§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2206200917244300
DOI 10.6846/TKU.2009.00802
論文名稱(中文) 利用粒子群聚演算法與基因演算法最佳化室內中繼天線位置
論文名稱(英文) Optimal Relay Antenna Location in Indoor Environment Using Particle Swarm Optimizer and Genetic Algorithm
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 林金漢
研究生(英文) Chin-Han Lin
學號 696440030
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-06-11
論文頁數 96頁
口試委員 指導教授 - 丘建青(chienchingchiu@hotmail.com)
委員 - 丘建青
委員 - 李慶烈
委員 - 余金郎
委員 - 陳俊榮
委員 - 嚴雨田
關鍵字(中) 粒子群聚演算法
基因演算法
位元錯誤率
失效率
射線彈跳追蹤法
關鍵字(英) PSO
GA
BER
outage probability
SBR/Image
第三語言關鍵字
學科別分類
中文摘要
近年來超寬頻通信系統漸漸在無線通訊界佔有一席之地,最令人注目的是它的傳輸特性:低功率、抗干擾、低成本、高度安全性…等,目前已有許多超寬頻通訊在室內傳輸的相關文獻已經被發表,其大多的研究是以模擬或量測方式找出影響通道的統計參數後,並分析在此通道統計模型下的系統傳輸錯誤率。
本研究的目標是希望透過找到最佳位置的中繼天線,使系統的錯誤率降低,在一般室內環境中,無線訊號的傳遞容易受到環境的影響,如:電波信號經過牆壁、天花板、室內擺設的傢俱等,皆會造成無線電波到達接收天線的路徑有多重反射、繞射、透射等路徑效應,此一現象稱為多路徑效應(Multi-path Effect)。而此效應會造成符際間的干擾(InterSymbol Inference,ISI),導致通訊位元錯誤率(Bit Error Rate,BER)及失效率(Outage Probability)增加,造成通訊效率降低。因此,加入適當位置的中繼天線,及利用射線彈跳追蹤法可以模擬複雜環境、預測無線電波傳輸時的特性以及減少工作時間與成本可以改善通訊品質、減少錯誤率及失效率。為了得知無線訊號的脈衝響應(Impulse Responses),本文利用射線彈跳追蹤法(Shootin and Bouncing Ray/Image techniques,SBR/Image Techniques)和快速反傅立葉轉換(Inverse Fast Fourier Transform,IFFT)技術計算其脈衝響應,且使用二進制的脈波振幅調變(Binary Pulse Amplitude Modulation,BPAM)方法,進而計算超寬頻通訊系統的位元錯誤率及失效率。本篇論文裡,吾人分別針對兩種狀況,並利用粒子群聚演算法與基因演算法最佳化室內的中繼天線位置,之後探討其在超寬頻(Ultra-Wide Band,UWB)通訊上對降低位元錯誤率、失效率的影響。
這兩種不同的狀況分別為:在相同環境下,1.兩個中繼器的情況用不同的兩種搜尋方式來搜尋。首先,發射器在室內環境中心點位置、每個接收器以0.5公尺間隔均勻分佈在環境內、將室內劃分為兩個區塊,每個區塊各找一個中繼器的最佳位置,中繼器可在區塊內自由移動。另一種搜尋方式為在全區域內找到兩個中繼器的最佳位置,中繼器可在區塊內自由移動。2. 四個中繼器的情況用不同的兩種搜尋方式來搜尋。首先,發射器在室內環境中心點位置、每個接收器以0.5公尺間隔均勻分佈在環境內、將室內劃分為四個區塊,每個區塊各找一個中繼器的最佳位置,中繼器可在區塊內自由移動。另一種搜尋情況為在全區域內找到四個中繼器的最佳位置,中繼器可在區塊內自由移動。
最後得到粒子群聚演算法與基因演算法的數值結果,再將兩種演算法所得的結果代入射線彈跳追蹤法比較分析,吾人可發現透過兩種演算法所得的結果之一致性,因此,可驗證得到最佳中繼天線位置,進而有效降低環境失效率與錯誤率。
英文摘要
An optimization procedure for the location of the relay transceiver in ultra-wideband wireless communication system is presented. The impulse responses of different transceiver locations are computed by shooting and bouncing ray/image (SBR/Image) techniques and inverse fast Fourier transform (IFFT).By using the impulse responses of these multi-path channels, the bit error rate (BER) performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Based on the BER performance, the outage probability for any given relay location of the transceiver can be computed. The optimal relay antenna location for minimizing the outage probability is searched by genetic algorithm (GA) and particle swarm optimizer (PSO). The transmitter is in the center of the whole indoor environment and the receivers are uniform distributed with 1.5 meter intervals in the whole indoor environment. Two cases are considered as following. (I) Two relay transceivers with two different cases are employed. First, the whole space is divided into two areas and one relay transceiver is used in each area. The optimal relay antenna locations are searched in each area respectively. Second, the two optimal relay locations are searched in the whole space directly without any prior division. (II) Four relay transceivers with two different cases are employed. First, the whole space is divided into four areas and one relay transceiver is used in each area. The optimal relay antenna locations are searched in each area respectively. Second, the four optimal relay locations are searched in the whole space directly without any prior division. Numerical results have shown that our proposed method is effective for finding the optimal location for relay antenna to reduce BER and outage probability.
第三語言摘要
論文目次
目錄

