淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2206201214132100
中文論文名稱 指定頻段H∞濾波問題分析與設計
英文論文名稱 Studies of H∞ Filtering Problem over Finite Frequency Interval
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 林俊辰
研究生英文姓名 Chun-Chen Lin
學號 894350015
學位類別 博士
語文別 中文
口試日期 2012-06-01
論文頁數 158頁
口試委員 指導教授-周永山
委員-張帆人
委員-容志輝
委員-吳政郎
委員-練光祐
中文關鍵字 非最小實現  濾波問題  廣義KYP引理  指定頻段  線性矩陣不等式  串疊型三角積分調變電路 
英文關鍵字 non-minimal realization  H∞ filtering problem  GKYP lemma  finite frequency interval  LMI  cascaded delta-sigma modulators 
學科別分類
中文摘要 為了能有效處理特定頻段的雜訊抑制問題,普遍的做法是應用H∞ 濾波方法,並引入權重函數(weighting function)來輔助設計。雖然此舉能有效地抑制指定頻段內的雜訊,但是適合的權重函數並不容易選取,並且常會導致高階之濾波器。對此,Iwasaki等人提出的廣義KYP引理(Generalized Kalman–Yakubovic–Popov,GKYP)可用來處理這一類針對指定頻段H∞ 增益的設計。然而,該原始成果不適合用於不確定系統分析以及濾波器(或控制器)設計(例如無限脈衝響應(Infinite Impulse Response,IIR))。其後,雖然有另一類型的H∞ 增益性能條件問世,可用於上述問題,然而這條件僅為充分,而且現有降階濾波器設計成果乃沿用了舊有設計技巧,應用於狀態空間不確定系統。因此,本論文針對此種技術進行改良,提出新型指定頻段H∞ 增益分析條件,並且針對不同類型不確定系統推導出新型指定頻段H∞ 降階濾波器合成條件。
本論文針對離散時間不確定系統之指定頻段分析與設計問題進行研究。首先,吾人藉由投影引理(projection lemma)推導出可判斷有限頻段H∞ 性能要求是否滿足的線性矩陣不等式(linear matrix inequality,LMI)條件,可用於系統性能分析問題。與現有成果相比,本文之條件具較低的保守性。應用所提出之條件,我們提出新型降階濾波器之設計方法,並應用至三種不確定性系統,包含狀態空間多邊形系統、頻域多邊形系統與線性分式轉換型系統。其中我們充分應用了非最小實現(non-minimal realization)之觀念來處理降階設計中關鍵的維度問題。最後,將所提出之設計方法用於串疊型三角積分調變電路(cascaded delta-sigma modulator)。由於製造誤差以及元件自然限制,造成了類比電路與數位電路中的不匹配的問題,導致量化雜訊的遺漏,使得訊號品質降低。從系統層面的探討可知,此問題可視為濾波問題中的特例,即模式匹配(model-matching)問題。因此,將本文所提出的設計方法用於電路中數位濾波器之設計。模擬結果顯示,雜訊的轉移函數之波德圖增益在訊號的頻帶內的確能被有效地抑制,進而改善了電路之訊號與雜訊比(signal-to-noise ratio,SNR)性能。
英文摘要 In order to deal with the H∞ filtering problem, a common way is to introduce the weighting functions into the design procedure. Although it is efficient to suppress the noise over a specified frequency interval, it is difficult to choose a suitable weighting function and the consequence is the high-order filters. For easing the problem, Iwasaki et al. has proposed an important result, i.e. GKYP lemma, which can be used to analyze the H∞ gain of a filtering system without uncertainty by assigning the frequency interval(s). However, there are some limitations on their results, for example, to analyze state-space polytopic uncertain system or design IIR-type filters. Therefore, this dissertation has studied the problems.
The dissertation investigates the problems of filtering over finite frequency interval, including analysis and synthesis problems. At first, we derive new LMI conditions for the requirements of GKYP performance via projection lemma. Next, based on the proposed analysis conditions, we have proposed new methods to design reduced-order filters under three kinds of uncertain systems (i.e. state-space polytopic uncertain system, frequency-domain polytopic uncertain systems and (linear-fractional- transformation type uncertain systems). The key design concept is non-minimal realization, which is applied to deal with the dimensions of system and filter.
