淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2201201316212500
中文論文名稱 以非溶劑誘導相轉移法製備多孔型薄膜
英文論文名稱 Preparation of porous membranes via non-solvent induced phase inversion method
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 陳勝昌
研究生英文姓名 Sheng-Chang Chen
學號 600400401
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2013-01-08
論文頁數 104頁
口試委員 指導教授-鄭廖平
委員-林達鎔
委員-張旭賢
中文關鍵字 尼龍66  聚偏二氟乙烯  恆溫浸漬沉澱法  多孔型薄膜  毛細管薄膜  成孔劑 
英文關鍵字 Nylon66  poly(vinylidene fluoride)  Isothermal immersion precipitation method  Porous membrane  Capillary membrane  Pore former 
學科別分類
中文摘要 本研究首先利用非溶劑誘導法製備水/丁醇/甲酸/尼龍66四成份系統的多孔型尼龍66薄膜。水,對於尼龍66薄膜是強非溶劑,它可以增加製膜液中的晶核密度,當使用丁醇作為軟性沉澱槽時,液液相分離已充分的被壓制。當在製膜液中逐漸的添加水的含量時,藉由觀察薄膜的形態可發現成核密度明顯的增加。當製膜液含少量的水時(<2.5%),薄膜的截面形態呈現巨型球晶,高含水量(>7.5%)的製膜液則呈現互相交織的軸晶和互相連通孔洞的對稱型雙連續薄膜。水通量和抗張強度的測量結果和薄膜的形態、孔隙度和孔洞尺寸有關。此外,藉由XRD、FTIR-ATR和DSC等儀器分析,得薄膜為a-type結晶且結晶度大約38%,並由DSC的測量得知薄膜的熔點為~265℃。本研究接著利用溼式相轉換法製作PVDF薄膜,並探討於製膜液中添加界面活性劑吐溫20對所形成薄膜的物性及其超過濾效率的影響。我們利用FESEM觀察薄膜的上、下表面和截面的形態,發現隨著吐溫20添加量的增加,截面的手指狀巨孔結構越趨於明顯,球晶顆粒也由束狀變為樹枝狀,且上表面孔洞也逐漸增加。我們也用拉力試驗量測薄膜的抗張強度機械性質。而吐溫20在薄膜的殘留量則由接觸角測試、FTIR-ATR、NMR、XPS等加以分析,並得知界面活性劑幾乎已被完全移除。由薄膜的水通量和超過濾實驗可知薄膜具有相當高的通量和良好的選擇率。最後,本研究利用溼紡法和乾噴溼紡法製備毛細管薄膜,並探討在製膜液中添加吐溫20對薄膜特性的影響。我們利用SEM攝影觀察毛細管薄膜內外表面和截面的結構和形態,發現毛細管薄膜隨著界面活性劑的添加,薄膜表面逐漸產生孔洞,巨孔結構越趨於明顯,且球晶形態從束狀轉為樹枝狀,並藉由拉力試驗得知薄膜的機械強度隨著添加界面活性劑而下降。製膜液的穩態黏度,由流變儀來測定,發現黏度隨著界面活性劑而增加。最後,我們用FTIR-ATR、接觸角測試和NMR分析吐溫20在毛細管薄膜的殘留量,結果顯示,經過仔細清洗後,吐溫20在薄膜中的殘留量僅約0.3%。
英文摘要 Microporous Nylon-66 membranes were prepared by non-solvent induced phase separation (NIPS) from the Water/1-Butanol/Formic acid/Nylon66 quaternary system. Water, as a strong non-solvent for Nylon-66, was employed to enhance polymer crystal nucleation in the casting dope, while 1-butanol was adopted as a soft coagulant whereby liquid-liquid demixing mechanism can be sufficiently suppressed. By gradually increasing the water content in the dope, the effect of nucleation density on the morphology of the membrane was clearly manifested. While low water content (<2.5%) dopes resulted in membranes consisting of large full spherulites, high water content (>7.5%) dopes gave rise to symmetric bi-continuous membranes composed of small interlocked, stick-like crystallites intertwining with continuous channels of micropores. Water permeation flux and tensile strength of the membranes were measured and correlated with the porosity, pore size, and membrane morphology. In addition, X-ray diffraction (XRD) and Fourier Transform Infrared-Attenuated total reflection (FTIR-ATR) analyses indicate that the membranes contained a-type crystals with a crystallinity of ~38 %, consistent with that determined from Differential Scanning Calorimetry (DSC). The later method also showed that all membranes have a similar crystal melting behavior with Tm ~265 oC.
