淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2206200614370600
中文論文名稱 允許延遲付款的一些存貨系統之研究
英文論文名稱 A Study on Some Inventory Systems with Permissible Delay in Payments.
校院名稱 淡江大學
系所名稱(中) 管理科學研究所博士班
系所名稱(英) Graduate Institute of Management Science
學年度 94
學期 2
出版年 95
研究生中文姓名 陳良和
研究生英文姓名 Liang-Ho Chen
學號 889560040
學位類別 博士
語文別 中文
口試日期 2006-06-19
論文頁數 119頁
口試委員 指導教授-歐陽良裕
共同指導教授-鄧進財
委員-姚景星
委員-林進財
委員-陳茂生
委員-陳山火
委員-黃文濤
委員-吳坤山
委員-歐陽良裕
中文關鍵字 存貨  財務  部分欠撥  退化性貨品  信用交易  作業管理 
英文關鍵字 Inventory  Finance  Partial Backlogging  Deteriorating Items  Trade Credit  Operations Management 
學科別分類
中文摘要 在實際的市場交易行為中,零售商是很少即時付現的,他們幾乎都會採取信用交易(trade credit),來做為短期資金的來源。譬如供應商提供一段延遲付款時間 30天,給他的零售商,以便結清欠他的款項。
其次,在探討存貨模型時,對於某些存貨貨品的本質並非是一成不變或可永久保存的,它們會因為時間、空間、溫度或環境因素而發生變化產生退化、揮發、變質、或是腐壞與損壞等現象。這類退化貨品其存貨的減少除了因應顧客的需求外,還有一部份是因為存貨貨品的本質出現了退化現象。由於退化性的產品會產生額外的成本。所以,在面臨此類貨品的存貨管理問題時,將貨品退化的特性納入存貨模型中去考量是必要的。
接著,在市場消費行為裡,由於零售商的缺貨,顧客在缺貨期間,等待零售商補貨的意願將隨著等候補貨時間長度的增加而減少。換言之,等候補貨時間越長,欠撥的比例將越小。為了反應這種自然現象,我們提出與等候時間長度呈遞減關係的欠撥函數。
另外,我們可觀察到存貨貨品的需求率常與貨品售價有關,為售價的遞減凸函數。也就是說,市場上絕大部貨品的售價降低則貨品的需求將增高;反之,貨品的售價升高則需求將減少。因此,我們將需求彈性納入存貨模型裡來討論。
最後,我們考慮了供應商提供給零售商一個信用交易期限M,同時製造商也提供給他/她的顧客一個信用交易期限N,並且在 之假設條件下,去研究與探索製造商的最適經濟生產批量存貨模型,以使製造商的總成本為最小而獲利能達最大。
本論文共分為五章:第一章為緒論,包括研究動機與目的、相關文獻探討和本文研究結構。第二章討論零售商在允許延遲付款下考慮退化性貨品與部分欠撥存貨模型的最適訂購策略。第三章為零售商在允許延遲付款下考慮退化性貨品的最適付款時點之存貨模型,假設零售商在延遲付款時限到達時仍未付清所有購買貨品款項時,他選擇最適付款時點以期全年總購買成本為最低。接著,第四章研究製造商在允許延遲付款下的最適售價與生產批量之存貨模型。本章我們將延遲付款的問題,延伸到供應商、製造商與顧客三方面去討論,並將需求彈性的觀念植入存貨模型中探討,且以製造商的角色決定其最適生產批量、最適售價及最大全年總利潤。第五章為結論,對各章所建構的允許延遲付款在存貨模型上的應用做一總結,同時也提出未來可持續研究的方向。
英文摘要 The traditional economic order quantity model assumes that the retailer must pay for the items as soon as the items are received. As a matter of fact, a supplier often offers his retailers a period of time, perhaps 30 days, to settle the amount owed to him. Usually, there is no interest charge if the outstanding amount is paid within the permissible delay period of 30 days. Note that this credit term in financial management is denoted as “net 30”. However, if the payment is not paid in full by the end of the permissible delay period, then interest is charged on the outstanding amount under the terms and conditions agreed upon.
Next, The effect of deterioration of physical goods cannot be disregarded in many inventory systems. Deterioration is defined as decay, damage or spoilage. Fresh vegetables and fruit, milk, meat, fish and see foods, pharmaceuticals, drugs, blood, gasoline, alcohol, perfumes, photographic films, chemicals, electronic components and radioactive substances are some examples of items in which sufficient deterioration may occur during the normal storage period of the units and consequently this loss must be taken into account while analyzing the inventory system.
