淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2207200912012300
中文論文名稱 微粒子/牛血清蛋白雙成份懸浮液之沉浸式薄膜過濾
英文論文名稱 Submerged Membrane Filtration of Fine Particle/BSA Binary Suspension
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 羅鴻彬
研究生英文姓名 Hung-Pin Lo
學號 696400091
學位類別 碩士
語文別 中文
口試日期 2009-06-30
論文頁數 136頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-童國倫
委員-莊清榮
委員-鄭東文
中文關鍵字 沉浸式薄膜過濾  微過濾  逆洗  薄膜阻塞  蛋白質純化 
英文關鍵字 Submerged membrane filtration  Microfiltration  Backwash  Membrane blocking  Protein purification 
學科別分類
中文摘要 本研究探討操作條件對微粒子/牛血清蛋白雙成份懸浮液之沉浸式薄膜過濾的影響,使用表面平均孔徑為5.6 μm之管狀陶瓷薄膜,過濾粒徑為15 μm之聚甲基丙烯酸甲酯(PMMA)圓球形粒子,以及分子量67000 Da之牛血清蛋白(BSA)。利用薄膜阻擋懸浮溶液中的固體粒子,而讓部分牛血清蛋白通過薄膜孔道,以達到分離的效果。本研究探討過濾壓差、逆洗時間、逆洗頻率、逆洗通量、曝氣通量以及階梯式提高過濾壓差等操作條件對過濾效能之影響。結果顯示:過濾主要的阻力來源為薄膜孔洞阻塞。逆洗操作,能夠提升過濾速度,主要是因為減少薄膜表面濾餅的成長,該操作並可提升牛血清蛋白的穿透率。實驗結果亦得知在低逆洗通量以及較短的逆洗時間下,會有較佳的分離效率。曝氣只能有效減少濾餅阻力,但對於薄膜內部阻力沒有太大的減緩效果。而以階梯式提升過濾壓差操作時,能夠大幅減少薄膜內部孔洞阻塞,並能更有效的提升濾速以及分離效率。本研究並經由理論的分析以及實驗的結果,得知在過濾初期,過濾阻力的來源主要來自薄膜內部阻力,並符合中間阻塞模式,當過濾一段時間之後,則轉變為濾餅阻塞模式。
英文摘要 The effects of operating conditions, such as filtration pressure, backwash time, backwash duration, backwash flux, aeration intensity and step increase pressure, on the performance of submerged membrane filtration are studied. A ceramic membrane tube with a mean surface pore size of 5.6 μm, is used to filter PMMA particles with a mean diameter of 15μm and BSA(MW=67000 Da). PMMA particles are retained by the filter membrane during filtration, while some BSA molecules may permeate through the filter cake and membrane into the filtrate. The experimental results show that the filtration resistance due to membrane blocking plays the major role on the overall filtration resistance. The filtration rate increases by performing backwash because of the cake reduction and BSA increase. A lower backwash flux or shorter backwash time is better for flux enhancement. Aeration operation can effectively reduce the cake resistance, but no significant effect on internal resistance reduction can be found. In addition, the filtration rate can be significantly enhanced by increasing filtration pressure step-wise. It is because of the decrease in membrane blocking resistance. The model analysis and experimental result shows that the intermediate blocking occurs at the beginning of filtration. However, the blocking model changes to cake filtration after a period of time.