第一章	概論 .....................1
1.1	研究背景 ...................1
1.2	研究動機 ...................6
1.3	研究內容簡介 .................8

第二章	粒子群聚演算法則及基因演算法則 ........9
2.1	前言 .....................9
2.2	基因演算法之基本概念 .............12
2.2.1	介紹基因演算法則中的運算方式 .........15
2.3	粒子群聚演算法之基本概念 ...........22
2.3.1	介紹粒子群聚演算法則中的運算方式 .......23
2.3.2	改良式粒子群聚最佳法 .............30

第三章	UWB通道計算模型 ............... 33
3.1	無線電波傳撥通道分析 .............33
3.2	通道計算模型分析 ...............35
3.2.1	利用射線追蹤法計算頻域響應 ..........36
3.2.2	利用何米特法與快速反傅立葉轉換計算出時域響應 .39
3.3	射線彈跳追蹤法程式流程分析 ..........41
3.4	系統模擬架構 .................45
3.4.1	發射訊號波形 .................46
3.4.2	位元錯誤率之計算 ...............47

第四章	模擬數值結果 .................51
4.1	模擬實驗環境及設定 ..............51
4.2	模擬結果分析 .................55

第五章	結論 .....................82

參考文獻 ....................... 84

附錄 ......................... 89

圖目錄

圖 1.1 	UWB與傳統窄頻的FCC規範 ............3
圖 2.1 基因演算法之流程圖 ...............14
圖 2.2 基因演算法單點交配示意圖 ............18
圖 2.3 粒子速度計算示意圖 ...............23
圖 2.4 粒子群聚演算法之流程圖 .............24
圖 2.5 一維問題中,三種不同邊界條件示意圖 .......28
圖 2.6 改良式粒子群聚法流程圖 .............32
圖 3.1 求得通道脈衝響應的步驟 .............35
圖 3.2 何米特程序的信號處理步驟 ............40
圖 3.3 	SBR/Image程式流程圖 ............. 44
圖 3.4 二位元脈衝振幅調變位元錯誤率系統架構圖 .....45
圖 3.5 傳送高斯二次微分脈波的波型 46
圖 3.6 	FCC對室內及室外超寬頻系統的頻段及輻射能量限制.47
圖 4.1 地下室俯視圖 ..................52
圖 4.2 加入RX及reference relay position圖 .......53
圖 4.3 情況1(a)環境區塊劃分圖 .............56
圖 4.4 (a)GA-1、(b)GA-2不同iseed中繼天線位置失效率比較圖..........................  57
圖 4.5 (a)PSO-1、(b)PSO-2不同iseed中繼天線位置失效率比較圖...........................58
圖 4.6 (a)GA-1、(b)GA-2不同iseed function call比較圖 . 59
圖 4.7 (a)PSO-1、(b)PSO-2不同iseed function call比較圖 .......................... 60
圖 4.8 GA不同iseed中繼天線位置失效率比較圖 ...... 63
圖 4.9 PSO不同iseed中繼天線位置失效率比較圖 ......63
圖 4.10 GA不同iseed function call比較圖 ........64
圖 4.11 PSO 不同 iseed function call比較圖 ...... 64
圖 4.12情況1(a)及情況1(b)其中繼器位置失效率分佈圖 ...65
圖 4.13情況2a環境區塊劃分圖 ..............67
圖 4.14 (a)GA-1、(b)GA-2、(c)GA-3、(d)GA-4不同iseed中繼天線位置失效率比較圖 ..................68-69
圖 4.15 (a)PSO-1、(b)PSO-2、(c)PSO-3、(d)PSO-4不同iseed中繼天線位置失效率比較圖 ................70-71
圖 4.16 (a)GA-1、(b)GA-2、(c)GA-3、(d)GA-4不同iseed function call比較圖 ................ 72-73
圖 4.17 (a)PSO-1、(b)PSO-2、(c)PSO-3、(d)PSO-4不同iseed function call比較圖 ................ 74-75
圖 4.18 情況2a中繼器位置失效率分佈圖 .........76
圖 4.19 GA不同iseed中繼天線位置失效率比較圖 ..... 79
圖 4.20 PSO不同iseed中繼天線位置失效率比較圖 .....79
圖 4.21 GA iseed function call比較圖 .........80
圖 4.22 PSO不同iseed function call比較圖 .......80
圖 4.23 情況2b中繼器位置失效率分佈圖 .........81