For fashionable commodities, trendy apparel, and high-tech products with short product life cycle, the willingness for a customer to wait for backlogging during a shortage period is diminishing with the length of the waiting time. Hence, the longer the waiting time is, the smaller the backlogging rate would be. To reflect this phenomenon, In this dissertation, we provided two distinct backlogging rates to be decreasing functions of waiting time.
Meanwhile, we can find the relationship between demand rate and price. The demand for the item is a downward sloping function of price. Here, we assume that demand is a constant elasticity of the price.
Last, we establish an appropriate EPQ model, in which the manufacturer receives the supplier trade credit M and provides the customer trade credit N simultaneously. (Assumed N M). As a result, the proposed model is in a general framework that includes numerous previous models as special cases. Furthermore, we provide an easy-to-use closed-form optimal solution to the problem for any given price.
This dissertation is consisted of five chapters. In chapter 1, an introduction about the study is given. In chapter 2, we presented the model for the retailer to find the optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. In chapter 3, we discussed the optimal payment time for the retailer under permitted delay of payment by the wholesaler. In chapter 4, we studied the manufacturer’s optimal pricing and lot-sizing policies under trade credit financing. Finally, in chapter 5, we concluded some crucial points and provided some future research topics for this thesis.
論文目次 表目錄 IV
圖目錄 VI
使用符號一覽表 VII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關文獻探討 8
1.3 本文結構 15
第二章 零售商在允許延遲付款下考慮退化性貨品與部分欠撥存貨模型的最適訂購策略 18
2.1 前言 18
2.2 符號說明與假設 22
2.3 基本模型 25
2.4 理論結果與演算法 34
2.5 數值範例 42
2.6 小結 50
第三章 零售商在允許延遲付款下考慮退化性貨品的最適付款時點之存貨模型 51
3.1 前言 51
3.2 符號說明與假設 51
3.3 基本模型 52
3.4 最適解的探討 57
3.5 數值範例 60
3.6 小結 67
第四章 製造商在允許延遲付款下的最適售價與生產批量之存貨模型 68
4.1 前言 68
4.2 符號說明與假設 69
4.3 基本模型 71
4.4 最適解的決定 78
4.5 數值範例 85
4.6 小結 90
第五章 結論 91
5.1 主要研究成果 91
5.2 未來研究方向 100
參考文獻 104
附錄A 115
附錄B 116

表目錄
表2.1 例題一在不同的α和M值下之最適解彙整表 43
表2.2 例題二在不同的α和M值下之最適解彙整表 44
表 2.3 例題三在不同的α和θ值下之最適解彙整表 45
表 2.4 例題四在不同的Ic和Ie值下之最適解彙整表 45
表 2.5 例題五在不同參數值的Cl,α和M下之最適解彙整表 46
表 2.6 例題六在不同的參數值P,C0,α和M下之最適解彙整表 47
表3.1 例題七在不同的θ,Cp和M值下之最適解彙整表 61
表3.2 例題八在不同的Ic和Ie值下之最適解彙整表 63
表3.3 例題九在不同的M,P和Cp值下之最適解彙整表 64
表 4.1.1 例題十在ρ=0.2、N=0及不同的M值下,製造商最適解彙整表 85
表 4.1.2 例題十在ρ→1、N=0及不同的M值下,製造商最適解彙整表 86
表 4.2 例題十一在不同的參數值M和N下,製造商最適解彙整表 87
表 4.3 例題十二在不同的M、N和Ie值下,製造商最適解彙整表 88

圖目錄

圖1-1 本文結構流程圖 17

圖2-1 26

圖2-2 26

圖4-1 製造商在時點M上先支付已售出貨品且已收到貨品的款項之存貨系統 72



參考文獻 中文部分:
[1]于海鴻 和 孫吉貴,(2002)。庫存決策支持系統,吉林大學學報(理學報),第40卷,第3期,第268-272頁。
[2]李春賢(2003)。研發機構物料管理之研究, 私立中原大學工業工程研究所碩士論文。
[3]唐明月(1999)。管理科學的本質。2版,台北市:松崗書局。
[4]黃惠民和謝志光(2002)。物料管理與供應鏈導論-Introduction to
materials management and supply chains。2版,台中市:滄海書局。
[5]黃惠民、吳玫瑩和周宗瀚(2001)。耗損性商品之整合性二階存貨模式,中原學報第29卷,第1期,第77-86頁。
[6]張有恆(1998)。物流管理,台北市:華泰文化事業。
[7]新浪部落格。存貨,存「禍」,2005年8月12日,取自東吳大學賈老師部落格,http://blog.sina.com.tw/10843。
[8]廖鴻儒(2005)。二階信用交易與現金折扣下零售商之經濟訂購策略,朝陽科技大學企業管理系碩士論文。
[9]謝宛璇(2002)。通路利潤最大化之信用期決策模式,國立中央大學工業管理研究所碩士論文。





英文部分:
[1]Abad, P.L. (1996),“Optimal pricing and lot sizing under condition of perishability and partial backordering”, Management Science, Vol. 42, No. 8, pp. 1093-1104.
