淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2205200611382800
中文論文名稱 模糊系統晶片之設計與實現
英文論文名稱 Design and Implementation of Fuzzy System Chip
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 林昱翰
研究生英文姓名 Yu-Han Lin
學號 890350019
學位類別 博士
語文別 中文
口試日期 2006-05-19
論文頁數 116頁
口試委員 指導教授-翁慶昌
委員-王文俊
委員-李祖聖
委員-林志民
委員-龔宗鈞
中文關鍵字 模糊系統  遺傳演算法  汽車跟隨防撞系統  倒單擺控制  全方位移動機器人 
英文關鍵字 Fuzzy system  Genetic algorithms  FPGA  VHDL  Car-following system  Inverted pendulum control  Omni-directional mobile robot 
學科別分類
中文摘要 本論文主要探討如何設計自組式模糊系統與實現模糊系統晶片及其應用。自組式模糊系統只須少量歸屬函數的參數便能建構模糊系統,利用遺傳演算法搜尋最佳參數解使其建構的模糊系統具有較高的效能。進一步以VHDL硬體描述語言來設計具有高彈性與處理速度較快的自組式模糊系統硬體電路並實現在FPGA晶片中,另外設計一個應用程式讓使用者輸入歸屬函數的參數與規則庫便能輕易地產生所需模糊系統的VHDL硬體電路程式碼。本論文以「二輸入單輸出」的倒單擺控制系統為例成功的完成基於遺傳演算法的自主式模糊系統設計及模糊系統硬體電路設計與驗證。在完成自組式模糊系統的硬體電路設計之後,本論文提出通用非同步收發傳輸器IP的設計並結合模糊系統硬體電路與Nios嵌入式處理器以實現模糊系統晶片。本論文利用Nios處理器中的UART介面傳輸歸屬函數參數與規則庫資料以建構所需的模糊系統。因此所設計的模糊系統晶片可應用在各種控制問題上並輕易的讓使用者依照所需的控制問題設計模糊系統晶片。此外,本論文設計一個系統開發介面,提供使用者可以藉由此開發介面來設定所想要的模糊系統參數以及規則庫資訊等,並且可以自動產生Nios嵌入式處理器之C語言程式碼、自動編譯、下載整合與ISP功能,其可以讓使用者很輕易的依實際需要設定所需模糊系統晶片。最後以兩種不同形式的控制問題來做應用,分別為「單輸入單輸出」的汽車跟隨防撞系統與「三輸入三輸出」的無線遙控全方位移動系統,以驗證所提的模糊系統晶片之設計與實現確實有效且可行。
英文摘要 In this dissertation, a design and implementation of a fuzzy system chip is proposed. First, a self-generating method based on a genetic algorithm (GA) is proposed to automatically construct a high performance fuzzy system. Then, a fuzzy system hardware design method by using VHSIC hardware description language (VHDL) is proposed so that the fuzzy system hardware implemented on an FPGA chip has a great flexibility and a high process speed. Moreover, a friendly-used software tool is developed to automatically generate VHDL codes for the users to easily design their fuzzy system hardware based on the proposed method. Some simulation results of an inverted pendulum control system are presented to illustrate the efficiency and feasibility of the proposed GA-based method in the fuzzy system design and hardware implementation. Furthermore, an intellectual property (IP) design method of universal asynchronous receiver and transmitter (UART) is proposed to integrate with fuzzy system hardware and soft IP of the Nios microprocessor for implementation of fuzzy system chip on an FPGA chip. The function of UART in Nios is used to construct a serial communication interface so that it can be used to transmit the design parameters of membership functions and rule base to set up the desired fuzzy system. Therefore, the implemented fuzzy system chip is a multi-applications chip, which can be organized by the users to design their fuzzy systems based on their applications. Besides, a system development application program is created to set up an interface so that the users can quickly use it to design their fuzzy systems by setting some parameters. Finally, in order to illustrate the multi-applications and effectiveness of the proposed fuzzy system chip, one-input-one-output car-following system and three-inputs-three-outputs remote-controlled omnidirectional mobile system are designed and implemented.
