淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2206201214120800
中文論文名稱 使用智慧型手機實現嬰幼兒安全監控之整合應用
英文論文名稱 Integrated Application of Surveillance System for Infants' Security Using Smartphone
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 林凡
研究生英文姓名 Fan Lin
學號 699460159
學位類別 碩士
語文別 中文
口試日期 2012-06-01
論文頁數 66頁
口試委員 指導教授-周永山
委員-張帆人
委員-容志輝
委員-吳政郎
委員-練光祐
中文關鍵字 嬰幼兒居家照護  影像追蹤  卡爾曼濾波器  Android手機應用程式設計 
英文關鍵字 Home care of infants  Image tracking  Kalman Filter  Android mobile phone application 
學科別分類 學科別應用科學電機及電子
中文摘要 由於少子化問題,我國人口結構趨向嚴重老化,「家有一小,如有一寶」是未來社會的真實寫照,因此嬰幼兒對於父母而言,其意義將不可同日而語。但現有研究在嬰幼兒照護的議題上寥寥可數,加上近年嬰幼兒意外事件屢有耳聞,有鑒於此,本論文擬發展一套嬰幼兒照護系統,不在嬰幼兒身上配戴任何感測裝置避免誤食或電磁波影響健康,而以非接觸的模式達成監控與警示之目的,讓父母可隨時掌握家中小孩的狀況。
本論文的模擬情境置於住家當中,父母工作或忙於家務,把小孩放在客廳,架設好攝影機啟動我們設計的監控機制,可透過攝影機觀察小孩的一舉一動。父母可以利用系統的GUI介面設定嬰幼兒的活動範圍,當系統發現小孩接近窗戶或是不在監控範圍時,便會發出警示鈴聲通知父母。本論文所研擬的系統可分成兩個部分,第一部分先透過攝影機擷取影像,接著對所擷取的影像進行處理並且做動態影像追蹤,使用卡爾曼濾波器(Kalman Filter)對目標物做位置預測。第二部分為Android手機平台,透過設計手機應用程式實現預警通報並且同步監控,當卡爾曼濾波器預估嬰幼兒將超出使用者所設定的警戒範圍時,會觸發手機端的警示鈴聲知會父母。
本文系統在電腦端設計一個GUI介面,讓使用者可以由此介面操作與監控,另外,利用Eclipse軟體撰寫Android手機的應用程式,使得父母也可由手機端透過網路同步達到操作與監控的功能。本論文整合各項技術,應用於居家嬰幼兒安全監控系統,將影像監控系統與Android手機警示系統結合,實驗結果顯示本論文提出的系統能達到居家安全照護之目的。
英文摘要 Due to the problem of extremely low birth rate,our society is turning rapidly to be an aging one. “An infant at home is a treasure you own” This shows vividly the phenomenon that will exist in the future. Each infant is a precious stone of his/her parents. However, the research on infant-care is insufficient. We have heard some unfortunate news of infants in recent years. In view of this, we develop a system for infant-care. No sensor device is attached to the infant. And the infant-care system we build adopt a non-contact approach for monitoring and pre-warning. Through the system, the parents can know well the situation of the infant at anytime.

In this paper, the environment under consideration is in house. The parents can put the infant in the living room, and set up the camera to start the proposed system of surveillance. The infant’s activity can be shot by the camera. The parents can set a safety-zone for the infant via the GUI of the proposed system. When the system detects that the infant is close to the window or not in the range of surveillance, it will send a warning ringtone to notify the parents. Briefly, the system consists of two parts. First, the camera produces several images per second. The proposed system processes the captured images and tracks the infant’s position by Kalman Filter. Second, it is the platform Android mobile phone. The pre-warning notice is realized through the smart phone application. When the Kalman Filter predicts that the infant will crawl out of the defaulted safety-zone, it can activate the warning ringtone of mobile phone to notify the parents.

We design a GUI interface by Matlab, which enables the user to operate and monitor. In addition, we use the software of Eclipse to create an application of Android mobile phone, which can synchronously operate and monitor from mobile phone. The proposed system integrates all the technologies for infant-homecare. The experimental results show the effectiveness of the proposed system.