表目錄

表 2.1 基因演算法相關名詞解釋與中英對照表 ......10
表 2.2 粒子群聚演算法相關名詞解釋與中英對照表 ....11
表 4.1  基因法則設定參數 ...............54
表 4.2  粒子群演算法則設定參數 ............54
表 4.3  GA和PSO及其它中繼天線位置(SNR=40dB)失效率比較表.......................... 61
表 4.4  GA和PSO及其它中繼天線位置(SNR=40dB)失效率比較表.......................... 65
表 4.5  GA和PSO及其它中繼天線位置(SNR=40dB)失效率比較表.......................... 76
表 4.6  GA和PSO及其它中繼天線位置(SNR=40dB)失效率比較表.......................... 81
表 B.1	混擬土的材質係數 .............. 90
表 B.2	磚頭的材質係數 ............... 91
表 B.3	合成塑膠板的材質係數 ............ 92
表 B.4	鐵的材質係數 ................ 93
表 B.5	夾板的材質係數 ............... 94
表 B.6	合成纖維板的材質係數 ............ 95
表 B.7	木材的材質係數 ............... 96
參考文獻
參考文獻
[1].	Federal Communications commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” FIRST PEPORT AND ORDER, “ ET Docket 98-153, FCC 02-48, February 14, 2002, pp. 1-118.
[2].	工業技術研究院 產業經濟與資訊服務中心, Ultra-wide band 技術分析與探討.
[3].	M.Z. Win, R.A. Scholtz, M.A. Barnes, “Ultra-wide bandwidth signal propagation for indoor wireless communications, ” IEEE International Conference on Towards the Knowledge Millennium, Vol. 1, June 1997, pp. 56 - 60.
[4].	V. Hovinen, M. Hamalainen,T. Patsi, “Ultra wideband indoor radio channel models: preliminary results, ” IEEE conference on Ultra Wideband Systems and Technologies, May 2002, pp. 75-79.
[5].	D. Cassioli, M.Z. Win, and A.F. Molisch, “The ultra-wide bandwidth indoor channel: from statistical model to simulations, ” IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, August 2002, pp.1247 - 1257.
[6].	J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A.F. Molisch, ”Statistical analysis of the UWB channel in an industrial environment,’ IEEE Conference on Vehicular Technology, Vol. 1, September 2004, pp. 81 - 85.
[7].	A. H. Wong, M. J. Neve and K.W. Sowerby, “Antenna selection and deployment strategies for indoor wireless communication systems,” IET Communications, Vol. 1, No. 4, August 2007, pp. 732 – 738.
[8].	D.C.K. Lee, M.J. Neve, and K. W. Sowerby, “The impact of structural shielding on the performance of wireless systems in a single-floor office building,” IEEE TRANSACTIONS ON WIRELESS CO-MMUNICATIONS, VOL. 6, NO. 5, MAY 2007, pp. 1787-1795.
[9].	Chihong Cho, Honggang Zhang, Masao Nakagawa, “A Short Delay Relay Scheme Using Shared Frequency Repeater for UWB Impulse Radio,” IEICE TRANS. FUNDAMENTALS, Vol. E90-A, NO.7 July 2007
[10].	J.M. Johnson and V. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, Vol.39, No.4, August 1997, pp. 7-21.
[11].	Yasuda, K. and Iwasaki, N., “Adaptive particle swarm optimization using velocity information of swarm,” IEEE International Conference, Vol. 4, Oct. 2004, pp. 3475-3481.
[12].	R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE Journal on Selected Areas in Communications , Vol. 20, No.9, December 2002, pp. 1628-1637.
[13].	B. Uguen, E. Plouhinee, Y. Lostanlen, and G. Chassay, “A deterministic ultra-wideband channel modeling,” IEEE Conference on Ultra-Wideband System Technologie, May 2002 s, pp. 1-5.
[14].	Y. Zhang, “Ultra-wide bandwidth channel analysis in time domain using 3-D ray tracing,” High Frequency Postgraduate Student Colloquium of IEEE, September 2004, pp. 189-194.
[15].	E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Weband Matlab, Prentice-Hall, 2000.
[16].	J.A. Vasconcelos, J. A. Ramirez, R. H. C. Takahashi, and R. R. Saldanha, "Improvements in genetic algorithms," IEEE Transactions on Magnetics, Vol. 37, No.5, September 2001, pp. 3414-3417.
