淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2206201201450600
中文論文名稱 運用日內資料提升選擇權價格預測準確性之研究
英文論文名稱 Improving Forecast Accuracy of Stock Index Option Prices by Using Intraday Data
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 100
學期 2
出版年 101
研究生中文姓名 周益賢
研究生英文姓名 Yi-Hsien Chou
學號 699530480
學位類別 碩士
語文別 中文
口試日期 2012-05-06
論文頁數 45頁
口試委員 指導教授-邱建良
共同指導教授-劉洪鈞
委員-邱建良
委員-劉洪鈞
委員-李命志
委員-俞海琴
委員-蕭榮烈
中文關鍵字 日內資料  日變幅  已實現波動  選擇權  SPA檢定 
英文關鍵字 Intraday data  Daily range  Realized volatility  Option  SPA test 
學科別分類 學科別社會科學商學
中文摘要 本研究擬在善於捕捉條件異質變異特性的GARCH架構下,考慮三類波動模型:(i) GARCH(1,1)模型、(ii) 在GARCH的條件變異數方程式中分別加入日變幅(PK range)及已實現波動(Realized volatility, RV)之GARCH-X模型、(iii) 將GARCH模型條件變異數方程式的殘差帄方項改以RV取代之MGARCH模型(Modified GARCH),進行台灣加權股價指數之日波動性預測,並將各類模型所預測的波動性代入BS模型計算台指選擇權的理論價格後,再與市場價格進行比較,探討日內交易資訊能否提升GARCH模型對台指選擇權價格的預測準確性。同時,本研究擬以不同頻率之日內資料估計RV,檢視價格資訊頻率對於選擇權價格預測的影響效果,進一步尋求最適的日內資訊頻率。實證結果發現,GARCH-X模型及MGARCH模型的預測績效均優於傳統GARCH模型。因此,RV確實能提升GARCH模型對選擇權標的資產的波動預測準確性,進一步得到較佳的選擇權價格預測。其次,在不同的資訊頻率下,GARCH-X模型預測之選擇權價格較MGARCH模型更為準確。再者,SPA檢定的結果指出GARCH-RV10模型顯著優於其它模型。最後,10分鐘頻率的日內資料最具資訊價值。
英文摘要 Based on the GARCH (generalized autoregressive conditional heteroskedasticity, GARCH) framework, this thesis considers three volatility model categories: (i) the GARCH(1,1) model, (ii) the GARCH-X model which augments the traditional GARCH model by respectively incorporating daily PK range and RV (realized volatility, RV) as explanatory variable into the GARCH variance equation, (iii) the MGARCH model (modified GARCH) that modifies the GARCH by replacing squared residuals of its variance equation with RV. These models are used to investigate the information value of the high frequency data that is embodied in the PK/RV for improving forecasts of TAIEX option (TXO) prices at daily horizon. Empirical results indicate that both of the GARCH-X and MGARCH models perform better than the traditional GARCH(1,1) model, suggesting that the GARCH-based option price forecasts can be moderately improved with the additional information contained in volatility estimators considered in this study. Secondly, the GARCH-X model always generates more accurate option price forecasts than the MGARCH model, irrespective of data frequency. Thirdly, the SPA test results show that the GARCH-RV10 significantly outperforms other models. Finally, the intraday data with ten-minute frequency is the most informative.
