淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2201201313144400
中文論文名稱 PSO-SA混合法於結構多目標最佳化之應用
英文論文名稱 Multiobjective Optimization of Structure by Hybrid PSO-SA Method
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 黃宗鴻
研究生英文姓名 Zong-Hong Huang
學號 699430053
學位類別 碩士
語文別 中文
口試日期 2012-12-27
論文頁數 70頁
口試委員 指導教授-張永康
委員-洪健君
委員-陳步偉
中文關鍵字 粒子群演算法  模擬退火法  多目標最佳化 
英文關鍵字 Particle Swarm Optimization  Simulated Annealing  Multiobjective Optimization 
學科別分類 學科別應用科學航空太空
中文摘要 本研究應用PSO-SA混合法於結構多目標最佳化設計中,粒子群演算法是種模仿自然界鳥類覓食的現象進行問題求解之步驟,屬於仿生演算法一種,此演算法具有快速搜尋且較為簡易設定的優點並具有全域搜尋之特色。模擬退火法主要是根據統計熱力學的原理,模擬材料在進行退火的過程中,逐漸達到最低溫狀態的現象,並透過波茲曼函數判斷問題解被接受機率,如此能有助於跳脫區域最佳解往全域最佳解靠近的機會。

本研究將結構多目標最佳化問題轉換為數學函數,利用線性遞減式慣性權重更新搜尋速度及位置以獲得最佳值,再應用模擬退火法判斷是否跳脫此最佳解以避免落入區域最佳解之中。在求解過程中,發現本方法應用於多目標結構最佳化設計問題時,能有效的在多目標問題中搜尋出最佳解並且同時滿足限制條件。




本研究以FORTRAN程式與ANSYS有限元素分析軟體中的APDL語法結合成一系統程式。並透過六個不同範例驗證了PSO-SA混合法於結構多目標最佳化設計上皆有不錯之成效。
英文摘要 The PSO-SA hybrid method was applied to multiobjective optimum design of structure in this study. Particle Swarm Optimization is to mimic the behavior of birds finding a good path to the food, which is one of the artificial biological algorithms. Thus, it has the merits of converge efficiently and programming easily. The advantage of Particle Swarm Optimization (PSO) is it global search technique. The Simulated Annealing (SA) method is based on the principle of statistical thermodynamic. That is material during the annealing process can be reached most cryogenic state phenomenon. The possibility of local optimum jump to global optimum can be determined by the probability of the Bozeman function.
The structural optimization problem can be transformed into a mathematical function. The new design can be obtained by using the linear decreasing inertia weight to update velocity and position of particles. After the optimal solution was obtained, the strategy of SA method is initiated to determine whether this optimal solution should be neglected or not . In the Numerical examples, the study showed that the computational efficiency can be improved and the constraint is satisfied.
  A systematic program was developed by FORTRAN and APDL of ANSYS software. The optimum results of six different multiobjective examples showed that the PSO-SA hybrid methods are reasonable compared to other references.
論文目次 目錄
中文摘要…………………………………………………………….........I
英文摘要.................................................................................................Ⅲ
目錄.........................................................................................................Ⅴ
圖目錄.....................................................................................................Ⅶ
表目錄......................................................................................................Ⅷ
第一章 緒論.............................................................................................1
1.1 研究動機.....................................................................................1
1.2 文獻回顧.....................................................................................3
1.3 研究方法....................................................................................6
第二章 粒子群演算法.............................................................................7
2.1 引言............................................................................................7
2.2 理論基礎.....................................................................................7
2.3 常數慣性權重............................................................................9
2.4 線性遞減式慣性......................................................................10
2.5 壓縮因子………..........................................................................11
2.6 最大速度限制..........................................................................12
2.7 PSO之演算程序…………………………………………………………………12


第三章 模擬退火法...............................................................................14
3.1 理論基礎...................................................................................14
3.2 模擬退火法…………………...........................................................15
第四章 最佳化設計............................................. .................................18
4.1 最佳化設計概念……………………………………………………………..……18
4.2 最佳化問題..............................................................................19
4.3 多目標適應函數………………………………………………………….…..…..20
4.4 Pareto 最佳解………………………………………………………..……………..21
4.5 程式執行流程………………………..................................................22

第五章 數值分析……………………………………………………………………………….24
5-1 範例一:十桿件桁架多目標結構最佳化設計………….…..……..25
5-2 範例二:二十五桿件桁架多目標結構最佳化設計…………..….27
5-3 範例三:四桿件桁架多目標結構最佳化設計……………………….29
5-4 範例四:直升機尾桁結構多目標最佳化設計……………….………31
5-5 範例五:單層懸臂薄板多目標結構最佳化設計……..….………..35
5-6 範例六:四層壓電複合薄板結構之最佳化設計….……….….….38
第六章 結論............................................................................................43
參考文獻..................................................................................................67

