淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2206201015222500
中文論文名稱 支援多重模式顯示功能之新型三維影音串流協定
英文論文名稱 A Novel 3D Streaming Protocol with Multi-Mode Display Function
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 廖一如
研究生英文姓名 I-Ju Liao
學號 697450053
學位類別 碩士
語文別 英文
口試日期 2010-06-11
論文頁數 39頁
口試委員 指導教授-李維聰
委員-趙涵捷
委員-黃能富
委員-陳俊良
委員-李維聰
委員-吳庭育
中文關鍵字 品質保證  串流  三維  適應性壓縮 
英文關鍵字 QoS  Streaming  3D  FTV  SVC 
學科別分類 學科別應用科學電機及電子
中文摘要 在影像解析度越來越細緻的今天,走在路上支援FULL HD的電視也隨處可見,在如此細緻的解析度下,人類的毛細孔都清晰可見,未來單純的加以精進影像的解析度似乎已經沒有太大的意義,且在使用者端為了更高解析度替換設備的因素也會降低,在此趨勢下,許多多媒體應用公司開始尋找下一個殺手應用,而前一陣子3D商業電影的成功似乎替大家找到了一個較為可行的替代方案,但如要將3D顯示技術普及化,將會遇到許多困難,首先就是目前實現的技術太多,各種技術無法相互支援顯示,這只是其中的一個較顯為易見的問題,另外還會包含人為因素以及技術層面上的問題,尤其是人為因素是最難估計因素,因為以目前的3D先是技術來說不論是偏光式、紅藍式亦或是快門式都免不了要戴上專用的3D眼鏡,但是這對於與多帶眼鏡人口比例較高的亞洲國家來說是一個不太方便的選擇,另外許多人在使用眼鏡後,空間上還有一段適應期,甚至在適應後還是有暈眩的問題,所以有許多人是無法長久使用3D顯示螢幕,且目前3D顯示設備價格較為昂貴,雖然目前各商業公司皆發表了許多3D影像的完整解決方案。
在2009年高畫質的串流影像開始在網路上服務,在影片播放的同時使用者可以依據實際情況,自由選擇各種適合自己環境的播放解析度,配合著雲端技術的發展,在網路上勢必將提供使用者更多元的多媒體服務,除了高畫質的影音外,另外還有最近流行的3D播放,事實上有些網站已經有提供紅藍播放方式的3D影片,而在未來必定會提供更多的播放模式的選擇,甚至於自由視角的影片服務。
所以未來在同一個影片來源下,服務端必定要提供使用者各種播放模式選擇,此時就會產生一些資源利用上的問題,由於播放模式的不同,各種播放模式必定會有不一樣的繪圖結果,倘若事先依據播放模式與解析度來製作個別的播放串流,則會造成空間的浪費,因為伺服器等於同一個影片要儲存(播放種類*解析度類別)數個種類影片,這還不包括偏光顯示模式中會有單數行跟雙數行顯示的問題,為了解決這些問題本論文提出了一個可以符合所有播放模式以及3D成像的影像壓縮參照策略,使用本論文的方法我們將達成下列的貢獻。
(a)提出一個可以讓使用者自行決定撥放模式的壓像壓縮策略,正視目前所遇到的根本的問題,讓使用者端自行決定撥放的模式。
(b)本論文所提出的壓縮架構還可針對網路狀況作調整,提供類似H.264 SVC影像解析度適應性調整的功能,在3D影像傳輸但網路狀況不佳時,除可以針對解析度做調整外,另外也可依據頻寬切換2D畫面。
(c)本論文也發展出針對3D影像傳送所使用的品質保證演算法,針對壓縮後所需要傳輸的封包做優先權處理,使用QoS做為優先權處理演算法的基準。
英文摘要 With the development of 3D technology, many 3D commercial movies are released widely. In addition to the cinemas, some well-known commercial video websites have started to provide traditional anaglyph 3D broadcast services as known as "red and blue color display," and owing to this trend, another multi-media revolution begins. However, there are too many choices of display technologies for users, such as anaglyph, gate-type, linear polarizer, circular polarizer and shutter, all of which typically require special monitors with different rendering methods. However, we cannot know what kinds of facilities will be adopted for the transmissions, and even with the support of different display technologies, there are still some technical problems because the same kind of rendering methods cannot simultaneously support different 3D display technologies. Therefore, how to provide 3D multimedia services on the Internet becomes an important issue. This paper presents an efficient image compression strategy, which provides services of 3D, non-3D and even the free viewpoint video, and allows the clients to select the compression strategies based on the types of the devices. This paper also proposes an algorithm that can optimize the packet priority for the transmission status while the videos are transmitted on the Internet. This algorithm successfully integrates the image strategies with the packet priority to achieve "A Multi-mode 3D Transmission System."
