§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2207200910571300
DOI 10.6846/TKU.2009.00819
論文名稱(中文) 二氧化鈦奈米粒子溶液於無機管式薄膜過濾效能之研究
論文名稱(英文) A study on filtration performance of titanium dioxide nanoparticle solution in inorganic tubular membrane.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 林哲緯
研究生(英文) Che-Wei Lin
學號 696400547
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-06-30
論文頁數 122頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 李篤中
委員 - 黃國楨
委員 - 童國倫
委員 - 莊清榮
關鍵字(中) 二氧化鈦
等電位點
氣液兩相流
濾速提升
關鍵字(英) titanium dioxide
isoelectric point
gas-liquid two-phase flow
flow enhancement
第三語言關鍵字
學科別分類
中文摘要
本研究主要利用掃流式陶瓷膜過濾系統針對二氧化鈦奈米粒子水溶液進行濾速提升的探討,實驗操作參數有溶液之pH值、濃度、透膜壓差、液體速度、通氣速度以及膜管傾斜角度等,經由這些實驗操作的探討,找出提升二氧化鈦奈米粒子水溶液濾速之最佳操作條件。
    實驗結果發現,當粒子所處的溶液環境為二氧化鈦之等電位點(pH=7)時粒子容易凝聚,其所受的剪應力之影響效應會較大,尤其在增加液體速度或通入氣體時,可以有效的造成擾動而提昇剪應力,因此對濃度極化現象的移除,有正面的幫助,而於等電位點下凝聚的粒子所受的剪應力效應會較明顯,因此濾速的提升會很顯著;至於提高透膜壓差對濾速的提升效果有限,由此可知若要提升二氧化鈦水溶液之濾速,如何減緩濃度極化現象,會比提高驅動力來的更為重要;至於改變膜管之傾斜角對濾速提升的效果也不大,但只要操作在容易掃除濃度極化效應的操作條件下,如高通氣速度時,不管是透膜壓差或傾斜角對濾速的提升效應就會慢慢顯現出來。實驗結果也發現氣液兩相流的操作方式對濾速之提升幫助最大,在液體速度介於0.1至0.5 m/s及通氣速度介於0.05至0.3 m/s,當pH=5時,最佳操作條件是液體速度為0.5 m/s及通氣速度為0.3 m/s,當pH=7時,液體速度為0.3 m/s及通氣速度為0.3 m/s時,濾速之值最大;這是因為於pH=5時,濾速會受總體速度影響,總體速度越大,得到的濾速便會越大;於pH=7時,除了受總體速度影響外,也會受注入因子(injection factor)的影響,從研究中顯示注入因子為0.5時,對濾速提升最為顯著。
英文摘要
In this study, the ceramic membranes were employed in a cross-flow filtration system to investigate the flux enhancement of the titanium dioxide nanoparticle solution. The parameters of experiment included pH value, concentration, transmembrane pressure, liquid velocity, gas velocity, and membrane inclination angle. By the experimental study, the method for improving the performance of filtration of the titanium dioxide nanoparticle solution can be obtained.
    At the isoelectric point (pH=7), the titanium dioxide particles coagulate and form the larger particles, its migration is effected easily by the shear stress. By increasing the liquid or gas flow rate, the coagulated particles can be disturbed significantly. Therefore, the permeate flux of the filtration of titanium dioxide suspension at pH=7 can be enhanced apparently by increasing the shear stress. Relatively, the influences of transmembrane pressure or membrane inclination is not obvious on the permeate flux. It is noted that the operation with gas-liquid two-phase flow is an effective way to enhance the permeate flux. In the range of 0.1 to 0.5 m/s liquid velocity and 0.05 to 0.3 m/s gas velocity, the optimal condition for improving the flux is 0.5 m/s liquid velocity and 0.3 m/s gas velocity at pH=5, while 0.3 m/s liquid velocity and 0.3 m/s gas velocity for pH=7. At pH=5, the permeate flux is mainly affected by the total velocity. The higher total velocity, the higher permeate flux is obtained. At pH=7, the permeate flux is affected not only by the total velocity but also by the injection factor. Presented work implies that the best flux enhancement occurs at the 0.5 injection factor.