圖目錄
圖一 粒子速度及位置更新意示圖........................................................45
圖二 粒子群演算法流程圖……………………………………………………..…………46
圖三 模擬退火法跳出局部最佳解示意圖............................................47
圖四 模擬退火法被接受機率之函數關係圖........................................47
圖五 模擬退火法流程圖.......................................................................48
圖六 多目標最小化意式圖………………………………………………………………..49
圖七 程式執行流程圖…………………………....................................50
圖八 PSO-SA混合法流程圖…………..................................................51
圖九 範例一 十桿件桁架結構尺寸外型圖……...………………………………52
圖十 十桿件桁架之Pareto solution……………………………………..…….………52
圖十一 範例二 二十五桿件桁架結構尺寸外型圖………….………..……..53
圖十二 二十五桿件桁架之Pareto solution…………….………………………….53
圖十三 範例三 四桿件桁架結構尺寸外型圖…………………………..………54
圖十四 四桿件桁架之Pareto solution……………………………………………….54
圖十五 範例四 直昇機尾桁結構外型及負載圖……………………………….55
圖十六 範例五 單層懸臂薄板結構外型圖……………………………………….56
圖十七 範例六 四層壓電複合薄板結構外型圖…………..…………………..57



表目錄
表一 範例一 有限元素分析初始值與最佳值比較..............................58
表二 範例二 二十五桿件桁架結構桿件截面積分組..........................59
表三 範例二 二十五桿件桁架結構各節點受力..................................59
表四 範例二 二十五桿件桁架結構節點座標......................................60
表五 範例二 有限元素分析初始值與最佳值比較..............................61
表六 範例三 有限元素分析初始值與最佳值比較..............................62
表七 範例四 直升機尾桁之桿件分類..................................................63
表八 範例四 有限元素分析初始值與最佳值比較………………….….......64
表九 範例五 有限元素分析初始值與最佳值比較..............................65
表十 範例六 有限元素分析初始值與最佳值比較……………………………66













參考文獻 [1] Kennedy, J. and Eberhart, R. C., “ Particle swarm optimization”, In: IEEE International Conference on Neural Networks, Vol. IV, Piscataway, NJ, p. 1942–1948,1995.

[2] Eberhart, R. C. and Kennedy, J., “A New Optimizer Using Particle Swarm Theory”, IEEE Service Center,Machine and Human Science, Proceedings of the Sixth International Symposium on Micro , Piscataway, NJ, Nagoya, Japan, pp. 39–43,1995.

[3]郭信川,張建仁,劉清祥,「粒子群演算法於最佳化問題之研究」,第一屆台灣作業研究學會學術研討會暨2004 年科技與管理學術研討會,民國九十三年,419~432 頁,2004.

[4] Shi, Y. and Eberhart, R. C., “A Modified Particle Swarm Optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69−73,1998.

[5]Eberhart, R. C. and Shi, Y., “Comparing inertia weights and constriction factors in particle swarm optimization”,Proceedings of 2000 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center; pp. 84–88, 2000.

[6]Shi, Y. and Eberhart, R. C., “Empirical Study of Partical Swarm Optimization ”,NJ: IEEE Service Center;Vol. 3, pp.1945–1950 ,1999.

[7] Clerc, M., “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proc. of 1999 ICEC, Washington, DC, pp. 1951-1957, 1999.

[8] Carlisle, A. and Dozier, G., “An off-the-shelf PSO”, Proceedings of the Workshop on Particle Swarm Optimization, Vol. 1, pp. 1−6 ,2001.


[9]Fourie, P. C. and Groenwold, A ., “The particle swarm optimization algorithm in size and shape optimization”, Struct. Multidisc optim., Vol. 23, pp. 259−267,2002.
[10]Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E.,“Equation of State Calculations by Fast Computing Machines”,Journal of Chem. Physics, Vol. 21, pp.1087-1092,1953.

[11]Kirkpatrick, S. and Gelatt, C. D. “Optimization by Simulated Annealing”,Journal of science, Vol.220, pp.671-680,1983.

[12] Hajek, B. , “Cooling Schedules for Optimal Annealing”, Mathematics of Operations Research, Vol. 13, pp. 311-329, 1988.

[13] Wang, L. H. and Kao, C. Y., “Using an Annealing Genetic Algorithm to Solve Global Energy Minimization Problem in Molecular Binding”, Proceedings of Sixth International Conference on Tools with Artificial Intelligence, pp. 404-410, 1994.

[14]Chen, T. Y. and Su, J. J., “Efficiency improvement of simulated annealing in optimal structural designs”, Advances in Engineering Software, Vol.33, pp. 675-680, 2002.

[15] 謝泰隆,”模擬退火法於直升機結構最佳化之應用”,私立淡江大學航空太空工程研究所碩士論文,2004。

[16]莊玟珊,PSO–SA混合搜尋法與其他結構最佳化,國立中央大學土木工程研究所碩士論文,2007。

[17] 林大為,結合模擬退火之改良粒子群演算法於結構最佳化設計的研究,國立中央大學土木工程研究所碩士論文,2009。

[18] Wu, X. and Wang, W. ,“Optimal management of microgrid using particle swarm optimization algorithm” Electrical and Control Engineering (ICECE), International Conference,pp. 1141 - 1144 ,2011 .

[19] Hadidi, A. and Kaveh, A., “An Efficient Hybrid Algorithm Based On Partical Swarm And Simulated Annealing For Optimal Design of Space Trusses”, Int. J. Optim. Civil Eng.; 3:377-395, 2011.



[20] Løvbjerg, M. L., