淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2206200604282800
中文論文名稱 隱含便利收益的資訊內涵:以Copula為基礎的美式選擇權定價模型
英文論文名稱 The Information Content of Implied Convenience Yield from Commodity Futures: A Copula Based American Call Options Pricing Model
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 94
學期 2
出版年 95
研究生中文姓名 林明瑛
研究生英文姓名 Ming-In Lin
學號 693490467
學位類別 碩士
語文別 中文
口試日期 2006-06-18
論文頁數 74頁
口試委員 指導教授-邱建良
委員-李命志
委員-邱哲修
委員-林卓民
中文關鍵字 便利收益  美式選擇權定價  資訊內含  最小平方蒙地卡羅法 
英文關鍵字 convenience yield  american option pricing  information content  least square monte carlo 
學科別分類 學科別社會科學商學
中文摘要 本文使用美式選擇權的觀點分析西德州中級原油(WTI)現貨與期貨價差的便利收益所表現的資訊內涵以及其與波動性的關係,對於文獻上對於商品期貨便利收益假設及看法做實證分析,並利用計算出的隱含便利收益配合時間序列模型做波動性風險管理計算風險值(VaR)及價差交易策略,分析其經濟價值。
由於資產報酬率具有GARCH效果,本文利用Copula方法結合Duan(1995) GARCH選擇權定價模型,另外,為了計算美式選擇權有提早履約的權利,因此本文結合最小平方蒙地卡羅法,提出兩變量GARCH美式選擇權定價模型計算商品期貨便利收益。
最後,由於波動性是影響買權價值的顯著因子,因此可以對於期貨使用多變量波動性模型進行波動性預測,計算期貨之間的價差預期值以及期貨之間的價差的風險值。因此隱含便利收益的確具有波動性的資訊內涵。
英文摘要 This article examines empirically the behavior and determinants of convenience yield over time for three month oil commodities futures. Contrary to previous approaches, convenience yields are treated as call options with identifiable exercise price, time to maturity and underlying asset. The empirical results derived from the analysis of oil three month commodities futures data covering the period 1995 to 2005, are in line with previous evidence that convenience yields are negatively related to inventory levels. Furthermore, it is demonstrated that observed convenience yields are valued as call options according to an extension of the Black-Scholes option pricing model.

The pricing of commodity futures contracts is important both for professionals and academics. It is often argued that futures prices include a convenience yield, and this article uses a simple trading strategy and GARCH and Geometric Brownian motion to approximate the impact of convenience yields. The convenience yield approximation is both statistically and economically important in explaining variation between the futures price and the spot price after adjustment for interest rates.
論文目次 中文摘要…………………………………………………………………………….. .I
英文摘要……………………………………………………………………………..III
目錄…………………………………………………………………………….. …...IV
圖目錄…………………………………………………………………………….. …V
表目錄…………………………………………………………………………..….. ..V

第一章 緒論 1
第一節 前言 1
第二節 研究動機 3
第三節 論文架構流程圖 6
第二章 便利收益模型文獻回顧 7
第一節 理論模型 7
2.1.1 Kaldor(1939) 7
2.1.2 Fischer (1978) 10
第二節 實證模型 13
2.2.1 Milonas and Thomadakis(1997) 13
2.2.2 Milonas and Henker (2001) 15
2.2.3 Heaney(2002) 17
第三章 美式選擇權定價模型 19
第一節 幾何布朗運動模型 19
3.1.1 Black-Scholes 歐式選擇權評價模型 20
3.1.2 二項樹過程 22
3.1.3 雙變量兩項樹過程 26
第二節 GARCH選擇權評價模型 30
3.2.1 GARCH 模型 (Duan(1995)) 31
3.2.2 蒙地卡羅模擬法 33
3.2.3 雙變量Copula GARCH 選擇權訂價模型
(Goorgergh , Genest and Werker(2005) 36
3.2.4 最小平方蒙地卡羅法(least squares Monte Carlo
, LSMLongstaff and Schwartz(2001)) 41
第四章 研究方法 46
第一節 評估文獻便利收益模型 48
第二節 美式選擇權定價模型的應用 49
第五章 實證結果 56
第一節 模型配適度比較 56
第二節 美式選擇權定價法之風險管理應用 65
5.2.1 GARCH模型 66
5.2.2 CY-BEKK模型 68
第六章 結論與建議 71
參考文獻 72



圖目錄
[圖3.1] 單期二項樹過程.......................................................................................28
[圖3.2] 乘法雙變量兩項過程...............................................................................29
[圖3.3] 加法雙變量兩項過程...............................................................................29
[圖4.1] 兩期貨標準化後的每日殘差圖...............................................................51
[圖4.2] 報酬率的標準化殘差所計算的kendall tau 圖...................................51
[圖4.3] Kendall tau 配適度................................................................................52
