淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2207200920502600
中文論文名稱 粒徑與流體黏度對微過濾特性之影響
英文論文名稱 Effect of particle size and fluid viscosity on microfiltration characteristics
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 林宥良
研究生英文姓名 Iou-Liang Lin
學號 696400604
學位類別 碩士
語文別 中文
口試日期 2009-06-30
論文頁數 104頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-莊清榮
委員-童國倫
委員-吳容銘
中文關鍵字 恆壓微過濾  粒徑分佈  流體黏度  孔隙度  過濾比阻 
英文關鍵字 Constant pressure microfiltration  Particle size distribution  fliud viscosity  porosity of filter cake  specific filtration resistance 
學科別分類
中文摘要 本研究探討恆壓微過濾之操作條件,例如過濾壓力、粒子粒徑、流體黏度等,對過濾特性,如過濾通量、濾餅孔隙度與過濾比阻的影響。實驗中以平均孔徑0.1 μm的醋酸纖維薄膜來過濾粒徑0.4 μm與5 μm以不同比例混合之聚甲基丙烯酸甲酯粒子。當過濾壓力提升時,粒子容易被流體帶往膜面形成較為緊密的堆積,濾餅平均孔隙度會下降而平均過濾比阻會上升。當濾餅厚度增加,濾餅表面附近的壓縮壓力會減小,局部孔隙度則會增加。若小粒子所佔比例越高,則平均過濾比阻越高,最小濾餅平均孔隙度發生在大粒子佔75wt%小粒子佔25wt%之比例時。若流體之黏度自1 cp增加為5 cp與10 cp,則濾餅平均孔隙度分別上升了11.92%與18.33%,平均過濾比阻則分別下降12.17%與29.38%,故流體黏度會對過濾特性造成頗為可觀的影響,但對於濾餅之壓縮係數則可以忽略。
英文摘要 The effects of filtration pressure, particle diameter and fluid viscosity on the filtration flux, cake porosity and average specific cake filtration resistance in dead-end constant pressure microfiltration are studied. A filter membrane made of mixed cellulose ester with a mean pore size of 0.1 μm is used for filtering 0.4 μm and 5 μm particle mixtures with different mixing ratios. An increase in filtration pressure leads to a lower average cake porosity and higher specific cake filtration resistance due to larger fluid drag acting on the particle surfaces. Since lower local solid compressive pressure exists in the region near the surface of a thicker cake, the local cake porosity becomes lower. The average specific filtration resistance increases with increasing the mixing ratio of finer particles. However, the lowest cake porosity occurs for a 0.75 coarser particle mixing ratio. When fluid viscosity increases from 1 cp to 5 and 10 cp, the cake porosity increases 11.92% and 18.33%, respectively, while the average specific filtration resistance decreases 12.17% and 29.38%, respectively. In conclusion, fluid viscosity plays a major role on the filtration performance; however, its effect on the cake compressibility can be ignored.
論文目次 目錄
頁次
中文摘要……………………………………………………………………………Ⅰ
英文摘要……………………………………………………………………………Ⅱ
目錄………………………………………………………………………………….Ⅳ
圖表目錄…………………………………………………………………………….Ⅶ