Finally, the proposed methods have been employed to design the digital filter for improving the performance of cascaded delta-sigma modulators. Because the fabrication error and natural limitation on components, it results low order noise shaping and poor signal-to-noise ratio (SNR). From the viewpoint of system level, this kind of quantization leakage problem can be regarded as a special case of the filtering problem, i.e. model-matching problem. Therefore, the proposed methods are also employed to redesign the digital filter of the modulator such that the H∞ gain of the noise transfer function is minimized in the signal bandwidth. Consequently, the signal-to-noise ratio (SNR) performance is improved. We compare the proposed method with other existing designs and establish its efficacy.
論文目次 目錄
中文摘要............................................................................................................I
英文摘要.........................................................................................................III
目錄..................................................................................................................V
圖目錄..........................................................................................................VIII
表目錄..............................................................................................................X
第一章 緒論 1
1.1 文獻回顧與研究動機 1
1.2 論文架構 5
第二章 背景知識、問題敘述與重要定理 6
2.1 背景知識與問題敘述 6
2.2 重要定理 11
2.3 數值模擬 18
第三章 多邊形系統之指定頻段濾波器設計 23
3.1 前言 23
3.2 狀態空間多邊形之降階濾波器設計 23
3.2.1 問題描述 23
3.2.2 降階濾波器設計概念 25
3.2.3 LMI解法 28
3.3 頻域多邊形系統之降階濾波器設計 41
3.3.1 問題敘述 41
3.3.2 降階濾波器設計概念 42
3.3.3 LMI解法 43
3.4 研究方法之探討與推廣 55
3.4.1 研究方法之探討 55
3.4.2 多頻段的濾波問題 56
3.5 數值模擬 57
第四章 LFT不確定系統之指定頻段濾波器設計 60
4.1 前言 60
4.2 強健濾波器設計 60
4.2.1 問題描述 60
4.2.2 問題轉換 65
4.2.3 濾波器與廣義乘數運算子之設計條件 71
4.2.4 濾波器之LMI解法 74
4.2.5 廣義乘數運算子之LMI解法 74
4.2.6 指定頻段μ合成演算法 83
第五章 三角積分調變電路設計 85
5.1 前言與背景 85
5.2 問題描述 86
5.3 串疊2-1 ΔΣ調變電路設計 92
第六章 結論與未來研究方向 104
參考文獻 106
附錄...............................................................................................................114
附錄A. 定理2.1之證明 114
附錄B. 定理3.1之證明 116
附錄C. 定理3.2之證明 122
附錄D. 定理3.3之證明 127
附錄E. 定理3.4之證明 135
附錄F. 定理3.5之證明 138
附錄G. 定理3.6之證明 140
附錄H. 引理4.1之證明 144
附錄I. 引理4.2之證明 144
附錄J. 引理4.3之證明 145
附錄K. 引理4.4之證明 148
附錄L. 定理4.1之證明 148
附錄M. 定理4.2之證明 149
附錄N. 定理4.3之證明 151
附錄O. 三種不同廣義受控體模型之系統矩陣推導 154

圖目錄
圖2.1 濾波問題 8
圖2.2 標準 架構 9
圖2.3 系統之波德增益圖;δ = 0.45 21
圖3.1 濾波問題架構 23
圖3.2 濾波問題 25
圖3.3 濾波問題架構 41
圖3.4 條件(3.40)-(3.42)之系統架構 43
圖3.5 濾波問題 58
圖4.1 濾波系統架構 60
圖4.2 一般分析/合成架構 61
圖4.3 迴路 63
圖4.4 架構 66
圖4.5 架構轉換(一) 66
圖4.6 架構轉換(二) 66
圖4.7 架構轉換(三) 67
圖4.8 架構轉換(四) 67
圖4.9 架構轉換(五) 67
圖4.10 架構 68
圖4.11 系統伴隨廣義乘數運算子 69
圖4.12 小增益架構 71
圖5.1 多級串疊架構ΔΣ調變器 86
圖5.2 一階與兩階之 功率譜密度圖 88
圖5.3 串疊2-1 ΔΣ調變電路 90
圖5.4 單頻段設計之效能 94
圖5.5 匹配誤差函數之波德增益圖 96
圖5.6 功率頻譜圖 97
圖5.7 放大器增益變動對照SNR效能 98
圖O.1 以乘法性誤差之架構轉換圖 158

表目錄
表2.1 xi之設定選擇 14
表2.2 各頻段之分析結果 (rad/s); 19
表2.3 各頻段之分析結果 (rad/s); 19
表2.4 各方法之矩陣P特徵值; 20
表3.1 三種不同SA之設定所產生之 增益 58
表3.2 (3.22)式中SA之設定與其他兩種設定之比較 59
表5.1 設計方法總表 92
表5.2 設計參數 99
表5.3 所得濾波器、alpha_M與SNR值 102
參考文獻 [1] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice Hall, 1998.