第三語言摘要
論文目次
目錄
圖目錄	ІV
表目錄	ХІ
第一章 緒論	1
    1.1 前言	1
    1.2 薄膜分離	2
    1.3 濃度極化及結垢	5
    1.4 本研究之目標	7
第二章 文獻回顧	10
  2.1微過濾之特性	10
    2.1.1 濃度極化現象	10
    2.1.2 結垢現象	11
  2.2 二氧化鈦簡介	12
    2.2.1 二氧化鈦光觸媒應用於廢水處理程序	14
    2.2.2 薄膜於光觸媒水處理上之應用	15
    2.2.3 薄膜分離二氧化鈦微粒之相關研究	17
  2.3 影響濾速之因素	18
  2.4 提高濾速之方法	20
  2.5 濾速分析模式	27
第三章 實驗裝置與方法	37
  3.1 實驗裝置	37
  3.2 實驗藥品	37
  3.3 實驗步驟	38
  3.4 操作條件	39
  3.5流量計之校正	39
  3.6 薄膜清洗	40
第四章 結果與討論	43
  4.1 溶液pH值之影響	43
  4.2 濃度之影響	45
  4.3 液體速度之影響	47
  4.4 透膜壓差之影響	48
  4.5通氣之影響	49
  4.6傾斜角之影響	53
4.7濾速與通氣量及總體速度之等高線關係圖	54
  4.8 濾速之估算	59
第五章 結論	97
符號說明	99
參考文獻	102
附錄	108
























圖目錄
Figure 1.1  The classification of membrane separation.	8
Figure 1.2  The diagram of (a)dead-end filtration and         (b)cross-flow filtration.	9
Figure 2.1  The diagram of photocatalyst response.	13
Figure 2.2  The diagram of different construction of titanium           dioxide.	14
Figure 2.3  The diagram of pressure v.s. permeate flux.	34
Figure 2.4  Typical methods to reduce concentration polarization          and fouling in pressure driving membrane processes.	35
Figure 2.5  The form of Two-phase flow inside pipes.	36
Figure 3.1  Figure 3.1 The experimental apparatus of two-phase              flow filtration with (without)inclination.	41
Figure 4.1  The size distribution of TiO2 nanoparticle suspension
           in pH=5.	64
Figure 4.2  The size distribution of TiO2 nanoparticle suspension
           in pH=7.	64
Figure 4.3.  Effect of various cross velocity on the steady state
           flux under different pH value 
           (△P=100 kPa , C=1 kg/m3 ).	65
Figure 4.4.  Effect of various cross velocity on the steady state 
           flux under different pH value 
           (△P=100 kPa , C=5 kg/m3 ).	65
Figure 4.5.  Effect of various cross velocity on the steady state 
           flux with different concentration 
           (△P=100 kPa , pH=5).	66
Figure 4.6.  Effect of various cross velocity on the steady state
           flux with different concentration
           (△P=100 kPa , pH=7).	66
Figure 4.7.  Effect of various concentration on the steady state 
           flux with different cross velocity 
           (△P=100 kPa , pH=5).	67
Figure 4.8.  Effect of various concentration on the steady state
           flux with different cross velocity 
           (△P=100 kPa , pH=7).	67
Figure 4.9.  Effect of different cross velocity on the flux-time 
           curve (△P=100 kPa , pH=7).	68
Figure 4.10.  Effect of different gas velocity on the flux-time 
           curve (operating from no gas to the highest gas 
           velocity,△P=100 kPa , pH=7,UL=0.1 m/s).	68
Figure 4.11.  Effect of different gas velocity on the flux-time
           curve (operating from no gas to the highest gas 
           velocity,△P=100 kPa , pH=7,UL=0.5 m/s).	69
Figure 4.12.  Effect of different gas velocity on the flux-time 
           curve (operating from the highest gas velocity to 
           no gas,△P=100 kPa , pH=7).	69
Figure 4.13.  Effect of various cross velocity on the steady state 
           flux under different transmembrane pressure (pH=5).	70
Figure 4.14.  Effect of various cross velocity on the steady state 
           flux under different transmembrane pressure (pH=7).	70
Figure 4.15.  Effect of various transmembrane pressure on the 
            steady state flux in different cross velocity (pH=5).	71
Figure 4.16.  Effect of various transmembrane pressure on the 
            steady state flux in different cross velocity (pH=7).	71
Figure 4.17.  Effect of various cross velocity on the steady state 
           flux in different inlet gas velocity
           (pH=5 , △P=100kPa , C=1kg/m3)	72
Figure 4.18.  Effect of various cross velocity on the steady 
           state flux in different inlet gas velocity 
           (pH=7, △P=100kPa , C=1kg/m3).	72
Figure 4.19. Effect of various cross velocity on the steady
          state flux in different inlet gas velocity 
          (pH=5 , △P=100kPa , C=5kg/m3).	73