論文目次 第一章 緒論.............................................1
1.1 研究背................................................1
1.2 論文內容..............................................8
1.2.1 基於遺傳演算法之模糊系統設計....................8
1.2.2 以VHDL及FPGA設計實現模糊系統晶片................9
1.2.3 可程式模糊系統單晶片之設計......................9
1.2.4 可程式模糊系統單晶片之應用.....................10
1.3 論文架構.............................................10
第二章 基於遺傳演算法之模糊系統設計....................12
2.1 自組式模糊系統.......................................14
2.2 基於遺傳演算法之模糊系統設計.........................19
2.3 在倒單擺控制系統上的模擬驗證.........................22
第三章 以VHDL及FPGA設計實現模糊系統晶片................29
3.1 模糊系統硬體電路設計.................................29
3.2 模糊系統硬體自動化設計...............................44
3.3 在倒單擺系統上的實體驗證.............................46
第四章 可程式模糊系統單晶片之設計......................51
4.1 UART硬體設計.........................................52
4.1.1 鮑率產生器電路設計.............................53
4.1.2 串列傳輸接收器電路設計.........................55
4.1.3 串列傳輸發送器電路設計.........................61
4.2 可串列規劃之模糊系統晶片硬體設計.....................68
4.3 結合Nios嵌入式軟核心處理器之模糊系統單晶片設計.......72
4.4 模糊系統單晶片之軟體自動化設計.......................73
第五章 可程式模糊系統單晶片之應用......................80
5.1 「單輸入單輸出」之汽車跟隨防撞系統...................81
5.2 「三輸入三輸出」之無線遙控全方位移動系統.............87
第六章 結論與未來展望.................................104
6.1 結論................................................104
6.2 未來展望............................................105
參考文獻................................................106
研究著作................................................114
圖目錄
圖1.1 模糊控制系統的基本架構圖………….…………………………….2
圖2.1 格狀分割方式示意圖………………………………………………13
圖2.2 模糊推論法示意圖…………………………………………………13
圖2.3 三角形歸屬函數……………………………………………………15
圖2.1 前件部模糊集合示意圖……………………………………………18
圖2.2 後件部模糊集合示意圖……………………………………………18
圖2.3 遺傳演算法流程圖…………………………………………………20
圖2.4 倒單擺架構圖………………………………………………………22
圖2.5 輸入變數x1之歸屬函數圖………………………………………….27
圖2.6 輸入變數x2之歸屬函數圖………………………………………….27
圖2.7 輸出變數y之歸屬函數圖…………………………………………..27
圖2.8 7 個不同初始狀態的系統響應圖:(a)傳統模糊系統,(b)基於遺傳
演算法的模糊系統…………………………………………………………28
圖2.9 兩個不同初始狀態下的系統響應圖………………………………28
圖3.1 模糊系統硬體方塊圖………………………………………………31
圖目錄
IV
圖3.2 模糊集合硬體實現示意圖…………………………………………31
圖3.3 模糊系統硬體結構圖………………………………………………33
