§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2201201621120900
DOI 10.6846/TKU.2016.00676
論文名稱(中文) Chlorella sp.處理生活污水與藻菌共生克服酚毒害之研究
論文名稱(英文) A study on the sewage treatment by Chlorella sp. and algae-bacteria synergistic system to overcome the phenol toxicity
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系博士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 1
出版年 105
研究生(中文) 吳欣慧
研究生(英文) Hsin-Hui Wu
學號 897480058
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2016-01-11
論文頁數 120頁
口試委員 指導教授 - 高思懷(shgau@mail.tku.edu.tw)
共同指導教授 - 李柏青(pclee@mail.tku.edu.tw)
委員 - 高思懷(shgau@mail.tku.edu.tw)
委員 - 徐錠基(tingchi@mail.tku.edu.tw)
委員 - 曾迪華(dhtseng@ncuen.ncu.edu.tw)
委員 - 孫常榮(jonassun703@gmail.com)
委員 - 鄧宗禹(wden@thu.edu.tw)
關鍵字(中) 微藻
碳氮比
固定化

藻菌共生
關鍵字(英) microalgae,
C/N ratio
immobiliztion
synergism
第三語言關鍵字
學科別分類
中文摘要
全球已開發及開發中之國家,隨著人口成長、都市化和工業化的發展,每日都會產出大量的生活污水,然而在污水中除了存在適合微藻培養的營養鹽外,還具有有機物質,係分為易分解與難分解有機物,會對於微藻去除污染物效力造成影響,使得成為微藻處理廢污水之棘手問題。因此,為了要得知污水中易分解與難分解有機物對微藻去除污染物的影響並提升效率同時克服難分解有機物之酚毒害,所以需要了解微藻異營性生長的特性與增加對有機物去除效率方法,期望可以處理污水同時生產的藻體可製成生質能源、飼料等環保及經濟效益。
本研究分為三大部分進行探討:(1)易分解有機物(葡萄糖),首先以Chlorella sp.異營性培養為基礎,利用不同C/N濃度比探討其生長特性與污染物去除較佳操作條件,並加入固定化方式加入探討,了解與懸浮培養的差異性以及污染物去除影響;(2) 模擬生活污水,利用不同初始食微比在含有易分解有機物的環境中探討模擬生活污水與小球藻生物質量之比值圍以及其中污染物質去除的影響;(3)難分解有機物(酚),將Chlorella sp.於不同酚濃度下培養,探討其生長與對酚忍受程度影響並加入固定化方式對酚去除影響加以比較,並針對藻菌共生方式探討,提升對難分解有機物去除的效率的影響,並同時利用動力學參數深入了解其中的相關性。
    結果顯示出,Chlorella sp.在C/N 8~12之間有最佳的碳與氮去除率,而C/N 32有最多的脂質累積量與總脂質量。發現在食微比為0.2和12.5 mg TOC*mg-1 biomass*d-1已達極限值,低於或高於此數值皆不適合Chlorella sp.持續生長,而較適合Chlorella sp.於模擬生活污水的F/M範圍為1.5~3 mg TOC*mg-1 biomass*d-1。Chlorella sp.在酚濃度300 mg/L有最佳比生長速率為0.61 d-1,且在酚濃度為800 mg/L時仍有生長。在藻菌共生培養時,顯示出A. vinelandii為主要酚消耗的微生物。Chlorella sp.固定化結合A. vinelandii懸浮培養系統裡有最佳的去除效率,其降解速率與比酚利用率分別為125.6 mg phenol*d-1和28.3 x 10-11 mg*cell-1d-1。
英文摘要
With the trend of population growth, urbanization and industrialization in global countries, tremendous of municipal wastewater are generated every day.   However, gradients in wastewater contain not only nutrients for microalgae to grow but uncertain organics to interfere with.  Those organics include easily degradable and recalcitrant components which may affect the digestible ability of microalgae to treat wastewater.  In order to distinguish the microalgae’s digestibility and growth condition in organic wastewater, experiments were conducted and compared for the better understanding of microalgae growth in water containing either easily degradable organic (glucose) or recalcitrant organic (phenol).  Hopefully, the results could give some clues of treating wastewater and producing biofuel from microalgae simultaneously for future environmental needs.
The objective to this study includes three subjects.  First, find out the suitable growth conditions of mixotrophic microalgae (Chlorella sp.) cultivated in different carbon to nitrogen ratio (C/N ratio) of nutritional water, and cooperated with free living and immobilization of algae.  Second, discuss of the suitable range of food to microorganism ratio for Chlorella sp. biomass and the effects of pollutants removement in synthetic sewage. Third, discuss the tolerance and survival-ship of microalgae cultivating freely or immobilized in variable concentration of phenol solution. Furthermore, confirm the synergistic relation with bacteria (Azotobacter) either in free living or immobilized phenol solution.
The results show that, Chorella sp. between C / N 8 ~ 12 has the best carbon and nitrogen removal, and C / N 32 has the most to total lipid accumulation in fat mass. Found in food micro ratio of 0.2 and 12.5 mg TOC * mg-1 biomass * d-1 has reached the limit, below or above this prime number neither for Chlorella sp. continue to grow, but more suitable for Chlorella sp. in synthetic sewage F / M range of 1.5 ~ 3 mg TOC * mg-1 biomass * d-1. Chlorella sp. at phenol concentration 300 mg / L have the optimum specific growth rate was 0.61 d-1, and a phenol concentration of 800 mg / L could still growing. When symbiotic algae culture as the main exhibit A. vinelandii phenol consumed microorganisms. Chlorella sp. Immobilized binding A. vinelandii suspension culture system has the best removal efficiency, the ratio of phenol degradation rate and utilization rate of 125.6 mg phenol * d-1 and 28.3 x 10-11 mg * cell-1d-1.