PVDF membranes are prepared via immersion precipitation method. The effects of Tween20 additive in casting dope on the membrane structure and ultra-filtration performance have been studied subsequently. We used field emission scanning electron microscope (FESEM) to observe the morphologies of the membrane cross-section, top and bottom surfaces. The results indicated that the structure of the crystalline particles changed from sheaf-like to stick-like shape and that the finger-like macrovoids and the nano-pore on the top surface became more obvious as the amount added Tween20 increases. Also, we utilized tensile strength measurements to determine the mechanical property of membranes. The residual Tween20 in the membrane was analyzed by contact angle measurement, Fourier Transform Infrared-Attenuated total reflection (FTIR-ATR), Nuclear Magnetic Resonance (NMR) and X-ray Photoelectron Spectrometer (XPS), and we found that the surfactant has almost been removed completely. The water flux and ultra-filtration experiments showed that the membranes exhibit both relatively high permeability and selectivity.
At last, capillary membranes were fabricated by both the wet spinning and dry-jet wet spinning methods. The issues of Tween20 additive in casting dope and air gap have been investigated. We used scanning electron microscope (SEM) to observe the morphologies of cross-section, external and inner surface of the formed capillary membranes. The results showed that pore size and porosity of the external and inner surface increased, the shell side and lumen side of macrovoid structure was enhanced, and the structure of spherulite changed from sheaf-like to stick-like with increasing the amount of surfactant in the casting dope. The mechanical property and the viscosity under different shear rate were determined by tensile strength and rheometeic measurements we found that the viscosity of casting dope increased and tensile strength of membranes decreased with increasing the surfactant in the casting dope. Furthermore, the results of Fourier Transform Infrared-Attenuated total reflection (FTIR-ATR), contact angle measurement and Nuclear Magnetic Resonance (NMR) revealed that the residual quantity of Tween20 in the capillary membranes is only about 0.3% after a series of washing steps.