[17].	J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, Proceedings of the 1995 IEEE International Conference on Neural Networks, 1995, pp. 1942-1948.
[18].	M. Clerc, J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. On Evolutionary Computation, vol. 6 issue 1, 2002, pp. 58~73.
[19].	A. Carlisle and G. Dozier, “An off-the-shelf PSO,” in Proc. Of the Workshop on Particle Swarm Optimization, Indianapolis, April, 2001
[20].	S. H. Chen and S. K. Jeng ,“An SBR/Image approach for indoor radio propagation in a corridor,” IEICE TRANSACTIONS on Electronics, Vol. E78-C, No.8, August 1995, pp. 1058-1062.
[21].	S. H. Chen and S. K. Jeng, “SBR/Image approach for radio wave propagation in tunnels with and without traffic,” IEEE Transactions on Vehicular Technology, Vol. 45, No.3, August 1996, pp. 570-578.
[22].	I. Oppermann, M. Hamalainen and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, 2004.
[23].	B. Sklar, Digital Communications:Fundamentals and Applications 2/e, Prentice Hall PTR, 2004
[24].	Tian Zhi and G.B Giannakis, “BER sensitivity to mistiming in ultra-wideband impulse Radios-part I: nonrandom channels,” IEEE Transactions on Signal Processing, Vol. 53, No. 4, April 2005, pp. 1550 -1560.
[25].	K. Siwiak, P. Withington and S. Phelan, “Ultra-wide band radio: the emergence of an important new technology,” IEEE VTS 53rd .Vehicular Technology Conference, 2001. VTC 2001 Spring, Vol. 2, May 2001, pp. 1169-1172.
[26].	K. Siwiak, “Ultra-wide band radio: introducing a new technology,” IEEE VTS 53rd .Vehicular Technology Conference, 2001. VTC 2001 Spring, Vol. 2, May 2001, pp. 1088 - 1093.
[27].	E. Saberinia and A.H Tewfik, “Single and multi-carrier UWB communications,” IEEE Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings, Vol. 2, July 2003, pp. 343 - 346.
[28].	Zhi Tian and G.B. Giannakis, “BER sensitivity to mistiming in ultra-wideband impulse radios - part II: fading channels,” IEEE Transactions on Speech, and Signal Processing, Vol. 53, No.5, May 2005, pp. 1897 - 1907.
[29].	Chien-Ching Chiu and Chi-Ping Wang, “Bit error rate performance of high-speed tunnel communication,” IEEE MTT-S International Microwave and Optoelectronics Conference, 1997, Vol. 1, August 1997, pp. 186 - 191.
[30].	A. S. Jazi, S. M. Riad, A. Muqaibel, and A. Bayram, “Through-the-Wall Propagation and Material Characterization,” DARPA NETEX Program Report, November 2002.
[31].	S. Imada and T. Ohtsuki, “Pre-RAKE diversity combining for UWB systems in IEEE 802.15 UWB multipath channel,” IEEE Joint with Conference on Ultra wideband Systems and Technologies. Joint UWBST & IWUWBS. 2004 International Workshop on Ultra Wideband Systems, May 2004, pp. 236 - 240.
[32].	D.J. Gargin, “A fast and reliable acquisition scheme for detecting ultra wide-band impulse radio signals in the presence of multi-path and multiple access interference” 2004 International Workshop on Ultra Wideband Systems, May 2004, pp. 106 - 110.
[33].	B. Mielczarek, M.O. Wessman and A. Svensson, “Performance of coherent UWB Rake receivers with channel estimators,” IEEE 58th Vehicular Technology Conference, Vol.3, October 2003, pp. 1880 - 1884.
[34].	M. Hamalainen and J. Iinatti, “Analysis of Interference on DS-UWB System in AWGN Channel,” 2005 IEEE International Conference on Ultra-Wideband, September 2005, pp. 719 - 723.
[35].	S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Transactions on Wireless Communications, Vol.1, No.1, January 2002, pp. 46 - 55.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信