[圖5.1] 原始TS 3m 模型殘差與配適能力...........................................................61
[圖5.2] 原始GBM 3m 模型殘差與配適能力.........................................................62
[圖5.3] 原始GARCH 3m 模型殘差與配適能力.....................................................62
[圖5.4] 一次差分後的TS 3m 模型殘差與配適能力...........................................63
[圖5.5] 一次差分後的GBM 3m 模型殘差與配適能力.........................................63
[圖5.6] 一次差分後的GARCH 3m 模型殘差與配適能力.....................................64
表目錄
[表4.1] 期貨合約的到期月份...............................................................................46
[表4.2] 單一參數Copula 族................................................................................54
[表4.3] Kendall tau.............................................................................................54
[表5.1] 敘述統計量與時間序列統計量...............................................................59
[表5.2] 經利率調整後基差使用Cochrane-Orcutt AR(1) 迴歸估計便利收益.60
[表5.3] 一階差分後的參數估計...........................................................................60
[表5.4] 分析期貨價格對於便利收益估計值的影響...........................................61
參考文獻 Alcock J. and Gray P., 2005, Dynamic,nonparametric hedging of european style Mcontingent claims using canonical valuation, Finance Research Letters, 2, 41-50.
Barraquand, J., and Martineau D., 1995, Numerical valuation of high dimensional multivariate american securities, Journal of Financial and Quantitative Analysis, 30, 3, 383-405.
Benth F. and Saltyte-Benth J., 2005, Analytical approximation for the price dynamics of spark spread options, Master thesis, Department of Mathematics, University of Oslo,Norway.
Bollerslev T., R.Y. Chou, and K.F. Kroner, 1992, ARCH modeling in finance: a review of the theory and empirical evidence, Journal of Econometrics, 52, 5-59.
Boyle P.P., A lattice framework for option pricing with two state variables, Journal of Financial and Quantitative Analysis, 23, 1-26.
Boyle P.P., J. Evnine, and S. Gibbs, 1989, Numerical evaluation of multivariate contingent, Review of Financial Studies, 2, 241-250.
Brennan M. and Schwartz E., 1985, Evaluating natrural resource investments, Journal of Business, 58, 135-157.
Brennan M., 1958, The supply of storage, American Economic Review, 48, 1,50-72.
Broadie, M., and Glasserman P., 1997, Pricing american-style securities using simulation, Journal of Economic Dynamics and Control, 21, 8-9, 1323-1352.
Carmona R. and Durrleman V., 2003a, Pricing and hedging options in a log-normal model, tech. report, Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ.
Carmona R. and Durrleman V., 2003b, Pricing and hedging spread options, SIAM REVIEW, 45, 4, 627-685.
Casassus J. and Collin-Dufresne P., 2005, Stochastic convenience yield implied from commodity futures and interest rates, Journal of Finance, lx, 5, 283-2332.
Caumon F. and Bower J., 2004, Redefining the convenience yield in the north sea crude oil market, Oxford Institute for Energy Studies.
Chantziara T. and Skiadopoulos G., 2005, Can the dynamics of the term structure of petroleum futures be forecasted? Evidence from major markets, working paper.
Chen R. and Scott L., 2002, Multi-factor Cox-Ingersoll-Ross models of the term structure: estimates and tests from a kalman filter model, working paper.
Cox,John C., Jonathan E. Ingersoll, and Stephen A. Ross,1985, A theory of the term structure of interest rates, Econometrica, 53, 2, 385-408.
Dai Q. and Singleton K., 2000, Specification analysis of affine term structure models,Journal of Financial, 55, 5, 1943-1978.
Duan J. C., 1995, The GARCH option pricing model, Mathematical Finance, 5, 1, 13-32.