第三語言摘要
論文目次
目錄	I
圖目錄	IV
表目錄	VII
第一章 前言	1
1-1	緣起	1
1-2	研究目的	3
第二章 文獻回顧	4
2-1	Chlorella sp.及Azotobacter vinelandii介紹	4
2-1-1 Chlorella sp.培養生長機制	5
2-1 -2 A. vinelandii ATCC 12837生長機制	11
2-1-3 Chlorella sp.與Azotobacter vinelandii培養方式	13
2-2	反應動力學介紹	16
2-2-1 微生物生長動力學-Monod equation (一階反應)	16
2-2-2 微生物基質利用動力學-Michaelis-Menten equation (一階反應)	17
2-3	微藻對有機物降解的現象	17
2-3-1 易分解有機物(葡萄糖)	17
2-3-1-1 不同碳氮比對微藻的影響	17
2-3-2 難分解有機物(酚)	17
2-3-2-1 應用分解之微生物	18
2-3-2-2 細菌與微藻降解酚之現象	19
2-4	藻菌共生對有機物降解之現象	23
2-4-1 一般共生簡介	23
2-4-2 藻菌共生系統	23
2-5	固定化技術簡介	25
2-5-1 固定化技術應用在廢水處理	25
2-5-2 Ca-alginate固定化材料介紹	27
第三章 材料與方法	29
3-1	實驗材料	29
3-1-1 Chlorella sp.	29
3-1-2 Azotobacter ATCC 12837	29
3-2	實驗流程	29
3-3	實驗方法	31
3-3-1 實驗設備設置	31
3-3-2 易分解污染物之探討	31
3-3-3 模擬生活污水之探討	33
3-3-4 難分解污染物之探討	33
3-3-5 固定化顆粒之製備與溶解	35
3-4	分析方法	37
3-4-1 生物質量與細胞數的分析	37
3-4-2 水質分析方法	37
3-4-3 酚的分解活性測定(Wesley et al., 1961)	38
3-4-4 微藻及細菌固定化顆粒之內部觀察	39
3-4-5 微藻及菌類固定化顆粒之物理性質分析	39
3-4-6 Monod equation和Michaelis-Menten equation計算	40
3-4-7脂質分析	41
3-4-8光照強度之測定	41
3-5	實驗儀器與設備	42
第四章 結果與討論	43
4-1	易分解污染物之探討	43
4-1-1 Chlorella sp.懸浮生長的影響	43
4-1-1-1不同碳源的生長影響	43
4-1-1-2 不同碳氮比生長的影響	45
4-1-2	Chlorella sp.固定化生長的影響	48
4-1-2-1固定化顆粒基本性質	48
4-1-2-2 Chlorella sp.固定化不同顆粒濃度配比與不同食微比之生長影響	55
4-1-3 Chlorella sp.懸浮與固定化生長培養之綜合討論	61
4-1-4	污染物去除的影響	63
4-1-4-1 Chlorella sp.懸浮培養之污染物去除影響	63
4-1-4-2 Chlorella sp.固定化不同顆粒數與食微比之影響	63
4-2	模擬生活污水	67
4-2-1 Chlorella sp.不同食微比之生長影響	67
4-2-2 Chlorella sp.不同F/M比之汙染物去除影響	70
4-3	難分解污染物之探討	75
4-3-1 Chlorella sp.生長的影響	75
4-3-1-1 不同酚濃度懸浮培養	75
4-3-1-2 Chlorella sp.固定化培養並與懸浮比較	82
4-3-1-3 A. vinelandii 懸浮與固定化生長之比較	86
4-3-2 藻菌共生克服酚毒害之生長影響	89
4-3-3難分解有機物之去除影響	95
4-3-3-1不同酚濃度懸浮培養去除情形	95
4-3-3-2 固定與懸浮去除酚之比較	97
4-3-3-3 藻菌共生克服酚毒害之去除比較	98
第五章 結論與建議	99
5-1 結論         99
5-2 建議	100
參考文獻	101


圖目錄
Fig. 2-1 The cell of Chlorella sp.	5
Fig. 2-2 The pathway of light reaction via photosynthesis.	6
Fig. 2-3 The pathway of dark reaction via photosynthesis	7
Fig. 2-4 Heterotrophic metabolism in microalgae.	9
Fig. 2-5 Simplified model of metabolism.	12
Fig. 2-6 The cells of A. vinelandii ATCC 12837.	13
Fig. 2-7 The cells in batch culture for time course of microbes.	14
Fig. 2-8 The different of specific growth rate by substrate concentration curve.	16
Fig. 2-9 The chemical structure of phenol.	18
Fig. 2-10 Ortho pathway of phenol degradation.	21
Fig. 2-11 Meta pathway of phenol degradation.	22
Fig. 2-12 The synergistic of microalgae and bacteria.	24
Fig. 2-13 Chemical structures of G-block, M-block, and alternating block in alginate.	27
Fig. 2-14 Alginate hydrogels prepared by ionic cross-linking (egg-box model).	28
Fig. 3-1 Experimental flow-chart.	30
Fig. 3-2 Beads preparation device.	35
Fig. 3-3 Preparation Process Particles.	36
Fig. 4-1 Biomass concentration of cultures for different sources of carbon.	44
Fig. 4-2 Removal of C and N and biomass growth with different initial C/N ratios.	46
Fig. 4-3 Lipid concentration and increment of lipids at the initial and after 96h of culture time and for different C/N ratios.	47
Fig. 4-4 Lipid/cell changes for different C/N ratios at the initial and after 96h of culture time.	47
Fig. 4-5 High (left) and low (right) magnifications of SEM photos of immobilized Chlorella sp. alginate beads at three sodium alginate (SA)-to-calcium chloride ratios with cultivation for 168 h.	53
Fig. 4-6 The effect of bead’s swelling ratio by different concentrations of SA and CaCl2.	54
Fig. 4-7 Variation of biomass by F/M (A) 0.4; (B) 0.2; (C) 0.1 (mg*mg-1*d-1) within immobilization beads cultured system.	56
Fig. 4-8 Increase of biomass by different of F/M in Chlorella sp. bead ratio 6:1 (v/v).	57
Fig. 4-9 The SEM of Chorella sp. cells in beads when F/M 0.4	57
Fig. 4-10 The SEM of Chorella sp. cells in beads when F/M 0.2	58
Fig. 4-11 The SEM of Chorella sp. cells in beads when F/M 0.1	59
Fig. 4-12 The SEM of Chlorella sp. leaking when beads broken up.	60
Fig. 4-13 Effect of variable F/M ratio (A) 0.4; (B) 0.2; (C) 0.1 on NO3--N concentration by Chlorella sp. beads.	65
Fig. 4-14 Effect of variable F/M ratio (A) 0.4; (B) 0.2; (C) 0.1 on TOC concentration by Chlorella sp. beads.	66
Fig. 4-15 Effect of variable F/M ratio onbiomass by Chlorella sp..	68
Fig. 4-16 Effect of variable F/M ratio on specifitic growth rate by Chlorella sp..	69
Fig.4-17 Effect of variable F/M ratio on TOC concentration by Chlorella sp..	71
Fig.4-18 Effect of variable F/M ratio on NH4+-N concentration by Chlorella sp..	74
Fig. 4- 19 Variation of biomass in different concentrations of phenol by Chlorella sp..	76
Fig. 4- 20 Variation of biomass in different concentrations of phenol (A) 200; (B) 600; (C) 1000 mg/L by Chlorella sp..	77
Fig. 4-21 Calculate of μmax and Ks by Monod equation.	79
Fig. 4-22 Calculate of μmax and Ks by Haldane equation.	80
Fig. 4-23 Campare of Monod, Haldane and experiment.	81
Fig. 4-24 Dry weight and cell density (A) nitrate-N and phosphate-P concentration in liquid culture (B) for time course of individually cultivated Chlorella sp., free or immobilized in beads 	84
Fig. 4-25 Dry weight and cell density (A), nitrate-N and phosphate-P concentration in liquid culture (B) for time course of individually cultivated A. vinelandii, free and immobilized in beads	88
Fig. 4-26 Effect of synergistic relationships on dry weight (total) over time course for co-culturing 	92
Fig. 4-27 Variation in specific growth rate and cell density of Chlorella sp. and A. vinelandii in different synergistic culturing systems. (A) Both in suspension, (B) co-immobilized, (C) free Chlorella sp. and immobilized A. vinelandii, (D) immobilized Chlorella sp. and free A. vinelandii	93
Fig. 4-28 Variation of the concentrations of phenol witnout microalge.	95
Fig. 4-29 Removal of phenol by Chlorella sp. with different initial concentration of phenol.	96
Fig. 4-30 The biodegration rate of phenol by Chlorella sp..	96
Fig. 4-31 Phenol reduction over time course with individually cultivated or co-cultured cells, free or immobilized. (A) Individually cultivated Chlorella sp., (B) individually cultivated A. vinelandii, (C) co-culture of Chlorella sp. and A. vinelandii.	98

表目錄
Table 2-1 Summary of pH change and energy and carbon sources in autotrophic, heterophic and mixotrophic metabolic pathways 	10
Table 3-1 The RO concentration of the solar energy industry wastewater treatment.	31
Table 3-2 The original name v.s. simple name.	34
Table 3-3 The equipments by microalgae cultivation.	42
Table 3-4 Analytical instruments and equipments.	42
Table 4-1 The characteristics of beads by the fixed concentrations of SA and the different concentrations of CaCl2.	51
Table 4-2	Effects of alginate and calcium chloride concentrations in bead-immobilized conditions on Chlorella sp. growth as cell density and dry weight	…………………………………………………...………52
Table 4-3 Chlorella sp. specific growth ratio in suspension cultured…………62
Table4-4 The consumption ratio by the concentration of carbon and nitrogen in different stages.	62
Table 4-5 The remove of TOC in different F/M ratio.	72
Table 4-6 The remove of NH4+-N in different F/M ratio.	74
Table 4-7 Comparison of growth rates between free and immobilized Chlorella and Azotobacter cultures in 100 mg/L phenol	85
Table 4-8 Growth rates, reaction kinetic coefficients, and yield coefficients for four synergistic co-culturing systems	94
參考文獻
Abed, R. M. M., Köster, J. (2005) “The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds.” Int. Biodeterior. Biodegrad., 55, 29–37.