論文目次 中文摘要……………………………………………………………… I
英文摘要……………………………………………………………… II
目 錄………………………………………………………………….. IV
圖目錄……………………………………………………………… VIII
表目錄……………………………………………………………… XIV
第一章 緒論………………………………………………………….. 1
1-1 前言………………………..………………………..…….. 1
1-2 研究動機與目的..…………………………..…………….. 6
第二章 文獻回顧…………………………………………………….. 7
2-1 薄膜生物反應器之特性..…………………..…………….. 7
2-2 SMBR與傳統活性污泥法的比較………………………… 9
2-3 SMBR中之薄膜結垢……..……………………………….. 12
2-4 雙成份懸浮液之過濾特性…...…………………………... 15
2-4-1 巨分子溶質的阻擋率……………………............... 15
2-4-2 巨分子和薄膜之間的相互作用力………………... 16
2-4-3 濾速衰減模式……………………………………... 16
2-5 薄膜結垢、積垢與過濾特性…………………………….. 18
2-6 操作條件對濾速之影響..………………………………… 20
第三章 理論.…….…….…….…….…….…….…….…….…….… 30
3-1 粒子在濾面上之附著機構………..………………….. 30
3-2 阻力串聯模式…………..………………………………… 36
3-3 模擬穩定濾速之方法……..……………………………… 38
3-4 粒子之結垢模式………………………………………….. 38
3-5 逆洗效率之分析………………………………………….. 42
3-5-1 可逆與不可逆阻力之計算………………………... 42
3-5-2 產率之計算………………………………………... 42
3-5-3 效率值之計算……………………………………... 43
3-6 巨分子過濾分析………………………………………….. 43
3-6-1 巨分子阻擋率之定義……………………………... 43
3-6-2 巨分子穿透濾餅之模擬分析……………………... 43
3-6-3 巨分子回收率之定義……………………………... 44
第四章 實驗裝置與步驟…………………………………………….. 46
4-1 實驗裝置…..………………………………………….. 46
4-2 實驗物料….....……………………………………….. 48
4-3 濾材 …………...…………………………………………. 48
4-4 分析儀器……..…………………………………………… 49
4-5 實驗步驟 ………………………………………………… 50
4-6 陶瓷薄膜管之清洗步驟………………………………….. 52
4-7 濃度測量 54
第五章 結果與討論………………………………………………….. 55
5-1 過濾壓差的影響……...…………………………..……….. 55
5-2 不同逆洗時間的影響………...…………………………… 66
5-3 不同逆洗通量的影響………………...…….…………….. 77
5-4 階梯式提升壓差的影響..………………………………… 84
5-5 曝氣通量之影響 89
5-6 操作條件對BSA阻擋率之影響………………………… 94
5-6-1 壓力對BSA阻擋率之影響………………………. 94
5-6-2 逆洗對BSA阻擋率之影響………………………. 95
5-6-3 曝氣對BSA阻擋率之影響 97
5-6-4 BSA回收率之探討 97
5-7 逆洗對產率及效率值之影響..…………………………… 101
5-8 可逆與不可逆阻力 105
5-9 理論濾速和阻擋率……………………………………….. 108
5-10 阻塞機制的判斷………………………………………… 111
5-11 操作條件之選擇………………………………………… 112
第六章 結論………………………………………………………….. 114
符號說明……………………………………………………..……….. 117
參考文獻…………………………………………………………..….. 121
附錄………………………………………..………………………….. 128
附錄A 實驗物料之種類及物性……………..……………… 128
附錄B 實驗數據計算公式…………..……………………… 134
附錄C 吸附效應…………………………………………….. 135
附錄D 逆洗前後之濾餅…………………………………….. 136

圖表目錄 頁次
圖目錄
第一章
Fig. 1- 1 Applications of membrane separation……………………………………………2
Fig. 1- 2 The classification of membrane filtration process………………………………4
第二章
Fig. 2- 1 Factors affecting membrane fouling…………………………………………….13
Fig. 2- 2 Four kinds of blocking phenomena in the membrane…………………………20
Fig. 2- 3 Typical methods to reduce concentration polarization and fouling in
pressure driving membrane processes…………………………………………..21
第三章
Fig. 3- 1 Force exerted on a depositing particle in a submerged microfiltration…….31
Fig. 3- 2 Interaction energy of van der Waals force and electrical double layer
repulsive force under different distance…………………………………………33
Fig. 3- 3 Overview of various types of resistance in membrane filtration…………….37
第四章
Fig. 4- 1 A schematic diagram of Submerged filtration system…………………………47
Fig. 4- 2 The absorbance vs. concentration of BSA………………………………………54
第五章
Fig. 5- 1 Time courses of filtration rates during submerged microfiltration under various filtration pressures……………………………………………………..56
Fig. 5- 1-1 An enlarge plot in Fig. 5- 1…………………………………………………….56
Fig. 5- 2 Hydraulic resistances of the different fouling fractions after 18000 s operation………………………………………………………………………….58
Fig. 5- 3 Comparison of the fouling resistance at the pseudo-steady state in submerged microfiltration under different pressures……………………….58
Fig. 5- 4 Hydraulic resistances of the different fouling fractions after 18000 s operation………………………………………………………………………….59
Fig. 5- 5 Comparison of the cake resistance at the pseudo-steady state in submerged microfiltration under different pressures……………………………………..60
Fig. 5- 6 Comparison of cake mass under different pressures…………………………..60
Fig. 5- 7 The pseudo-steady filtration rate during submerged microfiltration under various filtration pressures……………………………………………………..61