論文目次 中文摘要............................................... I
英文摘要............................................... II
目錄................................................... IV
圖目錄................................................. VII
表目錄................................................. XI
第一章 緒論............................................ 1
1.1研究動機.................................... 1
1.2 研究概況................................... 2
1.3 論文架構................................... 4
第二章 背景知識........................................ 5
2.1 移動目標物偵測............................. 5
2.1.1 色彩空間轉換..................... 6
2.1.2 背景相減法....................... 7
2.1.3 膨脹與侵蝕....................... 8
2.1.4 連通成分......................... 10
2.2 目標物追蹤預測............................. 13
2.3 網路通訊概念............................... 17
2.3.1通訊協定: TCP/IP.................. 18
2.3.2 Socket傳輸之相關知識............. 22
2.3.2.1通訊埠口................ 22
2.3.2.2 Socket Pair............ 23
2.4 手機應用程式概念........................... 24
第三章 安全監控系統.................................... 29
3.1 模擬情境與系統架構之簡介................... 29
3.2 影像追蹤................................... 31
3.2.1 影像前處理與特徵擷取............. 31
3.2.2 動態影像位置追蹤法則............. 32
3.3 Socket通訊介面............................. 36
3.4 Android手機應用程式設計.................... 39
第四章 實驗結果........................................ 41
4.1 實驗環境................................... 41
4.2 網路攝影機之架設........................... 43
4.3 目標物偵測與追蹤預測測試................... 48
4.3.1 目標物偵測測試................... 48
4.3.1.1 單純背景測試........... 48
4.3.1.2 複雜背景測試........... 51
4.3.2 目標物追蹤預測測試............... 52
4.4 GUI介面設計操作............................ 54
4.5 Android手機瀏覽測試........................ 57
第五章 結論與未來研究方向.............................. 61
參考文獻............................................... 63

圖2.1 RGB影像的像素組成................................ 7
圖2.2膨脹示意圖........................................ 9
圖2.3侵蝕示意圖........................................ 10
圖2.4連通成分.......................................... 11
圖2.5四連通成分座標.................................... 12
圖2.6四連通成分與標記矩陣.............................. 12
圖2.7八連通成分與標記矩陣.............................. 13
圖2.8卡爾曼濾波器系統架構圖............................ 14
圖2.9卡爾曼濾波器狀態時刻圖............................ 15
圖2.10卡爾曼濾波器流程圖............................... 17
圖2.11 OSI與TCP/IP協定的架構相關性..................... 19
圖2.12 TCP/IP協定資料的傳遞方式........................ 20
圖2.13三向交握流程圖................................... 21
圖2.14 Socket Pair示意圖............................... 24
圖2.15 Andriod系統架構................................. 25
圖2.16 Activity生命週期流程圖.......................... 27
圖2.17 Android的模擬器................................. 28
圖3.1情境模擬示意圖.................................... 29
圖3.2安全監控系統架構圖................................ 30
圖3.3影像追蹤流程圖.................................... 31
圖3.4監控系統位置追蹤流程圖............................ 36
圖3.5 Socket運作流程圖................................. 38
圖3.6手機介面設計草圖.................................. 39
圖3.7手機應用程式設計流程圖............................ 40
圖4.1實驗環境(a)實驗場景;(b)網路攝影機架設圖.......... 42
圖4.2自動爬行嬰兒圖.................................... 42
圖4.3 IP CAM設備搜尋器................................. 43
圖4.4網際網路設定...................................... 44
圖4.5 IP CAM攝影畫面................................... 44
圖4.6設定選單.......................................... 45
圖4.7 FTP Server設定................................... 45
圖4.8影像偵測擷取設定.................................. 46
圖4.9 ALFTP之介面選單.................................. 46
圖4.10 ALFTP之伺服器設定............................... 47
圖4.11 (a)背景圖;(b) Frame 7;(c)背景相減圖........... 49
圖4.12 (a) Frame 35;(b) Frame 35背景相減;
(c) Frame 36;(d)Frame 36背景相減............... 49
圖4.13 (a) Frame 36;(b) Frame 36 YCbCr和背景相減...... 50
圖4.14 Frame7之斷開運算................................ 50
圖4.15 Frame7之嬰幼兒偵測結果.......................... 50
圖4.16 (a)背景圖;(b) Frame 13;(c)背景相減圖.......... 51
圖4.17 (a) Frame 13;(b) Frame 13 YCbCr和背景相減;
(c)斷開運算..................................... 51
圖4.18 (a)~(x)卡爾曼濾波器預估嬰幼兒之位置示意圖....... 52
圖4.19嬰幼兒的實際位置(綠圈)與估測位置(紅圈)........... 53
圖4.20 GUI設計介面流程圖............................... 54
圖4.21 GUI平台操作..................................... 54
圖4.22安全範圍設定大小................................. 55
圖4.23 (a)「開始錄影」按鈕畫面;(b)「開始追蹤」按鈕畫面 56
圖4.24 (a)黃燈(警戒)畫面;(b) 紅燈(危險)畫面........... 56
圖4.25 Eclipse開啟畫面................................. 57
圖4.26 Workspace Launcher畫面.......................... 57
圖4.27 Android模擬器開啟畫面........................... 58
圖4.28目前Android手機的作業系統版本[26] ............... 58
圖4.29 (a)偵測所得嬰幼兒實際位置;(b)估測所得嬰幼兒位置 59
圖4.30調整「設定安全範圍」............................. 59
圖4.31 (a)接近安全範圍;(b)超出安全範圍................ 60

表2.1 well-known port對應服務.......................... 23
參考文獻 [1]J.R. Chang Chien, “Design of a home care instrument based on embedded system,” IEEE Int. Conf. on Industrial Technology , Apr. 2008, pp.1-6.