[2] J.C. Geromel, “Optimal linear filtering under parameter uncertainty,” IEEE Trans. Signal Processing, vol. 47, no. 1, 1999, pp. 168􀃭175.
[3] J.C. Geromel, J. Bernussou, G. Garcia, and M.C. de Oliveira, “H2 and H􀁦 robust filtering for discrete-time linear systems,” in Proceedings of Conference on Decision and Control, 1998, pp. 632􀃭637.
[4] J.C. Geromel and M.C. de Oliveira, “H2 and H􀁦 robust filtering for convex bounded uncertain systems,” IEEE Trans. Automatic Control, vol. 46, no. 1, 2001, pp.100􀃭107.
[5] E.N. Goncalves, R.M. Palhares, and R.H.C. Takahashi, “H2/H􀂒 filter design systems with polytopic-bounded uncertainty,” IEEE Trans. Signal Processing, vol. 54, 2006, pp. 3620􀃭3626.
[6] H. Gao, J. Lam, L. Xie, and C. Wang, “New approach to mixed H2/H􀂒filtering for polytopic discrete-time systems,” IEEE Trans. Signal Processing, vol. 53, 2005, pp. 3183􀃭3192.
[7] K. Hu and J. Yuan, “Improved robust H􀂒 filtering for uncertain discrete-time switched systems,” IET Control Theory and Applications, vol. 3, 2009, pp. 315􀃭324.
[8] V. Balakrishnan, “Linear matrix inequalities in robustness analysis with multipliers,” System and Control Letters, vol. 25, no. 4, 1995, pp.265􀃭272.
[9] J.C. Doyle, “Analysis of feedback systems with structured uncertainty,” IEE Proceedings, Part D, vol. 129, no. 6, 1982, pp. 242􀃭250.
[10] M.H.H. Fan and A.L. Tits, “A measure of worst-case H􀂒 performance and of largest acceptable uncertainty,” System & Control letters, vol. 18, 1992, pp.409􀃭421.
[11] M.H.H. Fan, A.L. Tits, and J.C. Doyle, “Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics,” IEEE Trans. Automatic Control, vol. 36, no. 1, 1991, pp. 25􀃭38.
[12] Y.S. Chou, A.L. Tits, and V. Balakrishnan, “Stability multipliers and 􀈝
upper bounds: Connections and implications for numerical verification
of frequency-domain conditions,” IEEE Trans. Automatic Control, vol.
44, no. 5, 1999, pp. 906􀃭913.
[13] K.C. Goh, M.G. Safonov, and J.H. Ly, “Robust synthesis via bilinear
matrix inequalities,” International Journal of Robust and Nonlinear
Control, vol. 6, no.9/10, 1996, pp. 1079􀃭1095.
[14] J.C. Geromel, M.C. de Oliveira, and J. Bernussou, “Robust filtering of
discrete-time linear systems with parameter dependent Lyapunov
functions,” in Proceedings of Conference on Decision and Control,
1999, pp. 570􀃭575.
[15] L. Xie, L. Lu, D. Zhang, and H. Zhang, “Improved robust H2/H􀂒
filtering for uncertain discrete-time systems,” Automatica, vol. 40, 2004,pp. 873􀃭880.
[16] Z. Duan, J. Zhang, C. Zhang, and E. Mosca, “Robust H2 and H􀂒
filtering for uncertain linear systems,” Automatica, vol. 42, 2006, pp.
1919􀃭1926.