Fig. 5- 8 Comparison of the total resistance at the pseudo-steady state in submerged microfiltration under different pressures……………………………………..62
Fig. 5- 9 Comparison of various filtration resistances in different pressures…………64
Fig. 5- 10 Effect of average specific filtration resistances under various filtration pressures………………………………………………………………………….65
Fig. 5- 11 Effect of average porosity of the cake under various filtration
Pressures………………………………………………………………………….65
Fig. 5- 12 Time courses of filtration rate during submerged microfiltration by changing backwash durations…………………………………………………67
Fig. 5 -12-1 An enlarge plot in Fig. 5- 12…………………………………………………67
Fig. 5- 13 Hydraulic resistances of the different backwash time after 18000 s operation………………………………………………………………………….69
Fig. 5- 14 Comparison of various filtration resistances in different backwash time…70
Fig. 5- 15 Resistance percentage of 4 minutes backwash time under
different backwash cycle number……………………………………………...71
Fig. 5- 16 Membrane resistance percentage of the different backwash time…………75
Fig. 5- 17 Comparison of the cake resistance in submerged microfiltration
under different backwash time…………………………………………………75
Fig. 5- 18 Comparison of the fouling resistance in submerged microfiltration
under different backwash time…………………………………………………76
Fig. 5- 19 Time courses of filtration rate during submerged microfiltration
by changing backwash flux…………………………………………………….78
Fig. 5 -19-1 An enlarge plot in Fig. 5- 19…………………………………………………79
Fig. 5- 20 Hydraulic resistances of the different backwash flux before backwash
after 18000 s operation…………………………………………………………79
Fig. 5- 21 Membrane resistance percentage of the different backwash flux…………..80
Fig. 5- 22 Comparison of the fouling resistance in submerged microfiltration
under different backwash flux………………………………………………….81
Fig. 5- 23 Comparison of the cake resistance in submerged microfiltration
under different backwash flux………………………………………………….81
Fig. 5- 24 Time courses of filtration rate during submerged microfiltration by
step changing pressures………………………………………………………...85
Fig. 5 -24-1 An enlarge plot in Fig. 5- 24…………………………………………………86
Fig. 5- 25 Hydraulic resistances of the different operation model after
18000 s operation…………………………………………………………………86
Fig. 5- 26 Comparison of various filtration resistances in different operation
Model……………………………………………………………………………...88
Fig. 5- 27 Time courses of filtration rates during submerged microfiltration
under various aeration flux……………………………………………………...89
Fig. 5- 27-1 An enlarge plot in Fig. 5- 27………………………………………………....90
Fig. 5- 28 Comparison of the total resistance at the pseudo-steady state in submerged microfiltration under different aeration flux……………………………………...90
Fig. 5- 29 Comparison of the fouling resistance at the pseudo-steady state in submerged microfiltration under different aeration flux………………………..92
Fig. 5- 30 Comparison of the cake resistance at the pseudo-steady state in submerged microfiltration under different aeration flux……………………………………...92
Fig. 5- 31 Comparison of various filtration resistances in different aeration flux…...93
Fig. 5- 32 Effect of different pressures on the rejection of BSA under various
filtration times……………………………………………………………………95
Fig. 5- 33 Effect of different modals on the rejection of BSA under various
filtration times……………………………………………………………………96
Fig. 5- 34 Effect of different backwash flux on the rejection of BSA under
various filtration times………………………………………………………….96
Fig. 5- 35 Effect of different aeration flux on the rejection of BSA under various filtration times………………………………………………………………………..97
Fig. 5-36 Effect of filtration pressure on the BSA recovery under same filtration
Times………………………………………………………………………………..98
Fig. 5-37 Effect of different aeration flux on the BSA recovery under same
Filtration times……………………………………………………………………99
Fig. 5-38 Effect of filtration models on the BSA recovery under same filtration