Aleksieva Z., Ivanova D., Godjevargova T., and Atanasov B. (2002) “Degradation of some phenol derivatives by Trichosporon cutaneum R 57.” Proc. Biochem. 37, 1215-1219
Al-Khalid, T., El-Naas, M.H. (2012) "Aerobic Biodegradation of Phenols:A Comprehensive Review." Environmental Science and Technology, 42, 1631–1690
American Public Health Association , American Water Works Association & Water Pollution Control Federation , Standard Methods for the Examination of Water and Wastewater , 20th ed . , Method 4110B, pp. 4 - 2 ~ 4 - 6. APHA , Washington , D.C.,USA, 1998.
Andrade, M.R., Costa, J.A.V. (2007) “Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate.” Aquaculture, 264(1-4), 130-134.
Annachhatre, A.P., Gheewala, S.H. (1996) “Biodegradation of chlorinated phenolic compounds.” Biotechnology Advances, 14, 35-56.
Bailey, J. E. and Ollis, D. F. (1986) “Biochemical Engineering Fundamentals”, 2nd edition. McGraw-Hill.
Bajaj, M., Gallert, C., Winter, J. (2008) "Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor. " Bioresour.Technol, 99, 8376–8381.
Bajpai, S.K., Sharma, S. (2004) "Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca 2+and Ba 2+ ions." Reactive and Functional Polymers, 59 (2), 129-140.
Banerjee, A., Ghoshal, A.K. (2011) “Phenol degradation performance by isolated Bacillus cereus immobilized in alginate.” Int. Biodeter. Biodegr., 65(7), 1052-1060.
Becking, J.H. (1992) “The family Azotobacteraceae.” In The Prokaryotes 2nd edn. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identi®cation, Applications, Vol. 4 ed. Balows, A., TruÈper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H. pp. 3144±3170. Berlin: Springer-Verlag.
Behrens, P.W. (2005) “Photobioreactor and fermentors: the light and the dark sides of the growing algae.” In: Andersen, R.A. (Ed.), Algal Culturing Techniques. Elsevier Academic Press, New York, USA, pp. 189-204.
Bergbauer, M., Eggert, C., and Kraepelin, G. (1991) “Degradation of chlorinated lignin compounds in a bleach effluent by the white rot fungus Trametes versicolor.” Applied Microbiology and Biotechnology, 35, 9-105.
Bettmann, H., Rehm, H. J. (1984) “Degradation of phenol by polymer entrapped microorganisms.” Applied Microbiology and Biotechnology, 20, 285-290.
Bettmann, H., Rehm, H. J. (1985) “Continuous degradation of phenol(s) by   Pseudomonas putida P8 entrapped in polyacrylamide-hydrazide.” Applied Microbiology and Biotechnology, 22, 389-393.
Blandino, A., Macías, M., Cantero,D. (1999) “Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics.” Journal of bioscience and bioengineering, 88, 686-689.
Bouteleux, C., Saby, S., Tozza, D., Cavard, J., Lahoussine, V., Hartemann, P., Mathieu, L. (2005) “Escherichia coli Behavior in the Presence of Organic Matter Released by Algae Exposed to Water Treatment Chemicals.” Applied and Environmental Microbiology, 71(2), 734-740.
Brennan, L., Owende, P. (2010) “Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products.” Renewable and Sustainable Energy Reviews, 14 (2), 557-577.
Bumpus, J.A., Tien M., Wright D., Aust S.D. (1985) “Oxidation of persistent environmental polluants by a white rot fungus.” Science, 228, 434-1436.
Burrell, R.E., Inniss, W.E., Mayfield, C.I. (1984) “Development of an optimal heterotrophic growth medium for Chlorella vulgaris.” Applied Microbiology and Biotechnology, 20, 281-283.
Carvalho, A.P., Malcata, F.X. (2005) “Optimization of omega-3 fatty acid production by microalgae: Crossover effects of CO2 and light intensity under batch and continuous cultivation modes.”  Mar. Biotechnol., 7(4), 381-388. 
Cerezo, A.B., Tesfaye, W., Torija, J., Mateo, E., Garcia-Parrilla, M.C., Troncoso, A.M. (2008) “The phenolic composition of red wine vinegar produced in barrels made from different wood.” Food Chemistry, 109, 606-615.
Cero´n Garcı´a, M.C., Ferna´ndez Sevilla, J.M., Acie´n Ferna´ndez, F.G., Molina Grima, E., Garcı´a Camacho, F. (2000) “Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile.” J. Appl. Phycol., 12, 239-248.
Cerrone, F., Barghini, P., Pesciaroil, C., Fenice, M. (2011) “Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor.” Chemosphere, 84, 254-259.
Chandra, R., Rohit, M.V., Swamy, Y.V., Venkata Mohan, S. (2014) “Regulatory function nutrient stress phases of mixotrophic microalgae cultivation.” Bioresource Technology, 165,279-287.
Chang, S. Y., Li, C. T., Hiang, S. Y., Chang, M. S. (1995) “Intraspecific protoplast fusion of Candida tripicalis for enhahcing phenol degradation.” Applied Microbiology and Biotechnology, 43(N3), 534-538.
Chen, G.-Q., Chen, F. (2006) “Growing phototrophic cells without light.” Biotechnol. Lett. 28, 607-616.
Chen, G.-Q., Jiang, Y., Chen, F. (2007) “Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis.” Food Chem., 104, 1580-1585.
Chen, R. H., Lin, J. H., Yang, M. H. (1994) “Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films.” Carbohydrate Polymers, 24, 41-46. 
Chen, W. M., Chang, J. S., Wu, C. H., Chang, S. C. (2004) “Characterization of phenol and trichloroethene defradation by the rhizobium Ralstonia taiwanensis.” Research in Microbiology, 155, 672-680.
Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C., Hsieh, F. M. (2007) “Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.” J. Hazard. Mater., 148(3), 660-670.
Chevalier, P., De la Noue, J. (1985) “Wastewater nutrient removal with microalgae immobilized in carrageenam.” Enzyme and Microbial Technology, 7 (12), 621-624.
Chiaiesea, P., Palombaa, F., Tatinoa, F., Lanzilloa, C., Pinto, G., Pollio, A., Filippone, E. (2011) “Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater.” Enzyme and Microbial Technology, 49, 540–546.
Chisti, Y. (2007) “Biodiesel from microalgae.” Biotechnology Advances, 25 (3), 294-306.
Chitra, S., Sekaran, G., Padmavathi, S., Chandrakasan, G. (1995) “Removal of phenolic compounds from wastewater using mutant strain of Pseudomonas pictorum.” J. Gen. Appl. Microbiol. 41(3): 229-237.
Chojnacka, K., Marquez-Rocha, F.J. (2004) “Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae.”  Biotechnology, 3, 21–34.
Christen, P., Vega, A., Casalot, L., Simon, G. Auria, R., (2012) "Kinetics of aerobic phenol biodegradation by the acidophilic andhyperthermophilic archaeon Sulfolobus solfataricus 98/2." Biochemical Engineering Journal, 62, 56-61
Dalrymple, O.K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., Ergas, S. (2013) “Wastewater use in algae production for generation of renewable resources: a review and preliminary results.” Aquat. Biosyst., 9:2.
Daly, M. M., Knorr, D.(1988) "Chitosan-alginate complex coacervate capsules: Effects of calcium chloride, plasticizers and polyelectrolytes on mechanical stability." Biotechnol. Progress, 4(2),76-81.
Davis, R.E., Fishman, D.B., Frank, E.D., Johnson, M.C., Jones, S.B., Kinchin, C.M., Skaggs, R.L., Venteris, E.R., Wigmosta, M.S. (2014) “Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.” Environ. Sci. Technol., 48, 6035–6042.
De Bary, A. (1879) “Die Erscheinung der Symbiose.”  Verlag von Karl J. Trubner, Strassburg.
De la Noue, J., Laliberte, G., Proulx, D. (1992) "Algae and wastewater. " J. Appl. Phycol., 4, 247-254.
De la Noüe, J., Proulx, D. (1988) "Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium." Applied Microbiology and Biotechnology, 29 (2), 292-297.
de-Bashan, L.E., Bashan, Y. (2010) “Immobilized microalgae for removing pollutants: Review of practical aspects.” Bioresource Technology, 101, 1611-1627.


de-Bashan, L.E., Bashan, Y., Moreno, M., Lebsky, V.K., Bustillos,J.J. (2002) “Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense .” Canadian Journal of Microbiology, 48, 514-521.
de-Bashan, L.E., Hernandez, J.P., Morey, T., Bashan, Y. (2004) “Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater.” Water Res. ,38(2), 466-474.
De-Bashan, L.E., Moreno, M., Hernandez, J.P., Bashan, Y. (2002) “Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense.” Water Res., 36, 2941-2948.
Deretic, V., Martin, D.W., Schurr, M.J., Mudd, M.H., Hibler, N.S., Curcic, R., Boucher, J.C. (1993) “Conversion to mucoidy in Pseudomonas aeruginosa.” Biotechnology, 11, 1133-1136.
Di Bella, G., Torregrossa, M., Viviani, G. (2011) “The role of EPS concentration in MBR foaming: Analysis of a submerged pilot plant.” Bioresour. Technol., 102(2), 1628-1635.
Dieter Hess (1984) “植物生理學”三明書局印行。
dos Santos, V. L., Monteiro, A.dS., Braga, D.T., Santoro, M.M. (2009) “Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents.” J. Hazard. Mater., 161(2-3), 1413-1420.
Droop, M.R. (1974)” Heterotrophy of carbon.” In: Stewart, W.D.P. (Ed.), Algal Physiology andBiochemistry. Blackwell Scientific, Oxford, UK, pp. 530e559.
Eaton, D. C., Chang, H. M., Joyce, T. W., Jeffries, T. W. and Kirk, T. K. (1982) “Method obtains fungal reduction of the color kraft bleach plant effluents.” Tappi., 65, 89-92
Endo, H., Nakajima, K., Chino, R., Shirota, M. (1974) “Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain.” Agric. Biol. Chem. 38, 9-18.


Escher, B. I., Snozzi, M., Häberli, K., Schwarzenbach, R. P. (1997) "A new method for simultaneous quantification of the uncoupling and inhibitory activity of organic pollutants in energy transducing membranes." Environ. Toxicol. Chem., 16, 405-414.
Faafeng, B.A., Van Donk, E., Kallqvist, S.T. (1994). " In situ measurement of algal growth potential in aquatic ecosystems by immobilized algae. " J. Appl. Phycol. 6, 301–308.
Feijoo, G., Vidal, G., Moreira ,M. T., Mendez, R., and Lema, J. M. (1995) “Degradation of high molecular weight compounds of Kraft pulp mill effluents by a combined treatment wiyh fungi and bacteria.” Biotechnology Letters, 17, 1261-1266.
Feng, F.Y., Yang, W., Jiang, G.Z., Xu, Y.N., Kuang, T.Y. (2005) “Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium.” Process Biochemistry, 40, 1315-1318.
Feng, Y., Li, C., Zhang, D. (2011) “Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.” Bioresource Technology, 102 (1), 101-105.
Fenice, M., Di Giambattista, R., Raetz, E., Leuba, J.L., Federici, F., (1998) “Repeated-batch and continuous production of chitinolytic enzymes by Penicillium janthinellum immobilised on chemically-modified macroporous cellulose.” J. Biotechnol. 62, 119–131
Field, J. A., Stams, A. J. M., Kato M., Schraa G. (1995) “Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia.” Antonie van Leeuwenhoek, 67, 47-77.
Folsom, B. R., Chapman, P. J., Pritchard, P. H. (1990) “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4:Kinetics and interactions between substrates.” Applied and Environmental Microbiology, 56, 1279-1285.
Gao, Q.T., Wong, Y.S., Tam, N.F.Y. (2011) “Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.” Bioresour. Technol., 102(22), 10230-10238.
García, J., Mujeriego, R., Hernández-Mariné, M. (2000) "High rate algal pond operating strategies for urban wastewater nitrogen removal." Journal of Applied Phycology, 12(3-5), 331-339.
García, M. C. V., López, M. J., Elorrieta, M. A., Suárez, F., Moreno, J. (2002) “Physiology of exopolysaccharide production by Azotobacter vinelandii from 4-hydroxybenzoic acid.”Journal of Industrial Microbiology and Biotechnology, 29, 129-133.
Gauri, S.S., Mandal, S.M., Dey, S., Pati, B.R. (2012) “Biotransformation of p-coumaric acid and 2,4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81.” Bioresour. Technol., 126, 350-353.
Geider, R.J., Osborne, B.A. (1989) “Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth.” New Phytol. 112, 327-341.
Godos, I. d., Blanco, S., García-Encina, P. A., Becares, E., Muñoz, R. (2009) "Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates." Bioresource Technology , 100(19), 4332-4339.