Figure 4.20. Effect of various cross velocity on the steady
          state flux in different inlet gas velocity 
          (pH=7 , △P=100kPa , C=5kg/m3).	73
Figure 4.21. Effect of various cross velocity on the steady
          state flux under different transmembrane pressure 
          (pH=5 , UG=0.05 m/s , C=5kg/m3)	74
Figure 4.22. Effect of various cross velocity on the steady 
          state flux under different transmembrane pressure 
          (pH=7 , UG=0.05 m/s , C=5kg/m3).	74
Figure 4.23. Effect of various cross velocity on the steady 
          state flux under different transmembrane pressure 
          (pH=5 , UG=0.1 m/s , C=5kg/m3).	75
Figure 4.24. Effect of various cross velocity on the steady
          state flux under different transmembrane pressure 
          (pH=7 , UG=0.1 m/s , C=5kg/m3).	75
Figure 4.25. Effect of various cross velocity on the steady state 
          flux under different transmembrane pressure 
          (pH=5 , UG=0.3 m/s , C=5kg/m3).	76
Figure 4.26. Effect of various cross velocity on the steady state
          flux under different transmembrane pressure 
          (pH=7 , UG=0.3 m/s , C=5kg/m3).	76
Figure 4.27. The variation of steady state flux with different
          inclination angle 
          (C=5 kg/m3 , △P=100 kPa , pH=5, UL=0.1 m/s).	77
Figure 4.28. The variation of steady state flux with different
          inclination angle 
          (C=5 kg/m3 , △P=100 kPa , pH=7 , UL=0.1 m/s).	77
Figure 4.29. The variation of steady state flux with different
          inclination angle 
          (C=5 kg/m3 , △P=100 kPa , pH=5 , UL=0.3 m/s).	78
Figure 4.30. The variation of steady state flux with different 
          inclination angle 
          (C=5 kg/m3 , △P=100 kPa , pH=7 , UL=0.3 m/s).	78
Figure 4.31. The variation of steady state flux with different
          inclination angle 
          (C=5 kg/m3 , △P=100 kPa , pH=5 , UL=0.5 m/s).	79
Figure 4.32. The variation of steady state flux with different
          inclination angle
          (C=5 kg/m3 , △P=100 kPa , pH=7 , UL=0.5 m/s).	79
Figure 4.33. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux (pH=5 , C=1kg/m3).	80
Figure 4.34. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux (pH=7 , C=1kg/m3).	80
Figure 4.35. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(pH=5 , C=5 kg/m3,△P=100kPa).	81
Figure 4.36. Effect of total velocity and injection factor(ε) on 
the steady state flux 
(pH=7 , C=5 kg/m3, △P=100kPa).	81
Figure 4.37. Effect of total velocity and injection factor(ε) on 
the steady state flux 
(pH=5 , C=5 kg/m3 , △P=50kPa).	82
Figure 4.38. Effect of total velocity and injection factor(ε) on 
the steady state flux 
(pH=7 , C=5 kg/m3 , △P=50kPa).	82
Figure 4.39. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(pH=5 , C=5 kg/m3, △P=100kPa).	83
Figure 4.40. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(pH=7 , C=5 kg/m3, △P=100kPa).	83
Figure 4.41. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(pH=5 , C=5 kg/m3, △P=150kPa).	84
Figure 4.42. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(pH=7 , C=5 kg/m3, △P=150kPa).	84
Figure 4.43. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux
(θ=0 deg , pH=5, △P=100kPa).	85
Figure 4.44. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(θ=0 deg , pH=5, △P=100kPa).	85
Figure 4.45. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(θ=30 deg , pH=5, △P=100kPa).	86
Figure 4.46. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
(θ=30 deg , pH=7, △P=100kPa).	86
Figure 4.47. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
          (θ=45 deg , pH=5, △P=100kPa).	87
Figure 4.48. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
          (θ=45 deg , pH=7, △P=100kPa).	87
Figure 4.49. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
          (θ=60 deg , pH=5, △P=100kPa).	88
Figure 4.50. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
          (θ=60 deg , pH=7, △P=100kPa).	88
Figure 4.51. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