圖3.4 8 個管線步驟的運算流程圖………………………………………...39
圖3.5 模糊系統硬體電路方塊圖…………………………………………40
圖3.6 在Fuzzy toolbox 中輸入與輸出的歸屬函數,(a)輸入變數x1,(b)
輸入變數x2,(c)輸出變數y…………………………………………………41
圖3.7 模糊系統硬體電路的模擬圖………………………………………42
圖3.8 模糊系統Matlab 的模擬圖…………………………………………42
圖3.9 模糊系統輸出結果(a)Matlab fuzzy toolbox 的軟體模擬結果(b)硬體
電路的輸出結果…………………………………………………………....43
圖3.10 模糊系統於軟體與硬體電路輸出的誤差圖……………………..43
圖3.11 多工器電路產生器範例,(a)多工器模組外觀,(b)VHDL 產生器
介面,(c)Borland C++ 程式碼,(d)產生的VHDL程式碼…………………45
圖3.12 模糊系統硬體電路產生器………………………………………..46
圖3.13 倒單擺控制系統方塊圖…………………………………………..49
圖3.14 利用MAX+plus II 10.2 EDA 工具實現的倒單擺模糊控制系統方
塊圖…………………………………………………………………………49
圖3.15 電位計之電壓值與FPGA 晶片輸出信號在示波器上的量測圖,
(a)1.8V 電壓值,PWM 輸出99%的責任週期,”10”的轉向控制信號,(b)
2.2V 電壓值,PWM 輸出50%的責任週期,”10”的轉向控制信號,(c)2.5V
電壓值,PWM 輸出0%的責任週期,”00”的轉向控制信號,(d)2.6V 電壓
值, PWM 輸出20% 的責任週期, ”01”的轉向控制信
號……………………………………………………………………………50
圖目錄
V
圖4.1 可程式模糊系統單晶片架構圖……………………………………52
圖4.2 UART 傳輸示意圖…………………………………………………..53
圖4.3 鮑率產生器方塊圖…………………………………………………54
圖4.4 鮑率產生器功能模擬圖……………………………………………55
圖4.5 sel = “000” 時的功能模擬圖……………………………………….55
圖4.6 以bclkx8作串列資料信號的取樣示意圖………………………….56
圖4.7 串列傳輸接收器功能方塊圖………………………………………57
圖4.8 串列傳輸接收器流程圖……………………………………………60
圖4.9 串列傳輸接收器功能模擬圖,(a) 5 個位元資料、無同位元檢查、1
個停止位元,(b) 6 個位元資料、無同位元檢查、1 個停止位元,(c) 7 個
位元資料、無同位元檢查、1 個停止位元,(d) 8 個位元資料、無同位元
檢查、1 個停止位元,(e) 5 個位元資料、奇同位檢查、1 個停止位元,(f)
5 個位元資料、偶同位檢查、1 個停止位元,(g) 5 個位元資料、無同位
元檢查、1.5 個停止位元,(h) 5 個位元資料、無同位元檢查、2 個停止位
元……………………………………………………………………………61
圖4.10 串列傳輸發送器功能方塊圖……………………………………..62
圖4.11 串列傳輸發送器流程圖……………………………………………64
圖4.12 串列傳輸發送器功能模擬圖,(a) 5 個位元資料、無同位元檢查、
1 個停止位元,(b) 6 個位元資料、無同位元檢查、1 個停止位元,(c) 7
個位元資料、無同位元檢查、1 個停止位元,(d) 8 個位元資料、無同位
元檢查、1 個停止位元,(e) 5 個位元資料、奇同位檢查、1 個停止位元,
(f) 5 個位元資料、偶同位檢查、1 個停止位元,(g) 5 個位元資料、無同
位元檢查、1.5 個停止位元,(h) 5 個位元資料、無同位元檢查、2 個停止
圖目錄
VI
位元…………………………………………………………………………65
圖4.13 UART IP 電路方塊圖………………………………………………66
圖4.14 UART IP 產生器……………………………………………………67
圖4.15 UART 應用電路方塊圖……………………………………………67
圖4.16 電腦端串列傳輸應用程式………………………………………..68
圖4.17 MAX II 的FPGA電路板…………………………………………...68
圖4.18 可串列規劃模糊系統電路之架構………………………………..70
圖4.19 可串列規劃模糊系統之電路方塊圖……………………………..71
圖4.20 可串列規劃模糊系統電路產生器………………………………..72
圖4.21 可串列規劃模糊系統電路模組…………………………………..72
圖4.22 SoPC開發實驗板…………………………………………………..74
圖4.23 模糊系統晶片之設計開發流程…………………………………..75