第一章 緒論……………………………………………………………..………….1
1-1前言……………………………………………………………..…………...1
1-2研究動機與目標…………………………………………………………….5
第二章 文獻回顧…………………………………………………………………...6
2-1過濾阻塞機制……………………………………………………………….6
2-2薄膜結垢與作用力對過濾的影響………………………………………….10
第三章 理論………………………………………………………………………...20
3-1粒子堆積於膜面上之受力分析…………………………………………….20
3-1-1粒子所受流體之拖曳力, …………………………………………22
3-1-2粒子本身之淨重力, ………………………………………………22
3-1-3粒子間之交互作用力, ……………………………………………..23
3-2粒子之附著機構…………………………………………………………….26
3-3阻力串連模式………………………………………………………...……..30
3-4 濾餅之孔隙度、過濾比阻與壓縮因子關係………………………………33
3-5 局部濾餅孔隙度……………………………………………….…………...34
第四章 實驗裝置與步驟…………………………………………………………...36
4-1 實驗裝置……………………………………………………………………36
4-2 實驗物料與濾材………………………………………………...………….38
4-2-1濾材……………………………………………………………………..38
4-2-2懸浮液…………………………………………………………..………38
4-2-3緩衝溶液………………………………………………………………..39
4-3 分析儀器………………………………………………………...………….39
4-4 實驗步驟……………………………………………………………………40
第五章 實驗結果與討論…………………………………………...………………42
5-1 過濾壓力對於過濾特性之影響……………………………………………42
5-2 粒徑對於過濾特性之影響…………………………………………………56
5-3 流體黏度對於過濾特性之影響……………………………………………66
第六章 結論………………………………………………………………………...89
符號說明…………………………………………………………………………….91
參考文獻……………………………………………………………………….……94
附錄…………………………………………………………………………….……97
附錄A實驗物料之種類及物性…………………………………………..……97
附錄B實驗數據計算公式……………………………………………………101


















圖表目錄
頁次
第一章
Fig.1-1 The classification of membrane filtration process. ………………………….2
Fig.1-2 Schematics of dead-end filtration for left and cross-flow filtration for
right. …………………………………………………………………………..4
第二章
Fig. 2-1 Fouling schematics. (1) standard blocking; (2) intermediate blocking;
(3) complete blocking and (4) cake filtration. ……………………………………….8
Fig. 2- 2 Packing structure of particles at various (Lu and Hwang 1993)……….13
Fig. 2- 3 Selective deposition of particle A on particle B (Lu et al. 1995)…………..14
Fig. 2- 4 The cell model used for estimating the local porosity in a filter cake (Hwang1997) ………………………………………………………………16
第三章
Fig.3-1 Forces exerted on a depositing particle in cake microfiltration……………..21
Fig.3-2 Interaction energy of van der Waals force and electrical double layer repulsive force under different distanece…………………………………….23
Fig.3-3 Forces exerted on the top half of the depositing particle in cake microfiltration………………………………………………………………..28
Fig.3-4 Forces exerted on the bottom half of the depositing particle in cake microfiltration. ……………………………………………………………………....29
Fig. 3-5 Overview of various types of resistance in membrane filtration………..….30
Fig.3-6 Interaction force (Fi) vs. distance of separation (D) for two spherical
particles. ……………………………………………………………………..34
第四章
Fig.4-1 A schematic diagram of“dead-end”microfiltration system……………..…...37
Fig.4-2 A schematic diagram of filter chamber………………………………...........37
第五章
Fig.5-1 Time courses of filtration rates during 0.4μm PMMA suspensions microfiltration under various filtration pressure……………………………43
Fig.5-2 Time courses of filtration rates during 5μm PMMA suspensions
microfiltration under various filtration pressure……………………………43
Fig.5-3 A plot of dt/dv vs. v filtration curves for 0.4μm PMMA suspensions under various filtration pressure…………………………………………….…….45
Fig.5-4 A plot of dt/dv vs. v filtration curves for 5μm PMMA suspensions under various filtration pressure…………………………………………………..45
Fig.5-5 Effect of filtration pressure on the average cake porosity………………….48
Fig.5-6 Effect of filtration pressure on the average specific filtration resistance…..49
Fig.5-7 Effect of filtration pressure on the adhesion probability of 0.4μm
microfiltration. …………………..……………………………………..…..50
Fig.5-8 Effect of filtration pressure on the adhesion probability of 5μm
microfiltration. …..…………..……………………………………………..51
Fig.5-9 The values of local cake porosity under various solid compressive pressure
drop. ………………………………………………………………………..53
Fig.5-10 A plot of local cake porosity vs. local solid compressive pressure……….54
Fig.5-11 The distributions of local cake porosity in cake ……………………….....55
Fig.5-12 A plot of dt/dv vs. v filtration curves for 0.5bar filtration pressure microfiltration under various mixing fractions of large and little particles…57
Fig.5-13 A plot of dt/dv vs. v filtration curves for 1bar filtration pressure microfiltration under various mixing fractions of large and little particles…57
Fig.5-14 A plot of dt/dv vs. v filtration curves for 2bar filtration pressure microfiltration under various mixing fractions of large and little particles…58
Fig.5-15 A plot of dt/dv vs. v filtration curves for 3bar filtration pressure microfiltration under various mixing fractions of large and little particles…58
Fig.5-16 Effect of filtration pressure on the average cake porosity of various mixing
fractions of large and little particles…………………………………………60
Fig.5-17 Comparisons of viscosity 1cp cake porosity among theoretical results,
simulated results, and experimental data for various mixing fractions of large particles………………………………………………………………………61
Fig.5-18 Effect of filtration pressure on the average specific filtration resistance of 1cp various mixing fractions of large and little particles……………………64
Fig.5-19 Comparisons of the 1cp average specific filtration resistance among
theoretical results, simulated results, and experimental data for various mixing fractions of large particles. ………………………………………………….65
Fig.5-20 A plot of shear stress vs. shear rate under various glycerol percentage……67
Fig.5-21 Effect of fluid viscosity in different glycerol volume concentration………68
Fig.5-22 Effect of fluid viscosity before and after experiment…………...…………69