Times………………………………………………………………………………100
Fig. 5- 39 Comparison of the flux product in submerged microfiltration
under different backwash time………………………………………………..101
Fig. 5- 40 Comparison of the flux product in submerged microfiltration
under different backwash flux………………………………………………..102
Fig. 5- 41 Comparison of the efficiency in submerged microfiltration under
different backwash time……………………………………………………….103
Fig. 5- 42 Comparison of the efficiency in submerged microfiltration under
different backwash flux………………………………………………………..104
Fig. 5-43 Comparison of the reversible resistance in submerged microfiltration
under different backwash flux………………………………………………….105
Fig. 5- 44 Comparison of the reversible and irreversible resistance in submerged
microfiltration under cycle numbers…………………………………………107
Fig.5- 45 Comparison of calculated results and experimental data of the
pseudo-steady filtration rates during submerged microfiltration
under different filtration pressures…………………………………………….108
Fig. 5- 46 A plot of ln{[exp(qs/k)]×[Rrej/(1-Rrej)+1]} to Lc under different
filtration pressures……………………………………………………………..110
Fig. 5-47 Comparison of calculated results and experimental data of the
pseudo-steady rejections under different filtration pressure……………..110
Fig. 5- 48 The effect of particle accumulation on the blocking index during
microfiltration under different pressures……………………………………..111

附 錄
Fig. A.1- 1 The SEM picture of PMMA powder. (x 3 KX)……………………………...128
Fig. A.1- 2 Particle size distribution of PMMA powder………………………………..129
Fig. A.1- 3 Particle size distribution of PMMA powder………………………………..129
Fig. A.3- 1 The SEM picture of clean membrane
(inner pore size 0.45μm, ×40 KX)………………………………………….131
Fig. A.3- 2 The SEM picture of clean membrane
(outer pore size 0.45μm, ×1 KX)……………………………………………132
Fig. A.3-3 Membrane of inner and outer pore size distribution……………………....133
Fig. D- 1 The view of0.45 μm membrane surface before backwash………………….136
Fig. D- 2 The view of0.45 μm membrane surface after backwash……………………136

表目錄
第三章
Table 3- 1 The coefficients of blocking models……………………………………………41
第四章
Table 4- 1 The operating conditions used in this study…………………………………..53
Table 4- 2 The operating conditions of backwash………………………………………..53
第五章
Table. 5- 1 Comparison of the recovery under different backwash cycle numbers…..82
附 錄
Table C- 1 The saturated BSA adsorption amount per PMMA weight……………….135
參考文獻 Ahn, K. H. and K. G. Song, “Treatment of Domestic Wastewater Using Microfiltration for Reuse of Wastewater”, Desalination., 126, 7(1999)
Baker, J.S., Dudley, L.Y., “Biofouling in membrane systems - a review”, Desalination 118 (1-3), 81-90(1999)
Belfort, G.,J. M. Pimbley, A. Greiner and K. Y. Chung, “Diagnosis of Membrane Fouling Using Rotating Annular Filter. 1. Cell Culture Media”, J. Membrane Sci., 77, 1-22(1993)
Bouhabila, E. H., R. B. Aı¨m and H. Buisson, “Fouling Characterisation in Membrane Bioreactors”, Separation and Purification Technology, 22-23, 123-132(2001)
Bowne, W. R., Calvo, J. I., and Hernandez, A. , 1995. “Steps of Membrane blocking in flux decline during protein microfiltration. ”, J. Membrane. Sci., 101, 153-165(1995)
Bowne, W. R., and Q. Gan, Properties of microfiltration membrane “Flux loss during constant pressure permeation of bovine serum albumin. ”, Biotechnol. Bioeng,38 , 688-706(1991)
Chang, I. S., S. O. Bag ,and C. H. Lee, “Effects of Membrane Fouling on Solute Rejection during Membrane Filtration of Activated Sludge”, Process Biochemistry, 36, 855(2000)
Chio, J. G., T. H. Bae, J. H. Kim, T. M. Tak, and A. A. Randall, “The Behavior of Membrane Fouling Initiation on the Crossflow Membrane Bioreactor System”, Journal of Membrane Science, 203, 103(2001)
Choo, K.-H., Stensel, H.D., “Sequencing batch membrane reactor treatment: Nitrogen removal and membrane fouling evaluation.”, Water Environment Research 72 (4), pp. 490-498 (9)(2000)