論文目次 目錄
中文摘要 I
英文摘要 II
謝辭 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究架構 4
第四節 研究流程圖 5
第二章 文獻回顧 6
第一節 理論基礎 6
第二節 波動模型之預測績效 7
第三節 在波動模型加入日內資訊之預測績效 10
第四節 波動性預測之應用 12
第五節 MGARCH模型之預測績效 13
第三章 研究方法 15
第一節 波動估計式 15
第二節 波動模型 16
第三節 選擇權價格預測 18
第四節 預測績效評估 20
第四章 實證結果 22
第一節 資料來源 22
第二節 資料處理 23
第三節 基本統計分析 24
第四節 實證結果 29
第五章 結論 39
參考文獻 41
一、 國內文獻 41
二、 國外文獻 42

表目錄
表3-3-1:價內、價平及價外買權之定義 19
表4-1-1:研究相關資料一覽 22
表4-3-1:台灣加權股價指數之基本統計量 25
表4-4-1:價內台指選擇權預測績效 32
表4-4-2:價內選擇權SPA檢定結果 32
表4-4-3:價平台指選擇權預測績效 35
表4-4-4:價平選擇權SPA檢定結果 35
表4-4-5:價外台指選擇權預測績效 38
表4-4-6:價外選擇權SPA檢定結果 38

圖目錄
圖1-3-1:研究架構流程圖 5
圖4-3-1:台灣加權股價指數之時間序列資料走勢圖 26
圖4-3-2:台灣加權股價指數報酬率之時間序列資料走勢圖 26
圖4-3-3:PK之時間序列資料走勢圖 27
圖4-3-4:RV5之時間序列資料走勢圖 27
圖4-3-5:RV10之時間序列資料走勢圖 28
圖4-3-6:RV30之時間序列資料走勢圖 28
圖4-4-1:移動視窗方法 29

參考文獻 一、 國內文獻
[1]. 李沃牆、張克群(2006),「比較不同波動率模型下台灣股票選擇權之評價績效」,真理財經學報,第14期,頁71-96。
[2]. 李進生、鍾惠民、陳煒朋(2000),「不同波動性模型預測能力之比較:台灣與香港認購權證市場實證」,證券市場發展季刊,第11 卷,第4 期,頁57-90。
[3]. 林思吟、洪瑞成、顏偉倫(2007),「GARCH 模型的波動預測績效比較」,2007年健康與管理學術研討會。
[4]. 陳煒朋(1999),「GARCH模型與隱含波動性模型預測能力之比較」,淡江大學財務金融研究所碩士論文。
[5]. 莊益源(2003),「波動率模型預測能力的比較-以台指選擇權為例」,台灣金融財務季刊,第4輯第2期,頁41-63。
[6]. 張黃威(2010),「應用高頻率資料提升波動模型預測能力之研究」,淡江大學財務金融學系碩士論文。
[7]. 曾彥錤(2004),「GARCH系列模型與台指選擇權VIX指數波動性預測能力之比較」,淡江大學財務金融學系碩士論文。
[8]. 葉銀華、蔡麗如(2000),「不對稱GARCH族模型預測能力之比較研究」,輔仁管理評論,第7卷第1期,頁183-196。
[9]. 賈景宇(2001),「台灣創新型認購權證在不同波動性模型下之比較」,中原大學企業管理學系碩士論文。
[10]. 鄭婉秀、鄒易凭、蘇欣玫(2006),「商品期貨波動性之預測:CARR模型之應用」,朝陽商管評論,第五卷,第二期,頁115-132。
二、 國外文獻
[1]. Andersen, T.G. and Bollerslev, T., 1998. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review 39(4), 885-905.
[2]. Bakshi, G.S., Cao, C. and Chen, Z., 1997. Empirical performance of alternative option pricing models. Journal of Finance 52(5), 2003-2049.
[3]. Bali, T.G. and Weinbaum, D., 2005. A comparative study of alternative extreme-value volatility estimators. Journal of Futures Markets 25(9), 873-892.
[4]. Barndorff-Nielsen, O.E. and Shephard, N., 2004. Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics 2(1), 1-37.
[5]. Black, F. and Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81(3), 637-654.
[6]. Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307-327.
[7]. Bollerslev, T. and Wooldridge, J.M., 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time varying covariances. Econometric Review 11(2), 143-172.
[8]. Brooks, C. and Persand, G., 2003. Volatility forecasting for risk management. Journal of Forecasting 22, 1-22.
[9]. Chu, S.H. and Freund, S., 1996. Volatility estimation for stock index options: A GARCH approach. Quarterly Review of Economics and Finance 36(4), 431-450.
