medronho, R. D. A. (2000) “A New Method for Yeast Recovery in batch Ethanol Fermentations: Filter Aid Filtration Followed by Separation of Yeast from Filter Aid Using Hydrocyclone,” Bioseparation, 9, 43-53

Delgadillo, J. A., and Rajamani, R. K. (2005) “Hydrocyclone Modeling: Large Eddy Simulation CFD Approach,” Minerals amd Metallurgical Processing, 22, 225-232.

Duggins, R. K., and Frith, P. C. W. (1987) “Turbulence Anisotropy in Cyclones,” Filtration and Separation, 24, 394-397.
Dyakowski, T., and Williams, R. A. (1993) “Modelling Turbulent Flow Within a Small-Diameter Hydrocyclone,” Chemical Engineering Science, 48, 1143-1152.

Fluent (2005) “Fluent 6.2 User's Guide,” FLUENT, Inc., Lebanon, New Hampshire, USA

Frachon, A. M., and Cilliers, J. J. (1999) “A General Model for Hydrocyclone Partition Curves,” Chemical Engineering Journal, 73, 53-59.

Gupta, R., Kaulaskar, M. D., Kumar, V., Sripriya, R., Meikap, B. C., & Chakraborty, S. (2008) “Studies on the understanding mechanism of air core and vortex formation in a hydrocyclone.” Chemical Engineering Journal, 144, 153-166.

Harrison, S.T.L., and Cilliers, J. J.(1997) “The Use of Mini-Hydrocyclones for Differential Separations within Mineral Slurries Subjected to Bioleaching,” Minerals Engineering, 10, 529-535

Hoekstra, A. J., Derksen, J. J., and Van Den Akker, H. E. A. (1999) “An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones,” Chemical Engineering Science, 54, 2055-2065.

Huang, S. (2005) “Numerical Simulation of Oil-Water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows,” The Canadian Journal of Chemical Engineering, 83, 829-834.

Hsieh, K. T., and Rajamani, R. K. (1991) “Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow,” AIChE Journal, 37, 735-746.

Kelsall, D. F. (1953) “A Further Study on the Hydraulic Cyclone,” Chemical Engineering Science, 2, 254-272.

Majumder, A. K., Yerriswamy, P., and Barnwal, J. P. (2003) “The ‘Fish-Hook’ Phenomenon in Centrifugal Separation of Fine Particles,” Minerals Engineering, 6, 1005-1007.

Matvienko, O. V., and Dueck, J. (2006) “Numerical Study of the Separation
Characteristics of a Hydrocyclone under Various Conditions of Loading of the Solid Phase,” Theoretical Foundations of Chemical Engineering, 40, 203-208.

Nageswararao, K. (2000) “A Critical Analysis of the Fish-Hook Effect in Hydrocyclone Classifiers,” Chemical Engineering Journal, 80, 251-256.

Narasimha, M., Brennan, M., and Holtham, P. N. (2006) “Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape,” International Journal of Mineral Processing, 80, 1-14.

Puprasert, C.,G. Hebrard, L. Lopez and Y. Aurelle, (2004)“Potential of Using Hydrocyclone and Hydrocyclone Equipped with Grit Pot as A Pre-Treatment in Run-Off Water Treament,”Chemical Engineering and Processing,43,67-83

Slack, M. D., Del Porte, S., and Engelman, M. S. (2004) “Designing Automated Computational Fluid Dynamics Modeling Tools for Hydrocyclone Design,” Minerals Engineering, 17, 705-711.

Svarovsky, L. (1984) “Hydrocyclone,” Holt, Rinehart and Winston Ltd, London.

Svarovsky, L. (1990) “Solid-Liquid Separation,” 3rd ed., Butterworths, London

Trawinski, H. F. (1977) “Solid/Liquid Separation Equipment Scale up,” Ed. D. B. Purchas, Uplands Press, England, 241-286.

Wang, B., Chu, K.W., and Yu, A. B. (2007) “Numerical Study of Particle-Fluid Flow in A Hydrocyclone,” Industrial and Engineering Chemistry Research, 46, 4695-4705

Xu, P., Wu, Z., Mujumdar, A. S., and Yu, B. (2009) “Innovative hydrocyclone inlet designs to reduce erosion-induced wear in mineral dewatering processes,” Drying Technology, 27, 201-211.

Yang, G. A. B. and Wakley, W. D. (1994) “Oil-water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions,” Oil Gas, 11, 37-50.

Yoshioka, N., and Hotta, Y., (1955) “Liquid Cyclone As A Hydraulic Classifier,” Chemical Engineering Japen, 19(12),623

Yoshioka, H., S., Fukui, K.,and Kobayashi, A. (2004) “Effect of Apex Cone on Particle Classification Performance of Cyclone Separator,” Journal of the Chinese Institute of Chemical Engineers,,35,41-46

任連城、梁政、梁利平和龍道玉 (2005) “過濾式水力旋流器方案設計”,西南石油學院學報,27(1),82-85

李建明 (1997) “水力旋流器固液兩相流動數值模擬及分離機理研究",博士學位論文,成都四川聯合大學化學工程學院

薛瑋勝 (2004) “水旋風分離器之粉粒體分級機構", 碩士學位論文,淡江大學化學工程與材料工程學系

吳文豪 (2005) “操作條件與幾何結構對水旋風分離器之分離效率的影響”,碩士學位論文,淡江大學化學工程與材料工程學系

呂信毅 (2006) “改進複合型水旋風分離器之分離效率”,碩士學位論文,淡江大學化學工程與材料工程學系

許智淵 (2008) “水旋風分離器之研究與薄膜水旋風分離之發展”,碩士學位論文,淡江大學化學工程與材料工程學系

陳怡任 (2008) “水旋風分離器流場測量與模擬暨新型水旋風分離器之研究”,碩士學位論文,淡江大學化學工程與材料工程學系

趙慶國和張明賢 (2003) “水力旋流器分離技術”,化學工業出版社
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信