[2]Aggarwal, S.P. and Jaggi, C.K. (1989),“Ordering policy for decaying inventory”, International Journal of Systems Science, Vol. 20, No. 1, pp. 151-155.
[3]Aggarwal, S.P. and Jaggi, C.K. (1995),“Ordering policies of deteriorating items under permissible delay in payments”, Journal of the Operational Research Society, Vol. 46, No. 5, pp. 658-662.
[4]Arrow, K.A., Karlin, S. and Scarf, H. (1958),“Studies in the mathematical theory of inventory and production”, Standford Univ. Press, pp. 368-401.
[5]Arrow, K.A., Harris, T.E. and Marschak, J. (1951),“Optimal inventory policy”, Econometrica, Vol. 19, No. 3, pp. 250-272.
[6]Ashton, R.K.,(1987),“Trade credit and the economic order quantity-a further extension”, Journal of the Operational Research Society, Vol.38, No. 9, pp. 841-846.
[7]Bazarra, M., Sherali, H. and Shetty, C.M. (1993), Nonlinear Programming, (2nd edtition), Wiley, New York.
[8]Brigham, E. F. (1995), Fundamentals of Financial Management, The Dryden Press, Florida.
[9]Chakrabarty, T., Giri, B.C. and Chaudhuri, K.S. (1998),“An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip's model”, Computers & Operations Research, Vol. 25, No. 7, pp. 649-657.
[10]Chand, S. and Ward, J. (1987),“A note on: Economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, Vol. 38, No. 1, pp. 83-84.
[11]Chang, C.T., Ouyang, L.Y. and Teng, J.T. (2003),“An EOQ model for deteriorating items under supplier credits linked to ordering quantity”, Applied Mathematical Modelling, Vol. 27, No. 12, pp. 983-996.
[12]Chang, C.T., and Teng, J.T. (2004),“Retailer’s optimal ordering policy under supplier credits”, Mathematical Methods of Operations Research, Vol. 60, No. 3, pp. 471-483..
[13]Chang, H.C. (2004),“An application of fuzzy sets theory to the EOQ model with imperfect quality items”, Computers & Operations Research, Vol. 31, No. 12, pp. 2079-2092.
[14]Chang, H.J., and Dye, C.Y., (1999),“An EOQ model for deteriorating items with time varying demand and partial backlogging”, Journal of the Operational Research Society, Vol. 50, No. 11, pp. 1176-1182.
[15]Chang, H.J., and Dye, C.Y., (2001),“An Inventory model for deteriorating items with partial backlogging and permissible delay in payments”, International Journal of Systems Science, Vol. 32, No. 3, pp. 345-352.
[16]Chang, H.J., Hung, C.H. and Dye, C.Y., (2001),“An inventory model for deteriorating items with linear trend demand under the condition of permissible delay in payments”, Production Planning & Control, Vol. 12, No. 3, pp. 274-282.
[17]Chang, H.J., Teng, J.T., Ouyang L.Y. and Dye, C.Y. (2006), “Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging”, European Journal of Operational Research, Vol. 168, No. 1, pp. 51–64.
[18]Chang, S. (1999),“Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number”, Fuzzy Sets and Systems,Vol. 107, No. 1, pp. 37-57.
[19]Chapman, C.B. and Ward, S.C. (1988) “Inventory control and trade credit- a further reply”, Journal of Operational Research Society, Vol. 39, No. 2, pp. 219-220.
[20]Chapman, C.B.,Ward, S.C., Cooper, D.F. and Page, M.J. (1984),“Credit policy and inventory control”, Journal of the Operational Research Society, Vol. 35, No. 12, pp. 1055-1065.