Fig.5-23 Time courses of filtration rates during 0.4μm PMMA suspensions
microfiltration under various fluid viscosity………………………………...70
Fig.5-24 Time courses of filtration rates during 5μm PMMA suspensions
microfiltration under various fluid viscosity………………………………...70
Fig.5-25 A plot of dt/dv vs. v filtration curves for 0.4μm PMMA suspensions under various fluid viscosity.. ……………………………………………………….72
Fig.5-26 A plot of dt/dv vs. v filtration curves for 5μm PMMA suspensions under various fluid viscosity ………………………………………………………...72
Fig.5-27 Effect of fluid viscosity on the average cake porosity under 0.4μm PMMA
suspensions. …………………………………………………………………..73
Fig.5-28 Effect of fluid viscosity on the average cake porosity under 5μm PMMA
suspensions. …………………………………………………………………..74
Fig.5-29 Effect of filtration pressure on the average specific filtration resistance under
0.4μm PMMA suspensions. …………………………………………………..76
Fig.5-30 Effect of filtration pressure on the average specific filtration resistance under
5μm PMMA suspensions. ………………………………………………….....77
Fig.5-31 Comparisons of viscosity 5cp cake porosity among theoretical results, simulated results, and experimental data for various mixing fractions of large particles …………………………………………………………………….....79
Fig.5-32 Comparisons of viscosity 10cp cake porosity among theoretical results, simulated results, and experimental data for various mixing fractions of large particles …………………………………………………………………….....80
Fig.5-33 Effect of filtration pressure on the average specific filtration resistance of
5cp various mixing fractions of large and little particles…………………......81
Fig.5-34 Effect of filtration pressure on the average specific filtration resistance of
10cp various mixing fractions of large and little particles……………............82
Fig.5-35 Comparisons of the 5cp average specific filtration resistance among
theoretical results, simulated results, and experimental data for various mixing
fractions of large particles. …………………………………………………...83
Fig.5-36 Comparisons of the 10cp average specific filtration resistance among
theoretical results, simulated results, and experimental data for various mixing
fractions of large particles. …………………………………………………...84
Fig.5-37 Cake compressibility under various fluid viscosity and particle sizes…….86
Fig.5-38 Effect of average specific filtration resistance under various fluid
viscosity. ……………………………………………………………………...87
Fig.5-39 Effect of cake porosity under various fluid viscosity……………………...88
附錄
Fig. A.1- 1 The SEM picture of 0.4μm PMMA powder. (x 100,00 KX)…………….97
Fig. A.2-1 The SEM picture of 5μm PMMA powder. (x 10,00 KX)………………...98
Fig. A.3-1 The SEM picture of clean membrane.(inner pore size 0.45μm,
x30,00KX)…………………………………………………………...….100

表目錄
Table 4-1 The operating conditions in this study…………………………………….41
Table A-1 Preparation of the Glycerol solutions………………………………..…...99
Table C-1 Preparation of the buffer solutions………………………………………104

參考文獻 Chellam Shankararaman, Ashima Bagga, Dennis A. Clifford“Evaluation of iron chemical coagulation and electrocoagulation pretreatment for surface water microfiltration”, J. Membrane Sci., 309, 82-93 (2008).