論文目次 目錄
謝 誌 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VII
表目錄 X

第一章 序論 1
1.1前言和研究目的 1
1.2參考文獻 2
第二章 尼龍66平板型薄膜 3
2.1前言 3
2.2 實驗 5
2.2.1實驗材料 5
2.2.2相圖之建立 5
2.2.3實驗步驟 6
2.3 物性分析步驟 6
2.4物性分析 9
2.4.1 相圖 9
2.4.2薄膜形態和高分子球晶 10
2.4.3 薄膜成形時間與孔隙度測試 12
2.4.4水滲透與水通量測試 13
2.4.5 拉力測試 14
2.4.6 X光繞射儀(XRD)之結晶度計算 15
2.4.7全反射式紅外線光譜儀(FTIR-ATR) 15
2.4.8微分掃描式熱分析儀(DSC)之熱行為分析 15
2.5結論 16
2.6參考文獻 29
第三章 聚偏二氟乙烯平板型薄膜 34
3.1.簡介 34
3.2.實驗 36
3.2.1實驗材料 36
3.2.2薄膜製備 36
3.2.3薄膜性質分析與超過濾 36
3.3.結果與討論 40
3.3.1薄膜的形態、孔隙度和機械強度 40
3.3.2界面活性劑的殘留 43
3.3.3水通量和超過濾 45
3.4.結論 46
3.5參考文獻 60
第四章 聚偏二氟乙烯毛細管薄膜 65
4.1.簡介 65
4.2實驗 66
4.2.1實驗材料 66
4.2.2實驗步驟 67
4.2.2.1毛細管薄膜的製備 67
4.2.2.2物性分析步驟 68
4.3結果與討論 70
4.3.1添加不同比例界面活性劑之影響 70
4.3.2鑄模液與芯液流速影響 71
4.3.3氣距影響 72
4.3.4製膜液的穩態黏度 73
4.3.5機械強度 74
4.3.6界面活性劑的殘留 75
4.3.7毛細管薄膜與平板型薄膜比較 76
4.3.7.1 形態 76
4.3.7.2 機械強度 76
4.4結論 77
4.5參考文獻 101

圖目錄
圖2.1 在尼龍66(共聚尼龍)/甲酸/丁醇的不同相分離行為的三種不同製膜液(A)均勻高分子溶液(B)膠化(C)液液相分離 18
圖2.2 PA28-10的製膜液POM圖。製膜液初始濃度為高分子=28%,甲酸=62%,水=10% 18
圖2.3(A)尼龍66/甲酸/丁醇(水)的三成份相圖(B)尼龍66/甲酸/丁醇/水的3D四成份相圖 19
圖2.4 (A)PA28-0的截面的SEM圖(B)PA28-0的下表面的POM圖 20
圖2.5 添加不同比例的水到製膜液的SEM截面圖(A) 2.5%, PA28-2.5; (B) 5%, PA28-5; (C) 7.5%, PA28-7.5 21
圖2.6 薄膜截面的放大倍率SEM圖(A)PA28-2.5(B)PA28-5(C)PA28-7.5 22
圖2.7 薄膜下表面的SEM圖(A)PA28-0和(B)PA28-5 23
圖2.8 PA28-7.5的上表面SEM圖 23
圖2.9 在製膜液中添加不同水量的薄膜水通量 24
圖2.10 在製膜液中添加不同水量的薄膜阻隔率 24
圖2.11 尼龍66薄膜的XRD繞射峰 25
圖2.12 不同尼龍66薄膜在FTIR-ATR上的結果 26
圖2.13 添加不同水量薄膜的DSC熱焓吸收圖 27
圖3.1 化學結構示意圖(A) PVDF (B) 吐溫20 47
圖3.2 不同高分子濃度的PVDF薄膜截面SEM圖(A) 15% (B) 18% (C) 20% 48
圖3.3 高分子濃度18%的PVDF薄膜添加吐溫20後的截面形態 (A) 1% (B) 5% (C) 7.5% 49
圖3.4 在高分子濃度為18%並添加吐溫20後漸漸產生手指狀巨孔結構(A)0% (B) 1% (C) 3% (D) 5% (E) 7.5% 50
圖3.5 PVDF薄膜在添加界面活性劑後上表面皮層產生孔洞(A)0% (B) 1% (C) 3% (D) 5% (E) 7.5% (F) 10% 51
圖3.6 PVDF薄膜的上表面皮層 (A) 0% (B) 3% (C) 7.5% 52
圖3.7 高分子濃度為18%並在製膜液中添加吐溫20的薄膜下表面(A)0%(B)3%(C)7.5% 53
圖3.8 添加不同比例界面活性劑的PVDF薄膜上表面在全反射式紅外線光譜儀的表現 54
圖3.9 PVDF薄膜的NMR掃描圖 (A)未添加吐溫20 (B)添加7.5%吐溫20 54
圖3.10 PVDF薄膜在XPS的分析圖(A)MA、MD和MF上表面廣部掃描(B)MD碳細部掃描(C) MD氟細部掃描(D) MD氧細部掃描 55
圖3.11 未添加和添加界面活性劑的PVDF薄膜分別在製膜液、相轉移過程和初生薄膜的示意圖 56