圖4.24 在Nios 與可規劃模糊系統電路方塊圖…………………………...78
圖4.25 在Fuzzy System SoPC應用程式………………………………….78
圖4.26 Nios SDK Shell 程式(a)編譯Nios C 程式,(b)下載機械碼至Nios,
(c)將模糊系統輸出回傳顯示至螢幕上……………………………………79
圖4.27 SoPC開發實驗板驗證圖…………………………………………..79
圖5.1 汽車跟隨防撞系統之方塊圖………………………………………82
圖5.2 紅外線距離感測器…………………………………………………83
圖5.3 汽車跟隨防撞系統所使用之模糊集合(a)輸入變數x 與(b)輸出變數
y……………………………………………………………………………..84
圖5.4 汽車跟隨防撞系統電路方塊圖……………………………………85
圖5.5 模型車之驅動電路板………………………………………………86
圖目錄
VII
圖5.6 (a)模型車之側面圖(b)模型車之正面圖……………………………86
圖5.7 距離感測器之感測情形……………………………………………87
圖5.8 追蹤防撞功能展示圖………………………………………………87
圖5.9 無線遙控之全方位移動系統的方塊圖……………………………88
圖5.10 無線遙控之全方位移動系統的實體圖…………………………..88
圖5.11 全方位移動機器人底座實體圖…………………………………...89
圖5.12 全方位移動機器人底座基本架構圖……………………………..90
圖5.13 機器人相對座標軸示意圖………………………………………..91
圖5.14 機器人絕對座標軸示意圖………………………………………..91
圖5.15 每一代的最佳適應函數值圖(a) 1 號輪, (b) 2 號輪, (c) 3 號輪…..99
圖5.16 兩種情形的模擬結果(a)平移(b)平移與旋轉…………………….99
圖5.17 六個紅外線距離感測器模組……………………………………100
圖5.18 全方位移動機器人機構外觀圖…………………………………100
圖5.19 模糊系統與PWM模組方塊圖…………………………………..101
圖5.20 三輸入三輸出模糊系統與PWM模組之功能模擬圖…………..102
圖5.21 機器人平移的連續圖……………………………………………103
圖5.22 機器人移動旋轉的連續圖………………………………………103
VIII
表目錄
表2.1 模糊系統之規則庫…………………………………………………25
表2.2 倒單擺控制的模糊系統參數………………………………………26
表3.1 模糊系統規則庫……………………………………………………34
表3.2 各模組電路實現到EPF10K20RC240 晶片的使用率……………..38
表3.3 與其他模糊系統硬體電路在FLIPS 與最大操作頻率上的比較….38
表3.4 與FLASP 方法在電路使用資源上的比較………………………...38
表4.1 鮑率選擇表…………………………………………………………54
表4.2 串列傳輸接收器信號說明表………………………………………57
表4.3 databit 控制信號功能表……………………………………………..58
表4.4 paritybit 控制信號功能表…………………………………………...58
表4.5 stopbit 控制信號功能表……………………………………………..58
表4.6 串列傳輸發送器信號說明表………………………………………63
表4.7 UART IP 合成資料表………………………………………………..66
表4.8 模糊知識庫資料協定………………………………………………70
表4.9 UART IP 合成資料表………………………………………………..72
表目錄
IX
表4.10 SoPC設計流程所需使用的軟體一覽表…………………………..75
表5.1 汽車跟隨防撞系統之規則庫………………………………………85
表5.2 1 號輪的模糊規則庫………………………………………………...95
表5.3 2 號輪的模糊規則庫………………………………………………...96
表5.4 3 號輪的模糊規則庫………………………………………………...97
表5.5 搜尋到的模糊系統最佳參數解……………………………………99
參考文獻 [1] Altera Corporation, San Jose, CA. http://www.altera.com.
[2] Altera Corporation, San Jose, CA. Lpm_divide Megafunction User Guide, ver. 1.0, Sept. 2004.
[3] Aptronix Inc., Santa Clara, CA. F.I.D.E. Data Sheet, ver. 2.0, June 1994.