Gómez-Silván, C., Molina-Munoz, ˜ M., Poyatos, J.M., Ramos, A., Hontoria, E., Rodelas, B., González-López, J. (2010) “Structure of archaeal communities in membrane–bioreactor and submerged-biofilter wastewater treatment plants.” Bioresour. Technol., 101, 2096–2105. 
Gonzalez, L.E., Bashan, Y. (2000) “Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense.” Applied and Environmental Microbilogy, 66, 1527–1531.
Gonzalez‐Lopez, J., Martinez‐Toledo, M., Reina, S., Salmeron, V. (1991) “Root exudates of maize and production of auxins, gibberellins, cytokinins, amino acids and vitamins by Azotobacter chroococcum in chemically‐defined media and dialysed‐soil media.” Toxicol. Environ. Chem., 33(1-2), 69-78.
Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.S.C., Thom, D. (1973) “Biological interactions between polysaccharides and divalent cations: The “egg-box” model.” FEBS Letts, 32, 195–198
Griffiths, D.J., Thresher, C.L., Street, H.E. (1960) “The heterotrophic nutrition of Chlorella vulgaris.” Ann. Bot. 24, 1-11.
Grossart, H.P., Simon M. (2007) “Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics.” Aquat. Microb. Ecol., 47, 163–176. 
Guieysse, B., Borde, X., Munoz, R., Hatti-Kaul, R., NugierChauvin, C. (2002) “Influence of the initial composition of algal bacterial microcosms on the degradation of salicylate in fed batch culture.” Biotechnology Letters, 24, 531-538.
Guillard, R.L. (1975) “Culture of phytoplankton for feeding marine invertebrates. Culture of marine invertebrate animals.” W. Smith and M. Chanley, Springer US: pp. 29-60.
Gurujeyalekshmi, G., Oreil, P. (1988) “Isolation of phenol degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase.” Appl. Environ. Microbiol., 55(2), 500-502.
Haass, D., Tanner, W., (1974) “Regulation of hexose transport in Chlorella vulgaris.” Plant Physiol., 53, 14-20.
Hameed, M., Ebrahim, O. (2007) “Review: biotechnological potential uses of immobilized algae.” Int J Agri Biol, 9, 183–192 
Hernandez, J.P., de-Bashan, L.E., Bashan, Y. (2006) “Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense.” Enzyme Microb Technol, 38(1), 190–198.
Hill, G.A., Robinson, C.W. (1975). "Substrate inhibition kinetics: phenol     degradation by Pseudomonas putida. " Biotechnol Bioeng 17, 1599–1615
Hong, S.-J., Lee, C.-G. (2007) “Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803.” Biotechnol. Bioprocess Eng. 12, 165-173.
Hopkins, G. D., Semprini, L., McCarty, P. L., (1993) Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utiliziong microorganisms. Applied and Environmental Microbiology, 59, 2277-2285.
Hoshida, H., Ohira, T., Minematsu, A., Akada, R., Nishizawa, Y. (2005) “Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations.” J. Appl. Phycol., 17(1), 29-34. 
Hulzebos, E.M., Adema, D.M.M., Dirven-van Breemen, E.M., Henzen, L., van Dis, W.A., Herbold, H.A., Hoekstra, J.A., Baerselman, R., van Gestel, C.A.M. (1993) "Phytotoxicity studies with Lactuca sativa in soil and nutrient solution Environ." Environmental Toxicology and Chemistry, 12, 1079–1094.
Idris, A., Suzana, W. (2006) “Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii.” Process Biochem, 41, 1117–1123.
Ikuko, A., Yukiko, T., Sadahiro, O., and Kiyimoto ,U. (1985) “Production of decolorizing activity for molasses pigment by Coriolus versicolor Ps4a.” Biol. Chem. 49, 2041-2045.
Illman, A. M., Scragg, A. H., Shales, S. W. (2000) “Increase in Chlorella strains calorific values when grown in low nitrogen medium.” Enzyme and Microbial Technology, 27 (8), 631–635. 
Jácome-Pilco, C.R., Cristiani-Urbina, E., Flores-Cotera, L.B., Velasco-García, R., Ponce-Noyola, T., Cañizares-Villanueva, R.O. (2009) “Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor.” Bioresource Technology, 100, 2388–2391.
Jimenez-Perez, M.V., Sanchez-Castillo, P., Romera, O., Fernandez-Moreno, D., Pérez-Martı́nez, C. (2004) "Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure." Enzyme and Microbial Technology, 34 (5), 392-398.
Juang, R.S., Tsai, S.Y. (2006) “Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate.” Biochem. Eng. J. 31(2), 133-140. 
Juárez, M.J.B., Zafra-Gómez, A., Luzón-Toro, B., Ballesteros-García, O.A., Navalón, A., González, J., Vílchez, J.L. (2008) “Gas chromatographic-mass sepectrometric study of the degradation of phenolic compounds in wastewater olive oil by Azotobacter Chroococcum.” Bioresource Technology, 99, 2392-2398.
Juárez-Jiménez, B., Reboleiro-Rivas, P., González-López, J., Pesciaroli, C., Barghini,P., Fenice, M., (2012) “Immobilization of Delftia tsuruhatensis in macro-porous cellulose and biodegradation of phenolic compounds in repeated batch process.” Journal of Biotechnology, 157, 148-153.
Kallel, M., Belaid, C., Mechichi, T., Ksibi, M., Elleuch, B. (2009) “Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron.” The Chemical Engineering Journal, 150, 391-395.
Kargi,F., Ozmihci,S. (2002) “Improved biological treatment of nitrogen-deficient wastewater by incorporation of N2-fixing bacteria.” Biotechnol. Lett., 24, 1281-1284.
Kersten, P.J., Kalyanaraman, B., Hammel, K.E., Reinhammar, B., Krik, T.K. (1990) “Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes.” The Biochemical Journal, 268, 475-480.
Khan, K. A., Suidan, M. T., Cross, W. K. (1981) “Anaerobic activated carbon filter for the treatment of phenol-bearing wastewater.” Journal of Water Pollution Control Federation, 53,1519-26.
Kim, S., Park, J.-eun., Cho, Y.B., Hwang, S.J. (2013) “Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.” Bioresource Technology, 144, 8–13.
Kirk, T. O., Crawfors, R. L. (1989) “Degradation of pentachlorophenol by   polyurethane-immobilized Flavobacterium cells.” Applied and Environmental Microbiology, 55, 2113-2118.
Kobayashi, M., Kurimura, Y., Kakizono, T., Nishio, N., Tsuji, Y. (1997) “Morphological changes in the life cycle of the green alga Haematococcus pluvialis.” J Ferment Bioeng, 84, 94–97.
Kodama, M., Ikemoto, H., Miyachi, S. (1993) “A new species of highly CO2-tolerant fast growing marine microalga suitable for high density culture.” Journal of marine biotechnology, 1, 21-25.
Kotzabasis, K., Hatziathanasiou, A., Bengoa-Ruigomez, M.V., Kentouri, M., Divanach, P. (1999) “Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration.” Journal of Biotechnology, 70 (1-3), 357-362.
Kumaran, P., Paruchuri, Y.L. (1997) "Kinetics of phenol biotransformation. "Water ResearchVolume, 31(1), 11-22.