圖3.12 各種添加不同比例吐溫20 PVDF薄膜的純水通量 57
圖3.13添加吐溫20 PVDF薄膜的阻隔率和濾速 57
圖4.1 噴紡法製備毛細管薄膜之裝置示意圖 78
圖4.2在高分子和芯液流速同為1CC/MIN下添加不同比例吐溫20的截面(A) 0% (B)2.5% (C)5% (D)7.5% (E)10% 79
圖4.3 高分子和芯液流速為1CC/MIN下添加不同比例吐溫20所形成薄膜的截面。(A)(B) 0%(C)(D)5% (E)(F) 10% 80
圖4.4在高分子和芯液流速同為1CC/MIN下添加不同比例吐溫20的 81
外表面形態(A) 0% (B)2.5% (C)5% (D)7.5% (E) 10% 81
圖4.5在高分子和芯液流速同為1CC/MIN下添加不同比例吐溫20的內表面形態(A) 0% (B)2.5% (C)5% (D)7.5% (E) 10% 82
圖4.6 在高分子和芯液流速同為0.4CC/MIN下添加不同比例吐溫20的截面(A)0% (B)2.5%(C)5%(D)7.5%(E)10% 83
圖4.7 在高分子和芯液流速同為0.4CC/MIN下添加不同比例吐溫20的截面(A)(B)0% (C)(D)5%(E)(F)10% 84
圖4.8在高分子和芯液流速同為0.4CC/MIN下添加不同比例吐溫20所形成薄膜的外表面/內表面形態(A)(B)0%(C)(D)5%(E)(F)10% 85
圖4.9 以不同的氣距製備添加7.5%的吐溫20製膜液的毛細管薄膜截面形態(A) 0CM (B) 5CM (C) 15CM (D) 30CM 86
圖4.10 以不同的氣距製備添加7.5%的吐溫20製膜液的毛細管薄膜外表面形態(A)0CM(B)5CM(C)15CM(D)30CM 87
圖4.11 以不同的氣距製備添加7.5%的吐溫20製膜液的毛細管薄膜內表面形態(A)0CM(B)5CM(C)15CM(D)30CM 88
圖4.12 以不同的氣距製備添加10%的吐溫20製膜液的毛細管薄膜截面形態(A)0CM(B)5CM(C)15CM(D)30CM 89
圖4.13 以不同的氣距製備添加10%的吐溫20製膜液的毛細管薄膜外表面形態(A) 0CM(B)5CM(C)15CM(D)30CM 90
圖4.14 以不同的氣距製備添加10%的吐溫20製膜液的毛細管薄膜內表面形態(A) 0CM(B)5CM(C)15CM(D)30CM 91
圖4.16 添加不同比例吐溫20毛細管薄膜外表面的全反射式紅外線光譜 92
圖4.17 PVDF毛細管薄膜的NMR(A)未添加吐溫20(B)添加5%吐溫20 93
圖4.18 未添加吐溫20所製作的PVDF毛細管薄膜和平板形薄膜的形態。(A)(C) (E)毛細管薄膜(分別為外表面、截面和內表面)(B)(D)(F)平板型薄膜(分別為上表面、截面和下表面) 94
圖4.19 添加7.5%吐溫20所製作的PVDF毛細管薄膜和平板形薄膜的形態(A)(C) (E)毛細管薄膜(分別為外表面、截面和內表面)(B)(D)(F)平板型薄膜(分別為上表面、截面和下表面) 95

表目錄
表1.1 薄膜的應用(譯自文獻[1]) 2
表1.2 商用薄膜的結構、材料和分離機制(譯自文獻[1]) 2
表2.1 添加不同比例非溶劑於製膜液的物性分析 28
表2.2 尼龍66薄膜的熔點、熱焓和結晶度 28
表3.1 PVDF薄膜製膜液組成、孔隙度、厚度、成形時間和抗張強度 58
表3.2 PVDF薄膜皮層厚度、表面孔徑和孔隙度、手指狀結構長度和接觸角測試 58
表3.3 PVDF薄膜在NMR殘留率和萃取率和XPS表面元素組成和表面殘留率 59
表 3.4 文獻上改質PVDF薄膜在1BAR下的水通量 59
表4.1 製備毛細管薄膜實驗參數 96
表4.2 添加吐溫20的製膜液組成 96
表4.3 高分子和芯液流速同為1CC/MIN和氣距為15公分下添加不同比例吐溫20的外徑、內徑、厚度、孔隙度、外表面孔洞尺寸和外表面孔隙度 96
表4.4 高分子和芯液流速同為0.4CC/MIN和氣距為15公分下添加不同比例吐溫20所製作薄膜的性質 97
表4.5 以不同的氣距製備添加7.5%的吐溫20製膜液的毛細管薄膜外徑、內徑、厚度和孔隙度 97
表4.6 以不同的氣距製備添加10%的吐溫20製膜液的毛細管薄膜外徑、內徑、厚度和孔隙度 98
表4.7 添加不同比例吐溫20製膜液與文獻上製膜液在剪切率為10和20S-1的穩態剪切黏度 98
表4.8 添加不同比例的界面活性劑在高流速和低流速下的機械強度 99
表4.9 添加7.5%和10%吐溫20的毛細管薄膜在不同氣距下的機械強度 99
表4.10 文獻上不同製膜液配方所製備的毛細管薄膜機械強度比較 99
表4.11 毛細管薄膜接觸角測試與NMR結果 100
表4.12 毛細管薄膜與平板形薄膜的抗張強度 100


參考文獻 第一章
[1] H. Strathmann, Introduction to Membrane Science and Technology, Wiley (2011).