Duan J. C., 2002, Nonparametric option pricing by transformation, working paper.
Duffee G., 2002, Term premia and interest rate forecasts in affine models, Journal of Finance, 57, 1, 405-443.
Duffie D. and Kan R., 1996, Ayield-factor model of interest rates, Mathematical Finance, 6, 379-406.
Duffie D. and Pan J. and Singleton K., 2000, Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68, 6, 1343-1376.
Fama E. and French K., 1987, Commodity futures prices: some evidence on forecast power, premiums and the theory of storage, Journal of Business, 60, 1,55-73.
Fischer S., 1978, Call option pricing when the exercise price is uncertain and the valuation of index bonds, Journal of Finance, 33, 1, 169-176.
Francis A. Longstaff; Eduardo S. Schwartz, 1992, Interest rate volatility and the term structure: a two-factor general equilibrium model, Journal of Financial, 47, 4, 1259-1282.
Gibson R. and Schwartz E., 1990, Stochastic convenience yield and the pricing of oil contingent claims, Journal of Finance, 45, 3, 959-976.
Goorgergh R.W.J., and Genest C., and Werker B., 2005, Bivariate option pricing using dynamic copula models, Insurance: Mathematics and Economics, 37, 1, 101-114.
Grant, D., Vora G., and Weeks D., 1996, Simulation and the early-exercise option problem, Journal of Financial Engineering, 5(3), 211-227.
Haigh M. and Holt M., 2002, Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets, Journal of Applied Econometrics, 17, 269-289.
Heaney R., 2002, Approximation for convenience yield in commodity futures pricing, Journal of Futures Markets, Vol.22, No.10, 1005-1017.
Kaldor N., 1939, Speculation and economic stability, The Review of Economic Studies, 7, 1, 1-27.
Kamrad B., and P. Ritchken, 1991, Multinomial approximating models for options with k state variables, Management Science, 37, 1640-1652.
Lautier D., 2003, Term structure models of commodity prices, working paper.
Longstaff F. and Schwartz E., 1992, Interest rate volatility and the term structure: a two-factor general equilibrium model, Journal of Finance, XLVII, 4,1259-1282.
Longstaff F., 1995, How much can marketability affect security values? Journal of Finance, 50, 5,1767-1774.
Longstaff F., and Schwartz E., 2001, Valuing american options by simulation: a simple least-squares approach, Review of Financial Studies, 14, 1, 113-147.
Milonas N. and Henker T., 2001, Price spread and convenience yield behaviour in the international oil market, Applied Financial Economics, 11, 23-26.
Milonas N. and Thomadakis S., 1997(a), Convenience yields as call options: an empirical analysis, Journal of Futures Markets, 17, 1, 1-15.
Milonas N. and Thomadakis S., 1997(b), Convenience yields and the option to liquidate for commodities with crop cycle, European Review of Agricultural Economics, 24, 2, 267-283.
Miltersen K. and Schwartz E., 1998, Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates, Journal of Financial and Quantitative Analysis, 33, 1, 33-59
Nakajima K. and Maeda A., 2005, Pricing commodity spread options with stochastic term structure of convenience yields and interest rates, working paper.
Raymar, S., and Zwecher M., 1997, Monte carlo estimation of american call options on the maximum of several stocks, The Journal of Derivatives, 5, 1, 7-23.
Robert C. Merton, 1974, On the pricing of corporate debt: the risk structure of interest rates, Journal of Finance, 29, 2, 449-470.
Schwartz E., 1997, The stochastic behavior of commodity prices: implications for valuation and hedging, Journal of Finance, LII, 3, 923-973.
Stentoft L., 2004, Assessing the least squares monte-carlo approach to american option valuation, Review of Derivatives Research, 7, 129-168.
Stentoft L., 2004, Convergence of the least squares monte carlo approach to american option valuation, Management Science, 50, 9, 1193-1203.
Tolmasky C. and Hindanov D., 2002, Principal components analysis for correlated curves and seasonal commodities: the case of the petroleum market, Journal of Futures Markets, 22, 11, 1019-1035.
Vasicek, Oldrich A., 1977, An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188.
Working H., 1948, Theory of the inverse carrying charge in futures markets, Journal of Farm Economics, 30, 1-28.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-06-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-06-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信