Laliberte, R., Perregaux, D., Svensson, L., Pazoles, C.J., Gabel, C.A. (1994) “Tenidap modulates cytoplasmic pH and inhibits anion transport in vitro. II. Inhibition of IL-1 beta production from ATP-treated monocytes and macrophages.” J. Immunol., 153, 2168–2179.
Lam, M.K., Lee, K.T. (2012) “Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production.” Chemical Engineering Journal, 191, 263– 268.
Lau, P. S., Tam, N. F. Y., Wong, Y. S. (1995) "Effect of algal density on nutrient removal from primary settled wastewater." Environmental Pollution, 89 (1), 59-66.
Lau, P. S., Tam, N. F. Y., Wong, Y. S. (1997) "Wastewater Nutrients (N and P) Removal by Carrageenan and Alginate Immobilized Chlorella Vulgaris." Environmental Technology, 18(9), 945-951.
Lau, P. S., Tam, N. F. Y., Wong, Y. S. (1998) "Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris." Bioresource Technology, 63 (2),115-121.
Lee, K. Y., Yuk, S. H. (2007). “Polymeric protein delivery systems.” Progress in Polymer Science, 32(7), 669 – 697.
Lee, K., Lee, C. G. (2002) “Nitrogen removal from wastewater by microalgae without consuming organic carbon sources.” Journal of Microbiology and Biotechnology, 12 (6), 979–985.
Lee, K., Lee, C.G. (2001) “Effect of light/dark cycles on wastewater treatments by microalgae.” Biotechnology and Bioprocess Engineering, 6 (3), 194-199.
Lee, Y.-K. (2001) “Microalgal mass culture systems and methods: their limitation and potential.” J. Appl. Phycol. 13, 307-315.
Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C. Q. (2008) “Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans.” Applied Microbiology and Biotechnology, 81 (4), 629–636.
Lika, K., Papadakis, I.A. (2009) “Modeling the biodegradation of phenolic compounds by microalgae.” J. Sea Res., 62(2-3): 135-146.
Lin, T.S., Wu, J.Y. (2015)” Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition” Bioresour Technol,184,100-107.
Liu, K., Li, J., Qiao, H., Lin, A., Wang, G. (2012) “Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater.” Bioresour. Technol., 114: 26-32.
Lloyd, D. (1974) “Dark respiration.” In: Stewart, W.D.P. (Ed.), Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford, UK, pp. 505-529.
Lu, Y., Yan, L., Wang, Y., Zhow, S, Fu, J., Zhang, J.(2009) “Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium.” Journal of Hazardous Materials, 165, 1091-1097.
Mallick, N. (2002) “Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review.” Biometals, 15(4), 377–390
Maneeruttanarungroj, C., Lindblad, P. Incharoensakdi, A. (2010) “A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production.” Int. J. Hydrogen Energy., 35(24),13193-13199.
Marquez, M.C., Quesada, E., Bejar, V., Ventosa, A. (1993) “A chemotaxonomic study of some moderately halophilic Gram-positive isolates.” J. Appl. Bacteriol., 75, 605-607.
Martı´nez, F., Oru´ s, M.I. (1991) “Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101.” Plant Physiol. 95, 1150-1155.
Martins, R.L.G., Marques, L.G., Colepicolo, P. (2015) “Antioxidant enzymes are induced by phenol in the marine microalgae Lingulodinium polyedrum.” Ecotoxicology and Environmental Safety, 116, 84-89.
Miao, X., Wu, Q. (2006) “Biodiesel production from heterotrophic microalgal oil.” Bioresource Technology, 97, 841–846.
Michalowicz, J., Duda, W. (2007). “Phenols-sources and toxicity.” Polish Journal of Environmental Studies, 16(3), 347-362.
Michaud, L., Giudice, A.L., Saitta, M., Domenico, M.D., Bruni, V. (2004) “The biodegradation efficiency on diesel oil by two psychrotrophic Antartic marine bacteria during a two-month-long experiment.” Marine Pollution Bulletin, 49, 405-409.
Mitra, D., van Leeuwen, J.H., Lamsal, B. (2012) “Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products” Algal  Research, 40–48.
Moreno-Garrido, I. (2008) “Microalgae immobilization: current techniques and uses.” Bioresour Technol, 99, 3949- 3964.
Morsen, A., Rehm, H.J. (1987) “Degradation of phenol by a mixed culture of Pseudomonas putida and Cryptococcus elinovii adsorbed on activated carbon.” Appl. Microbiol. Biotechnol., 26, 283–288.
Mujtaba, G., Choi, W., Lee, C. G., Lee, K. (2012) “Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions.” Bioresource Technology, 123 (0), 279-283.
Nagase, H., Inthorn, D., Isaji, Y., Oda, A., Hirata, K., Miyamoto, K. (1997) “Selective cadmium removal from hard water using NaOH-treated cells of the cyanobacterium Z’oljpothrix tenuis.” J. Ferment. Bioeng., 84, 15l-l 54 .
Nagase, H., Visse, R., Murphy, G. (2006) “Structure and function of matrix metalloproteinases and TIMPs.” Cardiovasc Res., 69 (3), 562–573.
Nagase, H., Yoshihara, K., Eguchi, K., Yokota, Y., Matsui, R., Hirata, K., Miyamoto, K. (1997) “Characteristics of Biological NO, removal from flue gas in a Dunaliella tertiolecta culture system.” J. Ferment. Bioeng., 83,461-465. 
Nagase, H.Y.K., Eguchi, K., Okamoto, Y., Murasaki, S., Yamashita, R., Hirata, K., Miyamoto, K., (2001) “Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae.” Biochem. Eng. J., 7, 241–246
Nakhla, G., Liu, V., Bassi, A. (2006) “Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater” Bioresource Technology 97, 131-139.
Nakhla, G.F., Al-Harazin, I.M. (1993) “Simplified analysis of biodegradation kinetics of phenolic compounds by heterogeneous cultures.” Environ. Technol., 44, 751–760.
Nalewajko-Sieliwoniuk, E., Nazaruk, J., Antypiuk, E., Kojło, A. (2008) “Determination of phenolic compounds and their antioxidant activity in Erigeron acris L. extracts and pharmaceutical formulation by flow injection analysis with inhibited chemiluminescent detection.” J. Pharm. Biomed. Anal., 48(3), 579-586.
Neilson, A.H., Lewin, R.A. (1974) “The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry.” Phycologia 13, 227-264.
Neilson, A.H., Lewin, R.A. (1974) “The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry.” Phycologia, 13, 227-264.
Nielsen, E.S. (1955) “Carbon dioxide as carbon source and narcotic in photosynthesis and growth in Chlorella pyrenoudosa.” Physiology of plants, 8, 317-335.
Norton, S., D’Amore, T. (1994) “Physiological effects of yeast cell immobilization: applications for brewing.” Enzyme Microb. Technol., 16, 365-375.
Oh, J. S. and Han, Y. H. (1997) “Isolation and characterization of phenol degrading Rhodococcus sp. DGUM 2011.” J. Appl. Microbiol. Biotechnol., 25, 459-463. 
Okpokwasili, G. C., Nweke, C.O. (2005) “Microbial growth and substrate utilization kinetics.” Afr J Biotechnol, 5, 305-317.
Omar, S.H. (1993) “Oxygen diffusion through gels employed immobilization. 2. In the presence of microorganisms.” Appl. Microbiol. Biotechnol., 40, 173-181.