第二章
[1] M.I. Kohan, Nylon plastics handbook, New York: Hanser/Gardner (1995).
[2] J. Shen, Y. Li, Y. Zuo, Q. Zou, J. Li, D. Huang, X. Wang, Characterization and cytocompatibility of surface modified polyamide66, J. Biomed. Mater. Res. B 91 (2009) 897-904.
[3] L.P. Cheng, A.H. Dwan, C.C. Gryte, Isothermal Phase Behavior of Nylon-6, -66, and -610 Polyamides in Formic Acid-Water Systems, J. Polym. Sci., Part B: Polym. Phys. 32 (1994) 1183-1190.
[4] J.Y. Lai, Y.H. Chu, S.L. Huang, Y.L. Yin, Separation of water-alcohol mixtures by pervaporation through asymmetric nylon-4 membrane, J. Appl. Polym. Sci. 53 (1994) 999-1009.
[5] L.P. Cheng, A.W. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology, J. Polym. Sci., Part B: Polym. Phys. 33 (1995) 211-222.
[6] L.P. Cheng, A.W. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems II. Precipitation dynamics, J. Polym. Sci., Part B: Polym. Phys. 33 (1995) 223-235.
[7] A.M.W. Bulte, M.H.V. Mulder, C.A. Smolders, H. Strathmann, Induced phase separation with crystallizable nylons. I.Mass transfer processes for nylon 4,6, J Membr. Sci. 121 (1996) 37-49.
[8] A.M.W. Bulte, M.H.V. Mulder, C.A. Smolders, H. Strathmann, Induced phase separation with crystallizable nylons. II. Relation to final membrane morphology, J Membr. Sci. 121 (1996) 51-58.
[9] D.J. Lin , L.P. Cheng, S.P. Lin, Effect of compatible nucleation seeds on the morphology of porous Nylon-6 membrane, Desalination 145 (2002) 31-37.
[10] C.H. Shih, C.C. Gryte, L.P. Cheng, Morphology of membranes formed by the isothermal precipitation of polyamide solutions from water/formic acid systems, J. Appl. Polym. Sci. 96 (2005) 944-960.
[11] D.J. Lin, C.L. Chang, C.K. Lee, L.P. Cheng, Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system, Eur. Polym. J. 42 (2006) 356-367.
[12] M. Zeni, R. Riveros, J.F.d. Souza, K. Mello, C. Meireles, G.R. Filho, Morphologic analysis of porous polyamide 6,6 membranes prepared by phase inversion, Desalination 221 (2008) 294-297.
[13] L.P. Cheng, T.H. Young, W.Y. Chuang, L.Y. Chen, L.W. Chen, The formation mechanism of membranes prepared from the nonsolvent-solvent-crystalline polymer systems, Polymer 42 (2001) 443-451.
[14] D.J. Lin, C.L. Chang, T.C. Chen, L.P. Cheng, Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system, Desalination 145 (2002) 25-29.

[15] D.J. Lin , K. Beltsios , T.H. Young , Y.S. Jeng , L.P. Cheng, Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes, J Membr. Sci. 274 (2006) 64-72.
[16] M. Mulder, Basic principles of membrane technology, 2nd edn., Kluwer Academic Publishers, London (1996).
[17] M.G. Buonomenna, P. Macchi, M. Davoli, E. Drioli, Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties, Eur. Polym. J. 43 (2007) 1557-1572.
[18] C.Y. Kuo, H.N. Lin, H.A. Tsai, D.M. Wang, J.Y. Lai, Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation, Desalination 233 (2008) 40-47.
[19] P. Sukitpaneenit, T.S. Chung, Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology, J Membr. Sci. 340 (2009) 192-205.
[20] F. Edwie, M.M. Teoh, T.S. Chung , Effects of additives on dual-layer hydrophobic–hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance, Chem. Eng. Sci. 68 (2012) 567-578.