          (θ=90 deg , pH=5, △P=100kPa).	89
Figure 4.52. Effect of total velocity (UT) and injection factor(ε) 
on the steady state flux 
          (θ=90 deg , pH=7, △P=100kPa).	89
Figure 4.53. The illustration of the dimensionless number under 
different concentration (pH=5).	90
Figure 4.54. The illustration of ln(C*φD) v.s. ln(φ) (pH=5).	90
Figure 4.55. The illustration of [ln(A)+B ln(φ)] v.s. ln(φ) 
           (pH=5).	91
Figure 4.56. The illustration of the dimensionless number under 
different concentration (pH=7).	91
Figure 4.57. The illustration of ln(C*φD) v.s. ln(φ) (pH=7).	92
Figure 4.58. The illustration of [ln(A)+B ln(φ)] v.s. ln(φ) 
           (pH=7).	92
Figure 4.59. The illustration of experimental value and estimate 
          value (1kg/m3).	93
Figure 4.60. The illustration of experimental value and estimate 
          value (5kg/m3).	93
Figure 4.61. The illustration of experimental value and estimate 
          value under different gas velocity (pH=5, C=1kg/m3).	94
Figure 4.62. The illustration of experimental value and estimate 
          value under different gas velocity(pH=5, C=5kg/m3).	94
Figure 4.63. The illustration of experimental value and estimate
          value under different gas velocity(pH=7, C=1kg/m3).	95
Figure 4.64. The illustration of experimental value and estimate 
          value under different gas velocity(pH=7, C=5kg/m3).	95
Figure A.1  The relationship of liquid velocity and flowmeter 
           scale (Flowmeter І).	108
Figure A.2  The illustration of flowmeter adjustment of 
           Flowmeter І.	108
Figure A.3  The relationship of liquid velocity and flowmeter 
          scale (Flowmeter ΙΙ).	109
Figure A.4  The illustration of flowmeter adjustment of 
          Flowmeter ΙΙ.	109
Figure B-1. The zetapotential distribution of titanium dioxide 
          membrane in different pH value.	110
Figure B-2. The zetapotential distribution of titanium dioxide 
          suspension in different pH value.	110
Figure B-3. The size distribution of TiO2 nanoparticle 
          suspension in pH=5.	111
Figure B-4. The size distribution of TiO2 nanoparticle 
          suspension in pH=7.	111
表目錄
Table 1.1  The classification of driving force in different 
          operation process.	8
Table 3.1  The property of membrane.	42
Table 3.2  The properties of titanium dioxide P25.	42
Table 4.1  The relation of injection factor and the shape of bubble 
in liquid velocity 0.1~0.5 m/s and gas velocity 0.05~
0.3 m/s.	96
Table.C-1. The experimental data of steady state flux 
         with various parameters(C=1 kg/m3 , △P=100 kPa).	112
Table.C-2. The experimental data of steady state flux 
         with various parameters (C=5 kg/m3 , △P=100 kPa).	113
Table.C-3. The experimental data of steady state flux 
         with various parameters (C=5 kg/m3 , △P=50 kPa).	114
Table.C-4. The experimental data of steady state flux 
         with various parameters (C=5 kg/m3 , △P=100 kPa).	115
Table.C-5. The experimental data of steady state flux 	
         with various parameters (C=5 kg/m3 , △P=150 kPa).	116
Table.C-6. The experimental data of steady state flux with various parameters (C=5 kg/m3 , △P=200 kPa).	117
Table.C-7. The experimental data of steady state flux with various parameters (C=5 kg/m3 , △P=100 kPa , θ =0°).	118
Table.C-8. The experimental data of steady state flux with various parameters (C=5 kg/m3 , △P=100 kPa , θ =30°).	119
Table.C-9. The experimental data of steady state flux with various parameters (C=5 kg/m3 , △P=100 kPa , θ =45°).	120
Table.C-10. The experimental data of steady state flux with various parameters (C=5 kg/m3 , △P=100 kPa , θ =60°).	121
Table.C-11. The experimental data of steady state flux with various parameters (C=5 kg/m3 , △P=100 kPa , θ =90°).	122
參考文獻
Bauser, H., H. Chmiel, N. Stroh, E. Walitza, “Control of concentration polarization and fouling of membranes in medica, foodand biotechnical application”, J. Membr. Sci. 27  195-202 (1986).