論文目次 Contents
CHAPTER 1 INTRODUCTION ............................................................. 1
CHAPTER 2 RELATED WORKS ......................................................... 4
2.1. 3D DISPLAY TECHNOLOGY ............................................................... 4
2.2. H.264 SVC ....................................................................................... 5
2.3. H.264 MVC ...................................................................................... 6
2.4. TRANSMISSION PROTOCOL ............................................................... 7
2.5. VIDEO STREAM RTP PAY LOAD FORMAT ........................................ 8
2.6. GILBERT-ELLIOTT ERROR MODEL ................................................... 9
CHAPTER 3 THE MULTI-MODE 3D TRANSMISSION SYSTEM ... 11
3.1. SYSTEM ARCHITECTURE ................................................................ 11
3.2. ROBUST ENCODE STRATEGY ........................................................... 12
3.3. ROBUST ENCODE STRATEGY WITH SVC FUNCTIONS ..................... 13
3.4. ERROR CONCEALMENT METHOD ................................................... 15
3.5. QOS ALGORITHM ............................................................................ 21
CHAPTER 4 ANALYSIS AND SIMULATION ................................... 27
4.1. RISK OF OUR SYSTEM ..................................................................... 28
4.2. IMAGE CONCEALMENT METHOD .................................................... 29
4.3. QOS FUNCTION VERIFICATION ....................................................... 31
CHAPTER 5 CONCLUSION AND FUTURE WORK....................... 36
REFERENCE .......................................................................................... 38

List of Figures
Figure 1. H.264 SVC encode method ......................................................... 6
Figure 2. H.264 MVC encode strategy. ...................................................... 7
Figure 3. Streaming video protocol ............................................................ 8
Figure 4. RTP header architecture .............................................................. 9
Figure 5. Relationship between bit and packet lose ................................... 9
Figure 6. Packet error on GE Model ......................................................... 10
Figure 7. GE channel model ..................................................................... 10
Figure 8. Multi-mode 3D transmission system architecture .................... 11
Figure 9. Robust video encode ................................................................. 13
Figure 10. Robust multiview video encode .............................................. 14
Figure 11. Robust video encode with SVC functions ............................... 15
Figure 12. Error concealment method flowchart ...................................... 15
Figure 13. Composed of anaglyph image ................................................. 16
Figure 14. Intra frame motion estimation ................................................. 19
Figure 15. Trinity Error Concealment method ......................................... 20
Figure 16. Packet transmission handshaking ............................................ 22
Figure 17. Diagram of proposed scheme .................................................. 23
Figure 18. Size of all encode method ....................................................... 28
Figure 19. Stream size of different codec ................................................. 29
Figure 20. Original Image ......................................................................... 30
Figure 21. FERB concealment image ....................................................... 30
Figure 22. Normal concealment image ..................................................... 31