Oswald, W.J. (1988) “Micro-algae and waste-water treatment.” In: Borowitzka, M.B.L. (Ed.), Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp. 305–328.
Oswald, W.J. (2003) “My sixty years in applied algology.” Journal of Applied Phycology, 15, 99-106
Papadelli, M., Roussis, A., Venieraki, K.P.A., chatzipavlidis, I., Katinakis, P., Ballis, K. (1996) “Biochmical and molecular characterization of an Azotobacter vinelandii strain with respect to its ability to grow and fix nitrogen in olive mill wastewater.” International Biodeterioration and Biodegradation, 48, 179-181.
Park, K., Shalaby, W. S. W., Park, H. (1993) “Biodegradable drug delivery systems.” In: Biodegradable Hydrogels for Drug Delivery, pp. 189–232. Lancaster, Basel: Technomic Publishing Co., Inc.
Pavlostathis, S.G., Jackson, G. H. (1999) “Biotransformion of 2,4,6-trinitrotoln in Anabaena sp. cultures” Environ. Toxicol. Chem., 18, 412-419.
Pazarlioglu, N.K., Telefoncu, A. (2005) “Biodegradation of phenol by Pseudomonas putidaimmobilized on activated pumice particles.” Process Biochemistry, 40, 1807-1814.
Perez, R.R., Benito, G.G., Miranda, M.P. (1997) “Chlorophenol degradation by Phanerochaete chrysosporium.” Bioresource Technol, 60, 207–213.
Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y. (2011) “Heterotrophic cultures of microalgae: Metabolism and potential products.” Water Research, 45 (1), 11-36.
Perry, J.J., Staley, J.T. (1997) “Microbiology: dynamics and diversity.” Orlando, FL: Saunders College Publishing.
Pozo, C., Martı́nez-Toledo, M.V., Salmerón, V., Rodelas, B., González-López, J. (2000) “Effects of benzidine and benzidine analogues on the growth and nitrogenase activity of Azotobacter.” Appl. Soil Ecol., 14(3), 183-190. 
Pragya, N., Pandey, K.K., Sahoo, P.K. (2013) “A review on harvesting, oil extraction and biofuels production technologies from microalgae.” Renew. Sust. Energ. Rev., 24, 159–171.
Quaratino, D. ,Federici, F., Petruccioli, M., Fenice, M., D’Annibale, A. (2007) “Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79.” Antonie van Leeuwenhoek., 91, 57-69.
Regnault, A., Chervin, D., Chammai, A., Piton, F., Calvayrac, R.,Mazliak, P.  (1995) “Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance.” Phytochemistry, 40 (3), 725-733.
Revillas, J. J., Rodelas, B., Pozo, C., Martínez-Toledo, M.V., González-López, J. (2000) “Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions.” J. Appl. Microbiol., 89(3), 486-493.
Richard T. Smith, Krys Bangert, Stephen J. Wilkinson,D. James Gilmour (2015) “Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum” Biomass and Bioenergy,82,73-86
Robinson, P.K., Dainty, A.L., Goulding, K.H., Simpkins, I., Trevan, M.D. (1985) “Physiology of alginate-immobilized Chlorella.” Enzyme and Microbial Technology,7, 212-216.
Robinson, P.K., Mak, A.L., Trevan, M.D. (1986) "Immobilized algae: a review." Process biochemistry, 21 (8), 122-127.
Rogers, J.N., Rosenberg, J.N., Guzman, B.J., Oh, V.H., Mimbela, L.E., Ghassemi, A., Betenbaugh, M.J., Oyler, G.A., Donohue, M.D. (2014) “A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales.” Algal Res., 4, 76–88.
Ruiz-Marin, A., Mendoza-Espinosa, L.G., Stephenson, T. (2010) “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater.” Bioresour. Technol, 101, 58-64.
Sankalia, M.G., Mashru, R.C., Sankalia, J.M., Vijay, B.S. (2005) “Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling.” AAPS PharmSciTech, 6, 31.
Saude, N., Junter, G.A. (2002) “Production and molecular weight characteristics of alginate from free and immobilized-cell Azotobacter vinelandii.” Process Biochemistry, 37, 895-900.
Schafer, T.E., Lapp, C.A., Hanes, C.M., Lewis, J.B., Wataha, J.C., Schuster G.S. (1999) "Estrogenicity of bisphenol A and bisphenol A dimethacrylate in vitro." Journal of Biomedical Materials Research, 45, 192–197
Scragg, A.H. (2006) “The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1.” Enzyme Microb. Technol., 39(4), 796-799.
Seker, S., Beyenal, H., Salih, B., Tanyolac, A. (1997) “Multi-substrate growth kinetics of Pseudomonas putida for phenol remobal.” Applied Microbiology and Biotechnology, 47, 610-614.
Semple, K.T., Cain, R.B. (1996) “Biodegradation of phenols by the alga Ochromonas danica.” Appl Environ Microbiol 62, 1265–1273.
Semple, K.T., Cain, R.B., Schmidt, S. (1999) “Biodegradation of aromatic compounds by microalgae.” FEMS Microbiol Lett, 170, 291–300.
Senthilnathan, P. R., Ganczarczyk, J. J. (1990) “Application of Biomass Carriers in Activated Sludge Process.” Wastewater Treatment by Immobilized Cells, CRC, Boston, 103-142.
Sikkema, J., Bont, J. A. M., Pooiman B. (1995) “Mechanisms of membrane toxicity of hydrocarbons.” Microbiological Reviews, 59(N3), 201-222
Singhal, P.,Kumar, K., Pandey, M., Saraf, S.A. (2010) “Evaluation of acyclovir loaded oil entrapped calcium alginate beads prepared by ionotropic gelation method.” International Journal of ChemTech Research, 2, 2076-2085.
Slivac, I., Blajić, V., Radošević, K., Kniewald, Z., Gaurina Srček, V. (2010) “Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth.” Cytotechnology, 62(6), 585-594.
Smidsrod, O., Skjak-Braek, G. (1990) “Alginate as immobilization matrix for cells.” Trends in Biotechnology, 8(3), 71–78
Sriamornsak, P., Nuthanid, J., Luangtana-anan, M., Weerapol, Y., Puttipipatkhachorm, S. (2008) “Alginate-based pellet prepared by extrusion/spheronization: Effect of amount and type of sodium alginate and calcium salts.” European journal of pharmaceutics and biopharmaceutics, 69, 274-284.
Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., Harris, L.R. (1998) "A review of the environmental fate, effects, and exposures of bisphenol A" Chemosphere, 36, 2149–2173.
Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R. (2011) “Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential.” Biotechnol. Adv., 29, 896–907.
Sung, K.D., Lee, J.S., Shin, C.S., Park, S.C. (1999) “Isolation of a new highly CO2 tolerant fresh water microalga Chlrella sp. KR-1.” Renewable energy, 16, 1019-1022.
Suzuki, T., Yamaguchi, T., Ishida, M. (1998) “Immobilization of Prototheca zopfii in calcium alginate vedas for the degradation of hydrocarbons.” Process Biochem., 33, 541-546.
Talaro, K.P. (2009) “Foundations in Microbiology” 7th, McGraw-Hill College, in US.
Talbot, P., De La Noue, J. (1993) "Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions." Water Research, 27 (1), 153-159.