[21]Chen, J.M. (1998), “An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting”, International Journal of Production Economics, Vol. 55, No. 1, pp. 21-30.
[22]Chu, P., Chung, K.J. and Lan, S. P. (1998),“Economic order quantity of deteriorating items under permissible delay in payments”, Computers & Operations Research, Vol. 25, No. 10, pp. 817-824.
[23]Chu, P., Yang, K.L., Liang, S.K. and Niu, T. (2004),“Note on inventory model with a mixture of back orders and lost sales”, European Journal of Operational Research, Vol. 159, No. 2, pp. 470-475.
[24]Chung, K.J. (1998), “A theorem on the determination of economic order quantity under conditions of permissible delay in payments”, Computers & Operations Research, Vol. 25, No. 1, pp. 49-52.
[25]Chung, K.J. and Huang, Y.F. (2003),“The optimal cycle time for EPQ inventory model under permissible delay in payments”, International Journal of Production Economics,Vol. 84, No. 3, pp. 307-318.
[26]Cohen, M.A.(1977),“Joint pricing and ordering policy for exponentially decaying inventory with known demand”, Naval Research Logistics Quarterly, Vol. 24, pp. 257-268.
[27]Covert, R.B. and Philip, G.S. (1973),“An EOQ model with Weibull distribution deterioration”, AIIE Transactions, Vol. 5, pp. 323-326.
[28]Daellenbach, H.G. (1986),“Inventory control and trade credit”, Journal of Operational Research Society, Vol. 37, No. 5, pp. 525-528.
[29]Daellenbach, H.G. (1988),“Inventory control and trade credit- a rejoinder”, Journal of Operational Research Society, Vol. 39, No. 2, pp. 218-219.
[30]Das, K., Roy, T.K. and Maiti, M. (2004),“Multi-item stochastic and fuzzy-stochastic inventory models under two restrictions”, Computers & Operations Research, Vol. 31, No. 11, pp. 1793-1806.
[31]Dave, U. (1985),“Letters and viewpoints on:Economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, Vol. 36, No. 11, pp. 1069-1070.
[32]Dave, U. and Patel, L.K. (1981),“(T, Si) policy inventory model for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol. 32, No. 2, pp. 137-142.
[33]Davis, R.A. and Gaither, N. (1985),“Optimal ordering policies under conditions of extended payment privileges”, Management Science, Vol. 31, No. 4, pp. 499-509.
[34]Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1952),“The inventory problem:I.case of known distributions and demand”, Econometrica. Vol. 20, No. 2, pp. 187-222.
[35]Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1952),“The inventory problem:II.case of unknown distributions of demand”, Econometrica. Vol. 20, No. 3, pp. 450-466.
[36]Dye, C.Y., Chang, H.J. and Teng, J.T. (2006),“ A deteriorating inventory model with time-varying demand and shortage-dependent partial backlogging”, European Journal of Operational Research, Vol. 172, No. 2, pp. 417-429.
[37]Erlenkotter, D. (1989),“Notes: An early classic misplaced: Ford W. Harris’s economic order quantity Model of 1915”, Management Science, Vol. 35, No. 7, pp. 898-900.
[38]Erlenkotter, D. (1990),“Ford Whitman Harris and the economic order quantity model”, Operations Research, Vol. 38, No. 6. pp. 937-946.
[39]Ghare, P.M. and Schrader, G.H. (1963),“A model for exponentially decaying inventory system”, International Journal of Production Research, Vol. 21, pp. 449-460.
[40]Goyal, S.K. (1985),“Economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, Vol. 36, No. 4, pp. 335-338.
[41]Goyal, S.K. and Giri, B.C. (2001),“Recent trends in modeling of deteriorating inventory”, European Journal of Operational Research, Vol. 34, No. 1, pp. 1-16.
[42]Gupta, O.K. (1988),“A comment on: Economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, Vol. 39, No. 3, pp. 322-323.
[43]Hadley, G. and Whitin, T. M. (1961),“An optimal final inventory model”, Management Science, Vol. 7, No. 2, pp.179-183.
[44]Haley, C.W. and Higgins, R.C.(1973),“Inventory policy and trade credit financing”, Management Science, Vol. 20, No. 4, pp.464-471.
[45]Hariga, M.A. (1996),“Optimal EOQ models for deteriorating items with time-varying demand”, Journal of the Operational Research Society, Vol. 47, No. 10, pp. 1228-1246.