[21] Z. Wang, J. Ma, The role of nonsolvent in-diffusion velocity in determining polymeric membrane morphology, Desalination 286 (2012) 69-79.

[22] H.A. Tsai, R.C. Ruaan, D.M. Wang, J.Y. Lai, Effect of temperature and span series surfactant on the structure of polysulfone membranes, J. Appl. Polym. Sci. 86 (2002) 166-173.
[23] D.B. Pall, US Patent, 4,340,479 (1982).
[24] S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A. Wendsjo, Crystallinity and morphology of PVDF-HFP-based gel electrolytes, Polymer 42 (2001) 1407-1416.
[25] D.J. Lin, H.H. Chang, K. Beltsios, T.M. Don, Y.S. Jeng, L.P. Cheng, Effect of post-casting heat treatment on the structure and properties of semicrystalline phase-inversion poly(vinylidene fluoride) membranes, J. Polym. Sci., Part B: Polym. Phys. 47 (2009) 1880–1893.
[26] H.H. Chang, L.C. Yao, D.J. Lin, L.P. Cheng, Preparation of microporous poly(VDF-co-HFP) membranes by template-leaching method, Sep. Purif. Technol. 72 (2010) 156-166.
[27] M. Herrero, P. Benito, F.M. Labajos, V. Rives, Y.D. Zhu, G.C. Allen, J.M. Adams, Structural characterization and thermal properties of polyamide 6.6/Mg, Al/adipate-LDH nanocomposites obtained by solid state polymerization, J. Solid State Chem. 183 (2010) 1645-1651.
[28] N. Vasanthan, S. B. Ruetsch, D.R. Salem, Structure Development of Polyamide-66 Fibers during Drawing and Their Microstructure Characterization, J. Polym. Sci., Part B: Polym. Phys. 40 (2002) 1940-1948.
[29] T. Elzein, M. Brogly, J. Schultz, Crystallinity measurement of polyamides adsorbed as thin films, Polymer 43 (2002) 4811-4822.
[30] P.G. Karagiannidis, A.C. Stergiou, G.P. Karayannidis, Study of crystallinity and thermomechanical analysis of annealed poly(ethylene terephthalate) films, Eur. Polym. J. 44 (2008) 1475-1486.

第三章
[1] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Review- Progress in the production and modification of PVDF membranes, J Membr. Sci. 375 (2011) 1–27.
[2] D.J. Lin, C.L. Chang, T.C. Chen, L.P. Cheng, Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system, Desalination 145 (2002) 25-29.
[3] D.J. Lin, H.H. Chang, T.C. Chen, Y.C. Lee, L.P. Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system, Eur. Polym. J. 42 (2006) 1581–1594.
[4] L.P. Cheng, Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-Octanol/DMF/ PVDF and Water/DMF/PVDF Systems, Macromolecules 32 (1999) 6668-6674.
[5] D.J. Lin, C.L. Chang, F.M. Huang, L.P. Cheng, Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system, Polymer 44 (2003) 413–422.
[6] A. Rahimpour, S.S. Madaeni, Y. Mansourpanah, The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration, J Membr. Sci. 296 (2007) 110–121.
[7] C.H. Loh, R. Wang, L. Shi, A.G. Fane, Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives, J Membr. Sci. 380 (2011) 114– 123.
[8] D.J. Lin, C.L. Chang, C.K. Lee, L.P. Cheng, Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system, Eur. Polym. J. 42 (2006) 356–367.
[9] L.P. Cheng, T.H. Young, L. Fang, J.J. Gau, Formation of particulate microporous poly(vinylidene fluoride) membranes by isothermal immersion precipitation from the 1-octanol/dimethylformamide/ poly(vinylidene fluoride) system, Polymer 40 (1999) 2395–2403.
[10] N. Ghaemi, S.S. Madaeni, A. Alizadeh, P. Daraei, V. Vatanpour, M. Falsafi, Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane:Characterization and performance in rejection of pesticides, Desalination 290 (2012) 99–106.
[11] C.H. Loh, R. Wang, Effects of Additives and Coagulant Temperature on Fabrication of High Performance PVDF/Pluronic F127 Blend Hollow Fiber Membranes via Nonsolvent Induced Phase Separation, Chin. J. Chem. Eng. , 20 (2012) 71—79.