[4] Gerardo Aranguren, Luis A.L. Nozal, Xabier Basogain, José L. Martin, and Joseba L. Arroyabe, “Hardware implementation of a pipeline fuzzy controller and software tools,” Fuzzy sets and systems, vol. 128, no. 1, pp. 61-79, May 2002.
[5] H. Arikawa, K. Hirota, and M. Sakawa, “Virtual paging fuzzy chip and fuzzy workstation as its design environment,” 3rd IFSA World Congress, Seattle, 1989.
[6] H. Asama, L. Bogoni, M. Sato, H. Kaetsu, and I. Endo, “Development of an omni-directional mobile robot with 3 DOF decoupling drive mechanism,” IEEE International Conference on Robotics and Automation, pp. 1925-1930, May 1995.
[7] J. Aranda, A. Grau, and J. Climent, ”Control architecture for a three-wheeled roller robot,” The 5th International Workshop on Advanced Motion Control, AMC ’98-Coimbra., pp. 518-523, 1998.
[8] S. Abe and M.S. Lan, “Fuzzy rules extraction directly from numerical data for function approximation,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, pp. 119-129, 1995.
[9] Byte Dynamics Inc., Spokane, WA. Fuzzy Logic Designer User’s Guide, 1993.
[10] B.K. Bose, “Expert system, fuzzy logic, and neuronal network applications in power electronics and motion control,” Proceedings of the IEEE, vol. 82, no. 8, pp. 1303-1323, 1994.
[11] P.P. Bonissone, V. Badami, K.H. Chiang, P.S. Khedkar, K.W. Marcelle, and M.J. Schutten, “Industrial applications of fuzzy logic at general electric,” Proceedings of the IEEE, vol. 83, no. 3, pp. 450-465, 1995.
[12] C.Y. Chen, Y.T. Hsieh, and B.D. Liu, “Circuit implementation of linguistic-hedge fuzzy logic controller in current-mode approach,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 624-646, Oct. 2003.
[13] J.X. Chang and L.H. Xiang, “Fuzzy controller hardware design and implementation,” Proceedings of the International Conference ASICs, pp. 321-324, 1996.
[14] O. Cordon, F. Herrera, and P. Villar, “Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 667-674, 2001.
[15] P.Y. Chen, “VLSI implementation for fuzzy membership-function generator,” IEICE Transactions on Information and Systems, vol. E86-D, no. 6, pp. 1122-1125, June 2003.
[16] V. Catania, A. Puliafito, M. Russo, and L. Vita, “A VLSI fuzzy inference processor based on a discrete analog approach,” IEEE Transactions Fuzzy Systems, vol. 2, pp. 93-106, May 1994.
[17] I. Del Campo, R. Callao, and J.M. Tarela, “Automatic implementation of different inference architectures for fuzzy control on PLDs,” Computers and Electrical Engineering, vol. 24, pp. 113-121, 1998.
[18] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold: New York, 1991.
[19] S.E. Eldridge and C.D. Walter, “Hardware implementation of montgomery's modular multiplication algorithm,” IEEE Transactions on Computers, vol. 42, no. 6, pp. 693-699, 1993.
[20] H. Eichfeld, T. Kunemund, and M. Menke, “A 12b general-purpose fuzzy logic controller chip,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 4, pp. 460-475, 1996.
[21] Fujitsu Corporation, Japan, Data Sheet MB94140 Series, 1992.
[22] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading: MA, 1989.
[23] M.S. Harvey, Generic UART Manual, Silicon Valley, Dec. 1999.
[24] S.H. Huang, W.H. Peng, and J.Y. Lai, “Automatic synthesis of fuzzy systems based on trapezoid-shaped membership functions,” 2002 Asia-Pacific Conference on Circuits and Systems, vol. 2, pp.43-46, Oct. 28-31, 2002.
[25] O. Ishizuka, K. Tanno, Z. Tang, and H. Matsumoto, “Design of fuzzy controller with normalization circuits,” IEEE International Conference Fuzzy Systems, San Diego, CA, pp. 1303-1308, 1992.