Tam, N. F. Y., Lau, P. S., Wong, Y. S. (1994) "Wastewater inorganic N and P removal by immobilized Chlorella vulgaris." Water Science and Technology, 30, 369-374.
Tam, N. F. Y., Wong, Y. S. (2000) "Effect of immobilized microalgal bead concentrations on wastewater nutrient removal." Environmental Pollution, 107 (1), 145-151.
Tampion, J., Tampion, M. D. (1987) “Immobilized Cells: Principles and Applications.” Cambridge and New York: Cambridge University Press.
Tanaka, T., Yamada, K., Tonosaki, T., Konishi, T., Goto, H., Taniguchi, M. (2000) "Enzymatic degradation of alkylphenols, bisphenol A, synthetic estrogen and phthalic ester. " Water Sci. Technol., 42, 89-95.
Tanga, X., Hea, L.Y., Taob, X.D., Danga, Z., Guo, C.L., Lu, G.N., Yi, X.Y. (2010) “Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil.” J. Hazard. Mater., 181, 1158–1162.
Tikoo, R., Casaccia-Bonnefi,l P., Chao, M.V., Koff, A. (1997) “Changes in cyclin-dependent kinase 2 and p27 kip1 accompany glial cell differentiation of central glia-4 cells.” J Biol Chem, 272, 442–447.
Torres, M. R., Sousa, A. P. A., Silva Filho, E. A.T., Melo, D.F., Feitosa, J. P. A., de Paulab, R.C.M., Lima, M.G.S.(2007) “Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil.” Carbohydrate Research, 342, 2067–2074.
U.S. Environamental Protection Agency (1980), Alternate Water Quality Criteria for Phenol, EPA 440/5-80-066
Valenzuela J., Bumann U., Cespedes R., Padila L. and Gonzalez B. (1997) “Degradation of chlorophenols by Alcaligenes eutrophus JMP134 (pJP4) in bleached kraft mill effluent.” Appl. Environ. microbiol., 63(1), 227-232.
Van Donk, E., Faafeng, B.A., Hessen, D.O., Källqvist, T. (1993) “Use of immobilized algae for estimating bioavailable phosphorus released by zooplankton.” Journal of Plankton Research, 15, 761–769.
Vargas-García, M.C., López, M.J., Elorrieta, M.A., Suárez, F., Moreno, J. (2002) “Physiology of exopolysaccharide production by Azotobacter vinelandii from 4-hydroxybenzoic acid.” J. Ind. Microbiol. Biotechnol., 29(3), 129-133.
Vavilin, V.A., Lokshina, L.Y. (1996) “Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity.” Bioresour. Technol., 57, 69–80.
Vichez, C., Vega, J.M. (1994) “Nitrate uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate.” Applied Microbiology and Biotechnology, 41, 137–141.
Villarejo, A., Orús, M.I., Martínez, F. (1995) “Coordination of photosynthetic and respiratory metabolism in Chlorella vulgaris UAM 101 in the light.” Physiol. Plant., 94, 680–686.
Wang, Y., Song, J., Zhao, W., He, X., Chen, J., Xiao, M. (2011) “In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain.” Journal of Hazardous Materials, 192, 354-360.
Wang, Y.S., Zheng, R.C., Xu, J.M., Liu, Z.Q., Cheng, F., Feng, Z.H., Liu, L.L., Zheng, Y.G., Shen, Y.C. (2010) “Enantioselective hydrolysis of (R)-2,2-dimethylcyclopropane carboxamide by immobilized cells of an R-amidase-producing bacterium, Delftia tsuruhatensis CCTCC M 205114, on an alginate capsule carrier.” J. Ind. Microbiol. Biotechnol., 37, 503–510.
Watanable, K., Teramoto, M., Futamata, H., Harayama, S. (1998) “Molecular detection, isolation and physiological characterization of functionally dominant phenol-derading bacteria in activated sludge.” Applied and Environmental Microbiology, 64, 4396-4402.
Webb, C. (1987) “Cell Immobilization”, Environment Biotechnology Chapter 9, Ellis Horwood, England, 348-371.
Weschler, M.K., Barr, W.J., Harper, W.F., Landis, A.E. (2014) “Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.”  Bioresour. Technol., 153, 108–115.
Wesley, W., Eckenfelder, Jr., Edwin, L.B. (1961) “The effect of organic substances on the transfer of oxygen from air bubble in water.” AIChe., 7(4),631-634.
Westmeier, F., Rehm, H. J. (1985) “Biodegradation of 4-chlorophenol by entrapped Alcaligenes sp. A7-2.” Applied Microbiology and Biotechnology, 22, 301-305.
Wu, H.H., Gau, S.H., Li, M.G., Chen, Y.J., Sun, C.J. (2015) “Effects of Chlorella sp. on nutrient treatment in cultures with different carbon to nitrogen ratios.” Water Science & Technology, 71(11), 1597-1603.
Yang, C., Hua, Q., Shimizu, K. (2000) “Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions.” Biochem. Eng. J., 6, 87-102.
Yang, R.D., Humphry, A.E. (1975). "Dynamic steady state studies of phenol biodegradation in pure and mixed cultures."Biotech. Bioengg 17, 1211–1235
Zhang, E., Wang, B., Wang, Q., Zhang, S., Zhao, B. (2008) “Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment.” Bioresource Technology, 99, 3787-3793.
Zhang, W., Zhang, W., Zhang, X., Amendola, P., Hu, Q., Chen, Y. (2013) “Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting.” Algal Res., 2, 223–229.
Zou, D. (2005) “Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). “Aquaculture, 250, 726-735.
王俊欽、盧至人、李季眉(1996) “固定化菌株Pseudomonas testosteroni及Bacillus insolitus對六種氯酚化合物混合基質之分解”,第二十一屆廢水處理技術研討會論文集,p.249-256.
張淑惠、李季眉 (1994) “擔體種類對固定化Pseudomonas testosteroni分解3-氯酚之影響”,第十九屆廢水處理技術研討會論文集, p.540-545.
莊銘賢、李季眉、盧至人 (1991) “固定化細胞處理廢水中含氯酚類有毒物質之研究”,第十六屆廢水處理技術研討會論文集,p.145-156.
陳宏銘 (2015) “環境微生物及生物處理 ”,台灣五南圖書出版股份有限公司
陳博彥、謝雅婷、陳文明、張嘉修 (2005) “以本土性根瘤菌Ralstonia taiwanensis進行phenol生物降解之反應器操作策略評估”,第十屆生化工程研討會。
黃秋瑢、李季眉、盧至人 (1993) “固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究”,第十八屆廢水處理技術研討會論文集, p.249-256.
葉俊良(2006) “在光生化反應器中以二階段策略培養微藻生產油脂之研究” 國立成功大學化學工程學系碩士論文。
賈有元 (2004) “綠藻Chlorella pyrenoidosa NCHU-6之最適異營培養條件暨培養方法之研究”,國立中興大學碩士論文。
蘇郁雅 (2010) “以模擬生活污水培養小球藻探討生長特性之研究”,淡江大    學水資源及環境工程系碩士論文。
孫妮、向文洲、何慧、陳峰 (2008) “碳氮比和光强對小球藻合成蝦青素的  影響”,微生物學通報,35(3),p.353-357。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信