Cote, P., H. Buisson, C. Pound and G. Arakaki, “Immersed Membrane Activated Sludge for the Reuse of Municipal Wastewater”, Desalination, 113, 189-196(1997)
Defrance, L., Jaffrin, M.Y.; Gupta, B.; Paullier, P.; Geaugey, V. “Contribution of various constituents of activated sludge to membrane bioreactor fouling”, Bioresource Technol. 73, 105-112(2000)
Fang, H. H. P. and X. Shi, “Pore Fouling of Micofiltration Membrane by Activated Sludge”, Journal of Membrane Science , 264 , 161(2005)
Hardt, F. M., and L. S, Clesceri, “Solids Separation by Ultrafiltration for Concentrated Activated Sludge”, J. Wat. Pollut., 42, 2145(1970)
Hermans Jr., J., Hermans, J.J., “Solution properties of desoxyribonucleic acid (DNA). I. Hydrodynamic behavior.”, Journal of Physical Chemistry 63 (2), 170-175(1959)
Hong, S. P., T. H. Tak, S. Hong, and A. Randallb, “Fouling Control in Activated Sludge Submerged Hollow Fiber Membrane Bioreactors”, Desalination, 143, 209(2002)
Iritani E., Y. Mukai and T. Murase, “Properties of Filter Cake in Dead-End Ultrafiltration of Binary Protein Mixtures with Retentive Membrane”, IChemE 73, pp551-558(1995a)
Iritani E., Y. Mukai and T. Murase, “Upward Dead-End Ultrafiltration of Binary Protein Mixtures”, Sep. Sci. Technol., 30(3), 369-382(1995b)
Iritani E., Y. Mukai and T. Murase, “Separation of Binary Protein Mixtures by Ultrafiltration”, Filtration and Separation., 34(9), 967-973(1997)
Iritani E., Y. Mukai and T. Murase, “Fractionation Characteristic of Binary Protein Mixtures by Ultrafiltration”, Sep. Sci. Technol., 33(2), 169-185(1998)
Jefferson, B., A. L. Laine, T. Stephenson and S. L. Judd, “Advanced Biological Unit Process for Domestic Water Recycling.”, Water. Science and Technology, 43, 211(2001)
Wu Jinling, Pierre C., Richard M., Anthony G. Fane and Vicki C., “Novel filtration mode for fouling limitation in membrane bioreactors”, WATER RESEARCH, 42, 3677-3684(2008)
Wu Jinling, Pierre C., Richard M., Anthony G. Fane and Vicki C., “Effects of relaxation and backwashing conditions on fouling in membrane bioreactor”, Journal of Membrane Science 324, 26-32(2008)
Kang, I. J., S. H. Yoon and C.H. Lee, “Comparison of the Filtration Characteristics of Organic and Inorganic Membranes in a Membrane-coupled Anaerobic bioreactor”, Water Research, 36, 1803(2002)
Kim, J., Cho, J., Ryba, E., Bai, J., “Interfacial Structures of Polyurethane Thin Films on Various Substrate Materials. ”, Polymer Journal 35 (12), 929-937(2003)
Kim, S. H., S. Y. Moon, C. H. Yoon, S. K. Yim and J. W. Cho, “Role of Coagulation in Membrane Filtration of Wastewater for Reuse”, Desalination, 173, 301(2004)
Koyuncu, I., E. Kural and D. Topacik, “Pilot Scale Nanofiltration Membrane Sepration for Waste Management in Textile Industrial.”, Water Science and Technology, 43, 233(2001)
Hwang Kuo-Jen and Hsin-Chieh Hwang, “The purification of protein in cross-flow microfiltration of microbe/protein mixtures”, Separation and Purification Technology 51, 416-423(2006)
Hwang Kuo-Jen and Fung-Fu Chen, “Modeling of Particle Fouling and Membrane Blocking in Submerged Membrane Filtration”, Separation Science and Technology, 42, 2595-2641(2007)
Hwang Kuo-Jen, Chih-Sheng Chan and Kuo-Lun Tung, “Effect of backwash on the performance of submerged membrane filtration”, Journal of Membrane Science 330, 349-356(2009)
Lim, A.L., Bai, R., “Membrane fouling and cleaning in microfiltration of activated sludge wastewater.”, Journal of Membrane Science 216 (1-2), 279-290(2003)
Mores W. D. and R. H. Davis, “Direct Visual Observation of Yeast Deposition and Removal during Microfiltration”, Journal of Membrane Science 189, 217-230(2001)
Mueller, J., “Basic Principles of Membrane Technology”, Kluwer Aacademic Publisher, 309(1991)
Mutlu, S. H., U. Yetis, T. Gurkan and L.Yilmaz, “Decolorization of Wastewater of a Baker’s Yeast Plant by Membrane Processes”, Water Research , 36, 609(2002)