[26] J.S.R. Jang, “Self-learning fuzzy controller based on temporal back-propagation,” IEEE Transactions on Neural Networks, vol. 3, pp. 714-723, Sept. 1992.
[27] J.S.R. Jang, “ANFIS: adaptive-network-fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.
[28] M.J. Jung, H.S. Kim, S.Kim, and J.H. Kim,” Omnidirectional mobile base OK-II,” IEEE International Conference on Robotics and Automation, pp. 3449-3454, 2000.
[29] D. Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA system,” IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 703-715, June 2000.
[30] T. Kalmár-Nagy, P. Ganguly, and R. D'Andrea,” Real-time trajectory generation for omni-directional vehicles,” Proceedings of the American Control Conference, pp. 286-291, 2002.
[31] Y.D. Kim and L.K. Hyung, “High-speed flexible fuzzy hardware for fuzzy information processing,” IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 27, pp. 45-56, Jan. 1997.
[32] B. Liu and C. Huang, “Design and implementation of the tree-based fuzzy logic controller,” IEEE Transactions Systems, Man, and Cybernetics, Part B, vol. 27, pp. 475-487, June 1997.
[33] C.C. Lee, “Fuzzy logic in control systems: fuzzy logic controller (Part I and Part II),” IEEE Transactions Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 404-435, 1990.
[34] C.S. Li and F.P. Wu, “Implementation of fuzzy system on FPGA chip,” 2001 Ninth National Conference on Fuzzy Theory and its Applications, National Central University, Chung-Li, Tao-Yuan, Taiwan, ROC, Nov. 2001.
[35] J.H. Li, M.C. Tsai, S.H. Lin, and T.H. S. Li, “Design and implementation of fuzzy logic controller for an FPGA-based inverted pendulum car,” Proceedings of the CFSA’2002, Taiwan, R.O.C., Dec. 2002.
[36] T.H.S. Li, S.J. Chang, and Y.X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,” IEEE Transactions on Industrial Electronics, vol. 50, no. 5, pp. 867-880, Oct. 2003.
[37] Z. Li, J. Chen, and J. Feng, “Design of an omni-directional mobile microrobot (OMMR-I) for a micro-factory with 2mm electromagnetic micromotors,” Robotica, vol. 23, pp. 45-49, 2005.
[38] Mentor Graphics Corporation, Wilsonville, Oregon, LeonardoSpectrum User’s Manual, 2005.
[39] Motorola, Inc., MCHC12 CPU Reference Manual, 1997.
[40] E.H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” Proceedings of the IEE, vol. 121, no. 12, pp. 1585-1588, 1974.
[41] M.A. Manzoul and D. Jayaharathi, “FPGA for fuzzy controller,” IEEE Transactions Systems, Man, and Cybernetics, vol. 25, pp. 213-216, Jan. 1995.
[42] M.S. Michael, A comparison of the INS8250, NS16450 and NS16550AF series of UARTs, National Semiconductor Application Note 493, April 1989.
[43] T. Munakata and Y. Jani, “Fuzzy systems: an overview,” Communication of the ACM, vol. 37, no. 3, pp. 69-76, 1994.
[44] C.P. Parris and R.L. Haggard, “Architecture for a high-speed fuzzy logic inference engine in FPGAs,” Proceedings of the Annual Southeastern Symposium on System Theory, pp. 179-182, 1997.
[45] SGS-Thompson Inc., France, Data Sheet W.A.R.P. 1.0., 1994.
[46] M. Setnes and R. Babuska, “Rule base reduction: Some comments on the use of orthogonal transforms,” IEEE Transactions on Systems, Man, and Cybernetic, vol. 31, no. 2, pp. 199-206, 2001.
[47] M. Sugeno, Industrial Applications of Fuzzy Control, Elsevier Science Inc., New York, NY, 1985.
[48] Z. Salcic, “High-speed customizable fuzzy-logic processor: Architecture and implementation,” IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 31, no. 6, pp. 731-737, 2001.