[17] A. Karimi, H. Khatibi, and R. Longchamp, “Robust control of polytopic
systems by convex optimization,” Automatica, vol. 43, no. 8, 2007, pp.
1395􀃭1402.
[18] M. Vidyasagar, Control System Synthesis: A Factorization Approach.
MIT Press, 1985.
[19] Y.S. Chou, C.C. Lin, and Y.L. Chang, “Robust h-infinity filtering in
finite frequency domain for polytopic systems with application to
on-band quantization noise reduction in uncertain cascaded sigma-delta
modulators,” IET Control Theory & Applications. (accept on
03.22.2012)
[20] T. Iwasaki, G. Meinsma, and M. Fu, “Generalized S procedure and
finite frequency KYP Lemma,” Mathematical Problems in Engineering,
vol. 6, 2000, pp. 305􀃭320.
[21] K.M. Grigoriadis and J.T. Watson, “Reduced-Order H􀁦 and L2-L􀁦
filtering via linear matrix inequalities,” IEEE Trans. Aero Space and
Electronics Systems, vol. 33, no. 4, 1997, pp. 1326􀃭1338.
[22] H.D. Tuan, P. Apkarian, and T.Q. Nguyen, “Robust and reduced-order
filtering: New LMI-based characterizations and methods,” IEEE Trans. Signal Processing, vol. 49, no. 12, 2001, pp. 2975􀃭2984.
[23] Z. Duan, J. Zhang, C. Zhang, and E. Mosca, “A simple design method of reduced-order filters and its applications to multirate filter bank design,” Signal Processing, vol. 86, 2006, pp. 1061􀃭1075.
[24] H.L. Zhang and X.H. Chang, “Reduced order H􀁦 filtering for discrete-time Markovian jump linear systems with partly known transition probabilities,” in Proceeding of Chinese Control and Decision Conference, 2010, pp. 1081􀃭1085.
[25] X. Du and G.H. Yang, “H􀂒 model reduction of linear continuous-time systems over finite-frequency interval,”IET Control Theory and Applications, vol. 4, 2010, pp. 499􀃭508.
[26] X. Du, G.H. Yang, and D. Ye, “An LMI approach to H􀁦 model reduction of linear discrete-time systems over finite frequency interval,” IEEE Chinese Control and Decision Conference, 2011, pp. 1038􀃭1043.
[27] J.C. Geromel and G. Levin, “Suboptimal reduced-order filtering through and LMI-Based method,” IEEE Trans. Signal processing, vol. 54, no. 7, 2006, pp.2588􀃭2595.
[28] J.H. Kim, “Reduced-order delay-dependent H􀂒 filtering for uncertain discrete-time singular systems with time-varying delay,” Automatica vol. 47, no.12, 2011, pp. 2801􀃭2804.
[29] R.A. Borges, T.R. Calliero, R.C.L.F. Oliveira, and P.L.D. Peres,“Improved conditions for reduced-order H􀂒 filter design as a static output feedback problem,” in Proceedings of the American Control Conference , art. no. 5991187, 2011, pp. 1305􀃭1310.
[30] T. Iwasaki, S. Hara, and H. Yamauchi, “Dynamical system design from a control perspective: Finite frequency positive-realness approach,” IEEE Trans. Automatic Control, vol. 48, no. 8, 2003, pp. 1337􀃭1354.
[31] T. Iwasaki and S. Hara, “Generalized KYP lemma: Unified frequency domain inequalities with design applications,” IEEE Trans. Automatic Control, vol. 50, no. 1, 2005, pp. 41􀃭59.
[32] T. Iwasaki and S. Hara, “Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma,” International Journal of Robust and Nonlinear Control, vol. 17, issue 5, 2007, pp. 415􀃭434.
[33] H. Wang and G.H. Yang, “H􀁦 filter design for uncertain discrete-time systems in finite frequency domain,” 16th IEEE International conference on control applications, 2007, pp. 1000􀃭1005.
[34] S.R. Norsworthy, R. Schreier, and G.C. Temes, Delta Sigma Data Converters: Theory, Design and Simulation. IEEE Press, 1997.
[35] B.M. Chen, “Direct computation of infimum in discrete time H-optimization using measurement feedback,” System & Control letters, vol. 35, 1998, pp. 269􀃭278.