Nuengjamnong, C., J. H. Kweon, J. Cho, K. H. Ahn, and C. Polprasert, “Influence of Extracellular Polymeric Substances on Membrane Fouling and Cleaning in a Submerged Membrane Bioreactor. ”, Colloid. Journal, 67, 251(2004)
Ogoshi, M. and Y. Suzuki, “Application of Membrane Separation to An Easily Installed Municipal Wastewater Treatment Plant. ” International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Janpan, November 1-4, 250(1999)
Parameshwaran, K. Fane, A. G. Cho, B. D. and Kim, K. J. “Analysis of microfiltration performance with constant flux processing of secondary effluent. ”, Water Res. 35 4349(2001)
Ping Gui, Xia Huang, Ying Chen and Yi Qian , “Effect of Operational Parameters on Sludge Accumulation on Membrane Surfaces in a Submerged Membrane Bioreactor” Desalination, 151, 185(2002)
Pierre, C., ULI Metzger, Richard M., Fritz H and Vicki C., “Characterization of polymeric fouling in membrane bioreactors and the effect of different filtration modes”, Journal of Membrane Science 301, 180-189(1998)
Pierre, C., B. Herve and P. Matthieu, “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater”, Wat. Sci. Tech., 38, 437(1998)
Raja Ghosh, “Enhancement of membrane permeability by gas-sparging in submerged hollow fiber ultrafiltration of macromolecular solutions Role of module design”, Journal of Membrane Science 274, 73-82(2006)
Seyfried, A., E. Dorgeloh, E. Brand and P. Ohle, “Effect of the Membrane Technology on the Dimensioning of Municipal Wastewater Treatment Plants ”, Wat. Sci. Tech., 38, 173(1998)
Shimizu, Y., Y. I. Okuno and K. Uryu, “Filtration Characterist of Hollow Fiber Microfiltration Membrane Used in Membrane Bioreactor for Domestic Wastewater Treatment.”, Wat. Res., 30, 2385(1996)
Shin, H. S., S. M. Lee, I. S. Seo, G. O. Kim, K. H. Lim and J. S. Song, “Pilot-Scale SBR and MF Operation for Removal of Origanic and Nitrogen Compounds from Greywater.”, Water Science and Technology, 38, 79(1998)
Smith, C. V., D. D. Gregorio and R. M. Talcott, “The Use of Ultrafiltration Membrane for Activated Sludge Separation.”, 24thAnnual Purdue Industrial Waste Conference, Purdue University, Lafayette, Indiana,U.S.A.,1300(1969)
Stephenson, T., S. Judd, B. Jefferson and K. Brindle, “Membrane Bioreactors for Wastewater Treatment.”, IWA Publishing London, 4(2000)
Tardieu, E., Grasmick, A., Geaugey, V., and Manem, J. “Hydrodynamic control of bioparticle depositionin a MBR applied to wastewater treatment. ” J. Membrane. Sci., 147, 1-12(1998)
Tenno, R. and H. Paulapuro, “Removal of Dissolved Organic Compounds form Paper Machine Whitewater by Membrane Bioreactors: A Comparative Analysis”, Control Engineering Practice, 7, 1085(1999)
Tracy, E. M. and R. H. Davis, “Protein Fouling of Track-Etched Polycarbonate Microfiltration Membrane. ”, J. Colloid Interface Sci. 167, 104-116(1994)
Tung, K.-L., Chuang, C.-J., “Effect of pore morphology on fluid flow and particle deposition on a track-etched polycarbonate membrane. ”, Desalination 146 (1-3), 129-134(2002)
Wang, P. Tan, K. L. Kang, E. T. And Neoh, K. G., “Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidedefluoride) microporous membrane.”, J. Membrane. Sci. 195, 103(2002)
Wummel, J.and H. Walther, “Membrane Technology in Municipal Wastewater Treatment-The Case of arkransta Dt Germany”,IWA World Water Congress, Berlin(2001)
Yeom, I. T; Nah, Y. M.; Ahn K. H., “Treatment of household wastewater using an intermittently aerated membrane bioreactor. ”, Desalination, 124, 193(1999)
Youm, K. H., A. G. Fane and D. E. Wiley, “Effect of Natural Convection Instability on Membrane Performance in Dead-end and Cross-flow Ultrafiltration.”, J. Membrane Sci., 116, 229(1996)
Zydney A. L., P. Aimar, M. Mrireles, J. M. Pimbley and Belfort, G. “Use of the log-normal probability density function to analyze membrane pore size distributions: functional forms and discrepancies”, J. Membrane Sci., 91, 293-298(1994)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信