[49] Togai InfraLogic Inc., Irvine, CA. Fuzzy-C Expert Systems User’s Guide, 1990.
[50] H.H. Tseng, S.C. Lee, and C.H. Chang, “The Design of a Fast Inference and Symmetric Membership Function Based Fuzzy Chip,” 5th IEEE International Conference on Fuzzy Systems, pp. 580-586, Sept. 1996.
[51] M. Togai and H. Watanabe, “Expert system on a chip: an engine for real-time approximated reasoning,” IEEE Expert, vol. 1, no. 3, pp. 55-62, 1986.
[52] S.M. Trimberger, Field-Programmable Gate Array Technology. Amsterdam, The Netherlands: Kluwer, 1994.
[53] Y. Tasaka, “Hybrid bus type fuzzy controller with analog fuzzy chips,” Proceedings of the IFSA World Congress, pp. 280-293, 1989.
[54] VLSI Technology Inc., San Jose, CA. Data Sheet NLX220, Mar. 1993.
[55] C.C. Wong and S.M. Her, “A self-generating method for fuzzy system design,” Fuzzy Sets and Systems, vol. 103, no. 1, pp. 13-25, Apr. 1999.
[56] C.C. Wong and C.C. Chen, “A clustering-based method for fuzzy modeling,” IEICE Transactions on Information and Systems, vol. E82-D, no. 6, pp. 1058-1065, Jun. 1999.
[57] C.C. Wong and C.C. Chen, “A GA-based method for constructing fuzzy systems directly from numerical data,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 30, no. 6, pp. 904-911, Dec. 2000.
[58] C.C. Wong, B.C. Lin, and C.C. Chen, “Fuzzy rules extraction by a hybrid method for pattern classification,” International Fuzzy Systems Association and the North American Fuzzy Information Processing Society Joint Conference, vol. 3, pp. 1798-1803, July 2001.
[59] C.C. Wong, B.C. Lin, and C.C. Chen, “Fuzzy rule extraction by a hybrid GA and SVD-QR method for pattern classification,” International Journal of Electrical Engineering, vol. 12, no. 2, pp. 113-123, May 2005.
[60] K. Watanabe, Y. Shiraishi, S. Tzafestas, J. Tang, and T. Fukuda, “Feedback control of an omni-directional autonomous platform for mobile service robots,” Journal of Intelligent and Robotic Systems, vol. 22, pp. 315-330, 1998.
[61] M. Wada, Y. Tominaga, and S. Mori, “Design of an omnidirectional holonomic vehicle,” Proceedings of the 13th Annual Conference of RSJ, pp. 145-146, 1995.
[62] R.L. Williams, II, B.E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omni-directional robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 285-293, 2002.
[63] Xilinx Corporation, San Jose, CA. http://www.xilinx.com.
[64] J. Yen, R. Langari, L.A. Zadeh (Eds.), Industrial Applications of Fuzzy Logic and Intelligent Systems, IEEE Press, New York, 1995.
[65] T. Yamakawa and I. Miki, “The current mode fuzzy logic integrated circuits fabricated by the standard CMOS process,” IEEE Transactions on Computers, vol. 35, no. 2, pp. 161-167, Feb. 1986.
[66] Y. Yam, P. Baranyi, and C.T. Yang, “Reduction of fuzzy rule bases via singular value decomposition,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 120-132, 1999.
[67] L.A. Zadeh, “Fuzzy sets,” Information of the Control, vol. 8, pp. 338-353, 1965.
[68] L.A. Zadeh, “A rationale for fuzzy control,” Transactions of the ASME Journal Dynamic Systems Measurement, and Control, vol. 94, pp. 3-4, 1972.
[69] L.A. Zadeh, “Outline of a new approach to the analysis complex systems and decision processes,” IEEE Transactions Systems, Man, and Cybernet, vol. 3, pp. 28-44, 1973.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-06-05公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信