[12] N. Ghaemi, S.S. Madaeni, A. Alizadeh , P. Daraei , A.A. Zinatizadeh , F. Rahimpour, Separation of nitrophenols using cellulose acetate nanofiltration membrane:Influence of surfactant additives, Sep. Purif. Technol. 85 (2012) 147–156.
[13]Y.H. Zhao, Y.L. Qian, B.K. Zhu, Y.Y. Xu, Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process, J Membr. Sci. 310 (2008) 567–576.
[14]M. Amirilargani, E. Saljoughi, T. Mohammadi, Effects of Tween 80 concentration as a surfactant additive on morphology and permeability of flat sheet polyethersulfone (PES) membranes, Desalination 249 (2009) 837–842.
[15] D.M. Wang, F.C. Lin, T.T. Wu, J.Y. Lai, Formation mechanism of the macrovoids induced by surfactant additives, J Membr. Sci. 142 (1998) 191-204.
[16] H.A. Tsai, R.C. Ruaan, D.M. Wang, J.Y. Lai, Effect of Temperature and Span Series Surfactant on the Structure of Polysulfone Membranes, J. Appl. Polym. Sci. 86 (2002) 166–173.
[17] Y.W. Kim, D.K. Lee, K.J. Lee, J.H. Kim, Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes, Eur. Polym. J. 44 (2008) 932–939.
[18]L.H. Sperling, Introduction to physical polymer science fourth edition, John Wiley & Sons, Inc. (2006) 265-266.
[19] X. Feng, Y. Guo, X. Chen, Y. Zhao, J. Li, X. He, L. Chen, Membrane formation process and mechanism of PVDF-g-PNIPAAm thermo-sensitive membrane, Desalination 290 (2012) 89–98.
[20] M. Mulder, Basic principles of membrane technology, 2nd edn., Kluwer Academic Publishers, London (1996).
[21] M.M. Teoh, T.S. Chung, Y.S. Yeo, Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water production via membrane distillation, Chem. Eng. J. 171 (2011) 684– 691.
[22] N. Peng, T.S. Chung, K.Y. Wang, Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes, J Membr. Sci. 318 (2008) 363–372.
[23] S.H. Choi, F. Tasselli, J.C. Jansen, G. Barbieri, E. Drioli, Effect of the preparation conditions on the formation of asymmetric poly(vinylidene fluoride) hollow fibre membranes with a dense skin, Eur. Polym. J. 46 (2010) 1713–1725.
[24] S. L. Me´ndez, J.F. Mano, A.M. Costa, V.H. Schmidt, FTIR and DSC studies of mechanically deformed PVDF films, J. Macromol. Sci., Phys. 40 (2001) 517–527.
[25] M. Verbrugghe, P. Sabatino, E. Cocquyt, P. Saveyn, D. Sinnaeve, P.V. Meeren, J.C. Martins, Solubilization of flurbiprofen with non-ionic Tween20 surfactant micelles: A diffusion 1H NMR study, Colloids Surf., A 372 (2010) 28–34.
[26] D.E. Suk, G. Chowdhury, T. Matsuura, R.M. Narbaitz, P. Santerre, G. Pleizier, Y. Deslandes, Study on the Kinetics of Surface Migration of Surface Modifying Macromolecules in Membrane Preparation, Macromolecules 35 (2002) 3017-3021.
[27] L. Wu, J. Sun, Q. Wang, Poly(vinylidene fluoride)/ polyethersulfone blend membranes: Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology, J Membr. Sci. 285 (2006) 290–298.

第四章
[1] H. Strathmann, Introduction to Membrane Science and Technology, Wiley (2011).
[2] M. Mulder, Basic principles of membrane technology, 2nd edn., Kluwer Academic Publishers, London (1996).
[3] P.Z. Culfaz, E. Rolevink, C.V. Rijn, R.G.H. Lammertink, M. Wessling, Microstructured hollow fibers for ultrafiltration, J Membr. Sci. 347 (2010) 32–41.
[4] 張旭賢,利用相分離法製備多孔型高分子平板薄膜及中空纖維薄膜之研究,淡江大學化學工程與材料工程博士論文(2010).