[36] G. Tao and P.A. Ioannou, “Necessary and sufficient conditions for strictly positive real matrices,” Proc. Inst. Elect. Eng., pt. G, vol. 137, 1990, pp. 360–366.
[37] T. Iwasaki and R.E. Skelton, “All controllers for the general H􀁦 control problem: LMI existence conditions and state space formulas,” Automatica, vol. 30, no. 8, 1994, pp. 1307􀃭1317.
[38] D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, “A new robust D-stability condition for real convex polytopic uncertainty,” System & Control letters, 40, 2000, pp. 21􀃭30.
[39] M.C. de Oliveria, J.C. Geromel, and J. Bernussou, “Extended H2 and H􀁦 norm characterizations and controller parameterizations for discrete-time systems,” International Journal of Control, vol. 75, 2002, pp. 666􀃭679.
[40] W.M. Haddad and D.S. Bernstein, “Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and popov theorems and their application to robust stability–Part II: Discrete time theory,” International Journal of Robust and Nonlinear Control, vol. 4, 1994, pp. 249􀃭265.
[41] S. Zhou, J. Lam, and G. Feng, “New characterisation of positive realness and control of a class of uncertain polytopic discrete-time systems,” System & Control letters, vol. 54, 2005, pp. 417􀃭427.
[42] X. Du and G.H. Yang, “New characterizations of positive realness and static output feedback control of discrete-time systems,” International Journal of Control, vol. 82, no. 8, 2009, pp. 1485􀃭1495.
[43] D. Ding and G.H. Yang, “Finite frequency H􀁦 filtering for uncertain discrete-time switched linear systems,” Progress in Natural Science, vol. 19, no. 11, 2009, pp. 1625􀃭1633.
[44] P. Gahinet, A. Nemirovski, A.J. Laub, and M. Chilali, Manual of LMI Control Toolbox. Math Works, Inc, 1995.
[45] F. Yang and M. Gani, “An H􀂒 approach for robust calibration of cascaded sigma-delta modulators,” IEEE Trans. Circuits and Systems, vol. 55, Mar. 2008, pp. 625􀃭634.
[46] G. Leger and A. Rueda, “Cascade 􀈈􀇻 modulator with digital correction for finite amplifier gain effects,” Electronic Letters, vol. 40, no. 21, 2004, pp. 1322􀃭1323.
[47] A.J. Davis, G. Fischer, H.H. Albrechtc, and J. Hess, “Digital compensation of analog circuit imperfections in a 2-stage sixth-order modulator,” Measurement, vol. 28, no. 2, 2000, pp. 93􀃭104.
[48] P. Kiss, J. Silva, A. Wiesbauer, T. Sun, U.K. Moon, J.T. Stonick, and G.C. Temes, “Adaptive digital correction of errors in MASH ADC’s-II correction using test-signal injection,” IEEE Trans. Circuits and Systems II, vol. 28, no. 2, 2000, pp. 629􀃭638.
[49] T.H. Chang, L.R. Dung, and J.Y. Guo, “On reducing leakage quantization noise of multistage 􀈈􀇻 modulator using nonlinear oscillation,” in Proc. Circuits and Systems, 2005, pp. 2555􀃭2558.
[50] M. Gani, “Robust digital correction of analog errors in cascaded sigma delta converters,” Measurement, vol. 37, 2005, pp. 310􀃭319.
[51] J. McKernan, M. Gani, F. Yang, and D. Henrion, “Optimal low-frequency filter design for uncertain 2-1 sigma-delta modulators,” IEEE Signal Processing Letters, 16, 2009, pp. 362􀃭365.
[52] K. Martin and A. Sedra, “Effects of the OP-amp finite gain and bandwidth on the performance of switched-cap filters,” IEEE Trans. Circuits and Systems, vol. 28, no. 8, 1981, pp. 822􀃭829.
[53] G. Fischer and A.J. Davis, “Alternative topologies for sigma-delta modulators􀃭a comparative study,” IEEE Trans. Circuits and Systems II, vol. 44, no. 10, 1997, pp. 789􀃭797.
[54] R. Schreier, The Delta-Sigma Toolbox. http://www.mathworks.com/matlabcentral/fileexchange, accessed 2004
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-06-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-06-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信