[46]Harris, F.W. (1913),“How many parts to make at once”, Factory.The Magazine of Management,Vol. 10, No. 2, pp. 135-136.
[47]Hillier, F.S. and Lieberman, G.J. (2005), Introduction to Operations Research, (8th edition.), McGraw-Hill, Inc. New York.
[48]Huang, Y.F. (2003),“Optimal retailer’s ordering policies in the EOQ model under trade credit financing”, Journal of the Operational Research Society, Vol. 54, No. 9, pp. 1011-1015.
[49]Huang, Y.F. (2004),“Optimal retailer’s replenishment policy for the EPQ model under trade credit policy”, Production Planning & Control, Vol. 15, No. 1, pp. 27-33.
[50]Hwang, H. and Shinn, S.W. (1997),“Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments”, Computers & Operations Research, Vol. 24, No. 6, pp. 539-547
[51]Jamal, A.M.M., Sarker, B.R. and Wang, S. (1997),“An ordering policy for deteriorating items with allowable shortage and permissible delay in payment”, Journal of the Operational Research Society, Vol.48, No. 8, pp. 826-833.
[52]Jamal, A.M.M., Sarker, B.R. and Wang, S. (2000),“Optimal payment time for a retailer under permitted delay of payment by the wholesaler”, International Journal of Production Economics, Vol. 66, No. 1, pp. 59-66.
[53]Katagiri, H.and Ishii, H.(2000),“Some inventory problems with fuzzy shortage cost”, Fuzzy Sets and Systems, Vol. 111, No. 1, pp. 87-97.
[54]Kim, J.S., Hwang, H., and Shinn, S.W. (1995),”An optimal credit policy to increase supplier's profits with price dependent demand functions”, Production Planning & Control, Vol.6, No. 1, pp. 45-50.
[55]Kingsman, B.G. (1983),“The effect of payment rules on ordering and stocking in purchasing”, Journal of the Operational Research Society, Vol. 34, No. 11, pp. 1085-1098.
[56]Liao, H.C., Tsai, C.H. and Su, C.T. (2000),“An inventory model with deteriorating items under inflation when a delay in payment is permissible”, International Journal of Production Economics, Vol. 63, No. 2, pp. 207-214.
[57]Mandal, B.N. and Phaujdar, S. (1989),“An inventory model for deteriorating items and stock-dependent consumption rate”, Journal of the Operational Research Society, Vol. 40, No. 5, pp. 483-488.
[58]Misra, R.B. (1975),“Optimum production lot size model for a system with deteriorating inventory”, International Journal of Production Research, Vol. 13, pp. 495-505.
[59]Nahmias, S. (1978),“Perishable inventory theory:a review”, Operations Reaseach, Vol. 30, No. 4, pp. 680-708.
[60]Ouyang, L.Y. and Chang, H.C. (2001),“The variable lead time stochastic inventory model with a fuzzy backorder rate”, Journal of Operations Research Society of Japan, Vol. 44, No. 1. pp. 19-33.
[61]Ouyang, L.Y. and Wu, K.S. (1998),“A minimax distribution free procedure for mixed inventory model with variable lead time”,. International Journal of Production Economics, Vol. 56-57, No. 1, pp. 511-516.
[62]Ouyang, L.Y. and Yao, J.S. (2002),“A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand”, Computers & Operations Research, Vol. 29, No. 5, pp. 471-487.
[63]Papachristos, S. and Skouri, K. (2000),“An optimal replenishment policy for deteriorating items with time-varying demand and partial- exponential type-backlogging”, Operations Research Letters, Vol. 27, No. 4, pp. 175-184.
[64]Philip, G.C. (1974),“A generalized EOQ model for items with Weibull distribution deterioration”, AIIE Transactions, Vol. 6, pp. 159-162.
[65]Raafat, F. (1991),“Survey of literature on continuously deteriorating inventory”, Journal of Operational Research Society, Vol. 42, No. 1, pp. 27-37.
[66]Rachamadugu, R. (1989),“Effect of delayed payments (trade credit) on order quantities”, Journal of Operational Research Society, Vol. 40, No. 9, pp. 805-813.
[67]Roach, B. (2005),“Origin of the economic order quantity formula; transcription or transformation?”, Management Decision, Vol. 43, No. 9, pp. 1262-1268.
[68]Sachan, R.S. (1984),“On (T,Si) inventory policy model for deteriorating items with time proportional demand”, Journal of the Operational Research Society, Vol. 35, No. 11, pp. 1013-1019.