Hermia J., “Constant pressure blocking filtration laws-Application to Power-Law non-Newtonian Fluids”, Trans. Inst. Chem. Engrs., 60, 183-187 (1982).

Hunter, R.J., “Foundations of Colloid Science”, Vol.I, Clarendon Press.,
Oxford, (1987).

Hwang, K.J. and W.M. Lu, “Mechanism of Cake Formation in Constant
Pressure Filtrations”, Sep. Technol., 3, 122-132 (1993).

Hwang, K.J., H.C. Liu, W.M. Lu, “Local properties of cake in cross-flow microfiltration of submicron particles ”, J. Membrane Sci., 138, 181-192 (1998).

Hwang, K.J., K.P. Lin,“Cross-flow microfiltration of dual-sized submicron particles ”, Separation Science and Technolog , 37(10), 2231-2249(2002).

Hwang K.J, C.Y. Liao , K.L. Tung, “Analysis of particle fouling during microfiltration by use of blocking models”, J. Membrane Sci., 287, 287-293 (2007).

Iritani, E., N. Katagiri, T. Sengoku, K.M. Yoo, K. Kawasaki, A. Matsuda, “Flux decline behaviors in dead-end microfiltration of activated sludge and its supernatant ”, J. Membrane Sci., 300(1-2), 36-44(2007).

Iritani, E., S. Matsumoto, N. Katagiri,“Formation and consolidation of filter cake in microfiltration of emulsion-slurry ”, J. Membrane Sci., 318(1-2), 56-64(2008)
J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics. In: , Prentice Hall, Englewood Cliffs, NJ (1965), pp. 358–430 Ch. 8

Lee C.H., S. Lee, P.K. Park, J.H. Kim, K.M. Yeon, “Analysis of filtration characteristics in submerged microfiltration for drinking water treatment”, Water Research, 42, 3109 – 3121 (2008).

Lu, W.M., C.C. Lai, K.J. Hwang,“Constant pressure filtration of submicron particles ”, Sep. Technol. , 5(1), 45-53(1995)

Lu, W.M., K.J. Hwang, “Cake formation in 2-D cross-flow filtration ”, AIChE Journa, 41(6), 1443-1455(1995).

Suzuki, M. and T. Oshima, “Estimation of the co-ordination number in a
two-component mixture of cohesive spheres”, Powder Technol., 36(2),
181-188 (1983).

Shirato M., T. Murase, E. Iritani, J.H. Cho, S. Nakanomori,
“Determination of filtration characteristics due to sudden reduction in filtration area of filter cake surface.”Journal of chemical engineering of Japan, 20(3), 246-251(1986).

Tiller, F. M., S. Haynes, JR., and W. M. Lu, “The Role of Porosity in
Filtration VII Effect of Side-Wall Friction in Compression-Permeability
Cells”, A.I.Ch.E. J., 18(1), 13-20 (1972).

Tiller, F.M., and T. C. Green, “The Role of Porosity in Filtration VX:
Skin Effect with Highly Compressible Materials”, A.I.Ch.E. J., 19, 1266
(1973).
Wakeman, R.“The influence of particle properties on filtration ”, Separation and Purification Technology, 58 (2), 234-241(2007).

Wang Z., Y. Cui, J. Yao, J. Chu ,Y. Liang,“The influence of various operating conditions on specific cake resistance in the crossflow microfiltration of yeast suspensions”, Desalination and Water Treatment, 1, 237–247(2009).

呂維明和呂文芳,〝過濾技術〞第十一章,第323~331頁,高立圖書,
台北 (1994)。

劉顯成,〝次微米粒子之表面性質對其掃流過濾之影響〞碩士論文,
淡江大學化學工程與材料工程學系(1996)

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信