[2]周家弘,“以ARM9平台為基礎之嬰幼兒居家照護系統資料管理與人機介面設計”,國立成功大學工程科學系碩士論文,民95年。
[3]C. Linti, H. Horter, P. Osterreicher, and H. Planck, “Sensory baby vest for the monitoring of infants,” Conf. on Wearable and Implantable Body Sensor Networks, Apr. 2006, pp. 135-137.
[4]K. Wang, N. Lin, and C. Liu, “Infant management system based on RFID and internet technologies,” First Int. Conf. on Information Science and Engineering, Dec. 2009, pp. 3665-3668.
[5]許富堡,“RFID應用於母嬰看護醫療系統之設計及安全認證協定”,淡江大學資訊管理學系碩士論文,民96年。
[6]N. Al-Dasoqi, A. Mason, A. Shaw, and A.I. Al-Shamma’a, “Preventing cot death for infants in day care, ” Sensors Applications Symposium, Feb. 2010, pp. 179-182.
[7]H.J. Lee, S.Y. Lim, and J.D. Huh, “Design and implementation of baby-care service based on context-awareness for digital home,” Int. Conf. on Advanced Communication Technology, vol. 2, 2005, pp. 908-911.
[8]林漢威,“以表情辨識為基礎之嬰兒意外監控系統”, 國立臺灣師範大學資訊工程研究所,民98年。
[9]胡正宏,“應用於嬰幼兒監護系統之臉部特徵點偵測與臉部表情辨識演算法設計與實作”,國立中興大學電機工程學系碩士論文,民98年。
[10]B.H. Kim, S.H. Lee, and D.U. Cho, “Implementation of baby ocularinspection system using face color analysis”, Adv. Language Processing and Web Information Technology, Aug. 2007, pp. 315- 320.
[11]R. Cutler and L.S. Davis, “Robust real-time periodic motion detection, analysis, and applications”, IEEE Tranactions on Pattern Analysis and Machine Intelligence, vol. 22, Aug. 2000, pp. 781-796.
[12]L.Y. Liu, N. Sang, and R. Huang, “Background subtraction using shape and colour information”, Electronics Letters, vol. 46, Jan. 2010, pp. 41-43.
[13]T. Celik and H. Kusetogullari, “Solar-powered automated road surveillance system for speed violation detection”, IEEE Transactions on Industrial Electronics, vol. 57, Sep. 2010, pp. 3216-3227.
[14]C.K. Hsieh, S.H. Lai, and Y.C. Chen, “An optical flow-based approach to robust face recognition under expression variations”, IEEE Transactions on Image Processing, vol. 19, Jan. 2010, pp. 233-240.
[15]V.J.D. Tsai, “A comparative study on shadow compensation of color aerial images in invariant color models”, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, Jun. 2006, pp. 1661-1671.
[16]繆紹綱,數位影像處理運用MATLAB,東華書局,民94年。
[17]L.S. Yeong, LM. Ang, and K.P. Seng, “Efficient connected component labelling using multiple-bank memory storage”, 3rd IEEE Int. Conf. on Computer Science and Information Technology, vol. 9, Jul. 2010, pp. 75-79.
[18]P.R. Liu, M.Q.-H Meng, and P.X. Liu, “Moving object segmentation and detection for monocular robot based on active contour model”, Electronics Letters, vol.41, Nov. 2005, pp. 1320-1322.
[19]L. Huang, “Real-time multi-vehicle detection and sub-feature based tracking for traffic surveillance systems”, 2nd Int. Asia Conf. on Informatics in Control, Automation and Robotics, vol.2, Mar. 2010, pp. 324-328.
[20]C.W. Juan and J.S. Hu, “A new spatial-color mean-shift object tracking algorithm with scale and orientation estimation”, IEEE Int. Conf. on Robotics and Automation, May 2008, pp. 2265-2270.
[21]P. Smith, T. Drummond, and R. Cipolla, “Layered motion segmentation and depth ordering by tracking edges”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, Apr. 2004, pp. 479-494.
[22]R.E. Kalman, “A new approach to linear filtering and prediction problems”, Transactions of the ASME-Journal of Basic Engineering, Mar. 1960, pp. 35-45.
[23]陳祥輝,TCP/IP網路通訊協定,博碩文化公司,民98年。
[24]E. R. Harold, Java Network Programming, 3rd Edition, O’Reilly, 2005.
[25]林城,Google Android 應用程式開發實戰,碁峰資訊公司,民100年。
[26]Android Developers官網,http://developer.android.com/resources/dashboard/platform-versions.html
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-06-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-06-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信