Figure 23. Simulation architecture ........................................................... 32
Figure 24. PSNR between normal and cross encode ................................ 32
Figure 25. PSNR with 3% error rate ......................................................... 34
Figure 26. PSNR with 5% error rate ......................................................... 34
Figure 27. PSNR comparison of encode method in 15% error rate with
QoS ........................................................................................................... 35

List of Tables
Table 1. Priority score table ...................................................................... 25
參考文獻 Reference
[1] Kuo W.K.: Traffic scheduling for multimedia transmission over IEEE 802.11e wireless LAN. In: Communications, IET; 2008: 92-97
[2] Farrugia R.A., Debono C.J.: Accurate modelling of Ka-band videoconferencing systems based on the quality of experience. In: Communications, IET; 2009: 67 - 74
[3] Boukerche, A.; Jarrar, R.; Pazzi, R.W.: A Novel Interactive Streaming Protocol for Image-Based 3D Virtual Environment Navigation. In: IEEE International Conference on Communications; 2009:1 - 6
[4] Azzedine Boukerche, Richard W.N. Pazzi, Jing Feng: An end-to-end virtual environment streaming technique for thin mobile devices over heterogeneous networks. In: Computer Communications; 15 July 2008:2716-2725
[5] Tanimoto, M.: FTV (free viewpoint television) creating ray-based image engineering. In: IEEE International Conference on Image Processing; 2005:II - 25-8
[6] Joel Carranza, Christian Theobalt, Marcus A. Magnor, Hans-Peter Seidel: Free-viewpoint video of human actors. In: ACM Transactions on Graphics (TOG); 2003: 567 - 577
[7] Jen-Chun Chiang, Hsiang-Fu Lo, Wei-Tsong Lee: Scalable Video Coding of H.264/AVC Video Streaming with QoS-based Active Dropping in 802.16e networks. In: WAINA.2008
[8] Qinghuai Ma, Huaibei Zhou, Qingchun Yu1, Ruoshan Kong: Realizing MPEG4 Video Transmission Based on Mobile Station over GPRS. In: WCNM.2005
[9] Edwards, W.K. Newman, M.W. Smith, T.F. Sedivy, J. Izadi, S: An extensible set-top box platform for home media ap-plications. In: IEEE Transactions on Consumer Electronics
[10] Goo Jun: Home media center and media clients for multi-room audio and video applications. In: CCNC. 2005
[11] Jung Tae Kim, Sangwook Park, Jong Hoon Lee, Eui Hyun Paik, Kwang Roh Park: Provision of the Multimedia Service Framework in the Ubiquitous Home Network. In: ICCE 2008
[12] Plotnick M, Kinoshita T, Yoshigi H, Kageyama M: High-quality bit-rate transformation for the Home Media Station. In: IEEE Transactions on Consumer Electronics
[13] A. Boukerche and R. W. Pazzi: Remote rendering and streaming of progressive panoramas for mobile devices”. In Proc. In: of the 14th Annual ACM Intl. Conf. on Multimedia - MULTIMEDIA’06, pp. 691-694, 2006.
[14] A. Boukerche, R. W. Pazzi, J. Feng: An end-to-end virtual environment streaming technique for thin mobile devices over heterogeneous networks. In: Computer Communications, vol.31, n.11, pp. 2716-2725, 2008.
[15] D. Bradley, A. Brunton, M. Fiala, G. Roth: Image-based navigation in real environments using panoramas. In: In Proc. of the IEEE Intl Workshop on Haptic Audio Visual Environments and their Applications, 2005.
[16] T. Endo, A. Katayama, H. Tamura, M. Hirose, T. Tanikawa, and M.Saito: Image-based walk-through system for large-scale scenes. In: Proceeding of the VSMM’98, Vol. 1, pp. 269 - 274, 1998.
[17] J. Kilner, J. Starck, A. Hilton, O. Grau: Dual-Mode Deformable Models for Free-Viewpoint Video of Sports Events. In: IEEE International Conference on 3-D Digital Imaging and Modeling-3DIM’07, pp 177 - 184, 2007.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-06-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-06-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信