[10]. Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) Model. Journal of Money, Credit, and Banking 37, 561-582.
[11]. Corrado, C. and Truong, C., 2007. Forecasting stock index volatility: Comparing implied volatility and the intraday high-low price range. Journal of Financial Research 30(2), 201-215.
[12]. Dionne, G., Duchesne, P. and Pacurar, M., 2009. Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange. Journal of Empirical Finance 16(5), 777-792.
[13]. Fuertes, Ana-Maria, Izzeldin, M. and Kalotychou, E., 2009. On forecasting daily stock volatility: The role of intraday information and market conditions. International Journal of Forecasting 25(2), 259-281.
[14]. Garman, M. and Klass, M., 1980. On the estimation of security price volatilities from historical data. Journal of Business 53(1), 67-78.
[15]. Glosten, L., Jagannathan, R. and Runkle, D., 1993. On the relation between the expected value and the volatility nominal excess return on stocks. Journal of Finance 46(5), 1779-1801.
[16]. González-Rivera, G., Lee, T.H. and Mishra, S., 2004. Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting 20(4), 629-645.
[17]. Hansen, P.R., 2005. A test for superior predictive ability. Journal of Business and Economic Statistics 23(4), 365-380.
[18]. Hansen, P.R. and Lunde, A., 2005. A forecast comparison of volatility models: Does anything beat a GARCH (1,1). Journal of Applied Econometrics 20(7), 873-889.
[19]. Hentschel, L., 1995. All in the Family: Nesting Symmetric and Asymmetric GARCH Models. Journal of Financial Economics 39, 71-104.
[20]. Heston, S., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6(2), 327-343.
[21]. Heston, S. and Nandi, S., 2000. A closed-form GARCH option valuation model. Review of Financial Studies 13(3), 585-625.
[22]. Koopman, S.J., Jungbacker, B. and Hol, E., 2005. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements. Journal of Empirical Finance 12(3), 445-475.
[23]. Lai, Y.S. and Sheu, H.J., 2010. The incremental value of a futures hedge using realized volatility. Journal of Futures Markets 30(9), 874-896.
[24]. Maheu, J.M. and McCurdy, T.H., 2011. Do high-frequency measures of volatility improve forecasts of return distributions? Journal of Econometrics 160(1), 69-76.
[25]. Marcucci, J., 2005. Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics & Econometrics 9(4), 1-53.
[26]. McMillan, D.G. and Speight, A.E.H., 2004. Daily volatility forecasts: Reassessing the performance of GARCH models. Journal of Forecasting 23(6), 449-460.
[27]. Molnár, P., 2011. Rethinking the GARCH. The 9th NTU international conference
(http//versatile.management.ntu.edu.tw/~csbf/2011IEFA/en_acceptedpapers.html).
[28]. Moosa, I. and Bollen, B., 2002. A benchmark for measuring bias in daily value at risk. International Review of Financial Analysis 11(1), 85-100.
[29]. Nelson, D.B., 1991, Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59(2), 347-370.
[30]. Noh, J., Engle, R.F. and Kane, A., 1994. Forecasting volatility and option prices of the S&P 500 index. Journal of Derivatives 2(1), 17-30.
[31]. Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of return. Journal of Business 53(1), 61-65.
[32]. Patton, A.J., 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160(1), 246-256.
[33]. Rogers, L.C.G. and Satchell, S.E., 1991. Estimating variance from high, low and closing prices. Annals of Applied Probability 1(4), 504-512.
[34]. Sweeney, R., 1988. Some new filter rule tests: Methods and results. Journal of Financial and Quantitative Analysis 23(3), 285-300.
[35]. Theodossiou, P., 1998, Financial data and the skewed generalized t distribution. Management Science 44(12), 1650-1661.
[36]. Vipul and Jacob, J., 2007. Forecasting performance of extreme-value volatility estimators. Journal of Futures Markets 27(11), 1085-1105.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-06-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-06-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信