[5] N. Peng, N. Widjojo, P. Sukitpaneenit, M.M. Teoh, G.G. Lipscomb, T.S. Chung, J.Y. Lai, Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future , Prog. Polym. Sci. 37 (2012) 1401– 1424.
[6] D. Wang, K. Li, W.K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes, J Membr. Sci. 163 (1999) 211–220.
[7] L. Shi, R. Wang, Y. Cao, C. Feng, D.T. Liang, J.H. Tay, Fabrication of poly(vinylidene fluoride-co- hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes, J Membr. Sci. 305 (2007) 215–225.
[8] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Review Progress in the production and modification of PVDF membranes, J Membr. Sci. 375 (2011) 1–27.
[9] S. Simone, A. Figoli, A. Criscuoli, M.C. Carnevale, A. Rosselli, E. Drioli, Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD, J Membr. Sci. 364 (2010) 219–232.
[10] C.H. Loh, R. Wang, Effects of Additives and Coagulant Temperature on Fabrication of High Performance PVDF/Pluronic F127 Blend Hollow Fiber Membranes via Nonsolvent Induced Phase Separation, Chin. J. Chem. Eng. , 20 (2012) 71—79.
[11] M. Khayet, The effects of air gap length on the internal and external morphology of hollow fiber membranes, Chem. Eng. Sci. 58 (2003) 3091 – 3104.
[12] L. Shi, R. Wang, Y. Cao, Effect of the rheology of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF–HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors, J Membr. Sci. 344 (2009) 112–122.
[13] P. Wang, M.M. Teoh, T.S. Chung, Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance, water res. 45 (2011) 5489-5500.
[14] M.R. Moghareh Abed, S.C. Kumbharkar, A.M. Groth, K. Li, Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique, J Membr. Sci. 407– 408 (2012) 145– 154.
[15] M. Khayet, M.C. Garc´ıa-Payo, F.A. Qusay, K.C. Khulbe, C.Y. Feng, T. Matsuura, Effects of gas gap type on structural morphology and performance of hollow fibers, J Membr. Sci. 311 (2008) 259–269.
[16] M.M. Teoh, T.S. Chung, Rapid communication Micelle-like macrovoids in mixed matrix PVDF-PTFE hollow fiber membranes, J Membr. Sci. 338 (2009) 5–10.
[17] D.J. Lin, C.L. Chang, T.C. Chen, L.P. Cheng, Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system, Desalination 145 (2002) 25-29.
[18] D.J. Lin, H.H. Chang, T.C. Chen, Y.C. Lee, L.P. Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system, Eur. Polym. J. 42 (2006) 1581–1594.
[19] Y.W. Kim, D.K. Lee, K.J. Lee, J.H. Kim, Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes, Eur. Polym. J. 44 (2008) 932–939.
[20] J. Xu, Z.L. Xu, Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent, J Membr. Sci. 208 (2002) 203–212.
[21] L.Y. Yu, Z.L. Xu, H.M. Shen, H. Yang, Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method, J Membr. Sci. 337 (2009) 257–265.
[22] 吳建宏,聚乙烯/聚丙烯/碳黑摻雜型導電高分子之製備與性質研究,淡江大學化學工程與材料工程碩士論文(2006).
[23] S.H. Choi, F. Tasselli, J.C. Jansen, G. Barbieri, E. Drioli, Effect of the preparation conditions on the formation of asymmetric poly(vinylidene fluoride) hollow fibre membranes with a dense skin, Eur. Polym. J. 46 (2010) 1713–1725.
[24] S. Lanceros-Me´ndez, J. F. Mano, A. M. Costa, V. H. Schmidt, FTIR and DSC studies of mechanically deformed PVDF films, J. Macromol. Sci., Phys. 40 (2001) 517–527.
[25] Y.W. Kim, D.K. Lee, K.J. Lee, J.H. Kim, Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes, Eur. Polym. J. 44 (2008) 932–939.
[26] M. Verbrugghe, P. Sabatino, E. Cocquyt, P. Saveyn, D. Sinnaeve, P. Van der Meeren, J.C. Martins, Solubilization of flurbiprofen with non-ionic Tween20 surfactant micelles: A diffusion 1H NMR study, Colloids and Surfaces A. 372 (2010) 28–34.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-01-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-01-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信