[69]Sana, S. and Chaudhuri, K.S. (2003),“An EOQ model with time-dependent demand, inflation and money value for a ware-house enterpriser”, Advanced Modeling and Optimization, Vol. 5, No. 2, pp. 135-146.
[70]Sarker, B. R., Jamal, A. M. M. and Wang, S. (2000a),“Optimal payment time under permissible delay in payment for products with deterioration”, Production Planning & Control, Vol.11, No. 4, pp. 380-390.
[71]Sarker, B. R., Jamal, A. M. M. and Wang, S. (2000b),“Supply chain models for perishable products under inflation and permissible delay in payments”, Computer & Operations research, Vol. 27, No. 1, pp. 59-75.
[72]Shah, Y.K. (1977), “An order-level lot-size inventory model for deteriorating items”, AIIE Transactions, Vol. 9, pp. 108-112.
[73]Shawky, A.I. and Abou-El-Ata, M.O. (2001), “Constrained production lot-size model with trade-credit policy: a comparison of geometric programming approach via Lagrange”, Production Planning & Control, Vol. 12, No, 7, pp. 654-659.
[74]Shinn, S.W. (1997), “Determining optimal retail price and lot size under day-terms supplier credit”, Computers & Industrial Engineering, Vol. 33, No. 3, pp. 717-720.
[75]Silver, E.A., Pyke, D.F. and Peterson, R.(1998), Inventory Management and Production Planning and Scheduling (3rd edition), John Wiley & Sons.
[76]Solomon, E. and Pringle, J.J. (1980), An Introduction to Financial management,(2nd edition), Goodyear Publishing Company, Inc., California.
[77]Tadikamalla, P. R. (1978),“An EOQ inventory model for items with gamma distribution”, AIIE Transactions, Vol. 10, pp. 108-112.
[78]Teng, J. T. (2002),“On the economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, Vol. 53, No. 8, pp. 915-918.
[79]Teng, J.T., Chang, C.T. and Chern, M.S. (2005a),“Retailer’s optimal ordering policies in the EOQ models with trade credit financing”, Submitted to International Journal of Systems Science.
[80]Teng, J.T., Chang, C.T. and Goyal, S.K.(2005b),“Optimal pricing and ordering policy under permissible delay in payments”, International Journal of Production Economics. Vol. 97, No. 2, pp. 121-129.
[81]Teng, J.T., Chang, H.J., Dye, C.Y., and Hung, C.-H. (2002),“An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging”, Operations Research Letters, Vol. 30, No. 6, pp. 387-393.
[82]Teng, J.T., Chern, M.S., Yang, H.L. and Wang, Y.J. (1999), “Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand”, Operations Research Letters, Vol. 24, No. 1, pp. 65-72.
[83]Teng, J.T., Yang, H.L., and Ouyang, L.Y. (2003),“On an EOQ model for deteriorating items with time-varying demand and partial backlogging”, Journal of the Operational Research Society, Vol. 54, No. 4, pp. 432-436.
[84]Ward, S.C. and Chapman, C.B. (1987),“Inventory control and trade credit- a reply to Daellenbach”, Journal of Operational Research Society, Vol. 38, No. 11, pp. 1081-1084.
[85]Wee, H.M. (1995),“A deterministic lot-size inventory model for deteriorating items with shortages and a declining market”, Computers & Operations Research, Vol. 22, No. 3, pp. 345-356.
[86]Wee, H.M. (1997),“A replenishment policy for items with a price-dependent demand and a varying rate of deterioration”, Production Planning & Control, Vol. 8, No. 5, pp. 494-499.
[87]Whitin, T.M. (1957),Theory of Inventory Management, Princeton:Princeton University Press.
[88]Wilson, R.H. (1934),“A scientific routine for stock control”, Harvard Business Review, Vol.13, pp.116-128.
[89]Yan, H. and Cheng, T.C.E. (1998),“Optimal production stopping and restarting time for an EOQ model with deteriorating items”, Journal of the Operational Research Society, Vol. 49, No. 12, pp. 1288-1295.
[90]Yao, J.S. and Lee, H.M. (1996),“Fuzzy inventory with backorder for fuzzy order quantity”, Information Sciences, Vol. 93, No. 3-4, pp. 283-319.
[91]Yao, J.S. and Su, J.S. (2000),“Fuzzy inventory with backorder for fuzzy total demand based on interval-valued fuzzy set”, European Journal of Operational Research,Vol. 124, No. 2, pp. 390-408.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-06-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信