Belfort, G., ”Fluid mechanics in membrane filtration: recent developments ”, J. Membr. Sci. 40, 123-147 (1989).
Bellara, S.R., Z.F. Cui, D.S. Pepper, “Gas sparging to enhancepermeate flux in ultrafiltration using hollow fibre membranes,” J. Membr. Sci. 121, 175-184 (1996)
Cabassud, C., S. Laborie, J.M. Laine, “How slug flow can improve ultra -filtration flux in organic hollow fibers”, J. Membr. Sci. 128  93-101 (1997).
Cheng, T.W., H.M. Yeh, C.T. Gau, “Enhancement of Permeate Flux by Gas Slugs for Crossflow Ultrafiltration in Tubular Membrane Module”, Sep. Sci. Technol. 33, 2295-2309 (1998).
Cheng, T.W., H.M. Yeh, J.H. Wu, “Effects of gas slugs and inclination angle on the ultrafiltration in tubular membrane module”, J. Membr. Sci. 158, 223-234 (1999).
Cheng, T.W., T.L. Lin, “Characteristics of gas-liquid two-phase flow in small diameter inclined tubes”, Chem. Eng. Sci. 56, 6393-6398 (2001).
Cheng, T.W., S.Y. Pan, “Recovery of Sizing Agent by Gas Sparging Ultrafiltration”, J. Chin. Inst. Chem. Engrs. 32, 431-436
    (2001).
Cheng, T.W., “Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane”, J. Membr. Sci. 196, 103-110 (2002).
Cheng, T.W., J.G. Wu, “Quantitative flux analysis of gas-liquid two-phase ultrafiltration”, Sep. Sci. Technol. 38, 817-835 (2004).
Cheng, T.W., C.T. Lin, “A study on cross-flow ultrafiltration with various membrane 	orientation”, Sep. Purif. Technol. 39, 13-22 (2004).
Cheng, T.W., L.N. Li, “Gas-Sparging Cross-Flow Ultrafiltration in Flat-Plate Membrane Module: Effects of Channel Height and Membrane Inclination”, Sep. Purif. Technol. 55, 50-55 (2007).
Cheng, T.W., Z.W. Lee, “Effect of aeration and inclination on flux performance of submerged membrane filtration”, Desalination 234, 74-80 (2008).
Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, Tech -nomic Publishing Co. Inc. Pennsylvania (1998)
Chong, R., P. Jelen, W. Wang, “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol. 20 (1985) 393-402.
Cui, Z.F., K.I.T. Wright, “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism,” J. Membr. Sci. 117, 109-116 (1996)
Fane, A. G., C.J.D. Fell, A. Suki, “Effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, J. Membr. Sci. 16, 195-210 (1983).
Fell, C.J.D., K.J. Kim, V. Chem, D.E. Wiley, A.G. Fane, “Factors determining flux and rejection of ultrafiltration membranes”, Chem. Eng. Process. 27, 165-173 (1990).
Gupta, B.B., P. Blanpain, M.Y. Jaffrin, “Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane”, J. Membr. Sci. 70, 257-266 (1992).
Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, “A helical baffle for cross -flow microfiltration”, J. Membr. Sci. 99, 31-42 (1995).
Kagaya, S., K. Shimizu, R. Arai, K. Hasegawa,” Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride”, Wat. Res. 33, 1753-1755, (1999).
Kim, B.S., H.N. Chang, “Effects of periodic backflushing on ultra -filtration Performance”, Bioseparation, 2,  9-23 (1991).
Laborie, S., C. Cabassud, L. Durand-Bourlier, J.M. Lainé,    “Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibres for drinking water production: effect ofslug flow on cake structure”, presented at the 7th World Filtration Congress in Budapest, Hungary in May 1996.
Mercier-Bonin, M., C. Fonade, C. Lafforgue-Delorme, “How slug Flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci. 128, 103-113 (1997).
Mulder, M., “Basic Principles of Membrane Technology”, Kluwer Academic Publishers, The Netherlands (1996).
Mercier-Bonin, M., C. MAranges, C. Lafforgue, C. Fonade,  “Hydrodynamics of Slug Flow Applied to Cross-Flow Filtration in Narrow Tubes”, AIChE J. 46, 476-488 (2000).
Mikulášse P., P. Pospíšil, P. Doleček, J. Cakl, “Gas-liquid two-phase flow in microfiltration mineral tubular membranes: relationship between flux enhancement and hydrodynamic parameters”, Desalination 146,
    103-109 (2002).
Mikulášse P., P. Doleček, D. Šmídová, P. Pospíšil, “Crossflow microfiltration of mineral dispersions using ceramic membranes”, 
    Desalination 163, 333-343 (2004).
Mikulášse P., P. Pospíšil, R. J. Wakeman, I. O. A. Hodgson, “Shear stress-based modeling of steady state permeate flux in microfil -tration enhanced by two-phase flows”, Chem. Eng. J. 97, 257-263 (2004)
Millward, H.R., B.J. Bellhouse, G. Walker, “Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance”, J. Membr. Sci., 106, 269-279 (1995).
Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent. 4,  412 (1983).
Morel, G., A. Gracina, J. Lachise, “Enhanced nitrate ultrafiltration by cationic surfactant”, J. Membr. Sci. 56, 1-12 (1991).
Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin”, AIChE J. 36, 907-915 (1990).
Nel, R. G., S. F. Oppenheim, V.G.J. Rodgers, “Effect of solution properties om solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog. 10, 539-542 (1994).
Priyananda, P., V. Chen, “Flux decline during ultrafiltration of protein-fatty acid mixtures”, J. Membr. Sci., 273, 58-67(2006).
Van Der Weal, M. J., I.G. Racz, “Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments”, J. Membr. Sci., 40, 243-260 (1989).
Winzeler, H.B., G. Belfort, “Enhanced performance for pressure driven membrane processes: the argument for fluid instabilitie-s”, J. Membr. Sci. 80, 35-47 (1993).
 Xi, W., S.U. Geissen, “Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration”, Wat.Res. 35 (5), 1256-1262, (2001).
 Xue, X. D., J. F. Fu, W.F. Zhu, X. C. Guo, “Separation of ultrafine TiO2 from aqueous suspension and its reuse using cross-flow ultrafiltration (CFU)”, Desalination 225, 29–40 (2008).
Youm, K.H., A.G. Fane, D.E. Wiley, “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, J. Membr. Sci. 116, 229-241 (1996).
 Zhao, Y. J., W. H. Xing, , N. P. Xu, , F. S. Wong, “Effect of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension” , J. Membr. Sci. 254, 81–88(2005)
高啟綜,氣-液兩相掃流薄膜超過濾之研究,碩士論文,淡江大學化學工程研究所,台北縣 (1996)
林世龍, “氣液兩相管式薄膜超過濾系統中流態與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2002).
呂宗昕,“圖解奈米科技與光觸媒”,商周出版 (2003)
呂維明編著, “固液過濾技術”, 高立圖書有限公司 (2004).
呂宗昕、吳偉宏,“奈米科技與二氧化鈦”, 台灣大學化學工程系,科學發展期刊376期 (2004)
林凱尉,“無機管式薄膜過濾蛋白質溶液之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2007).
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信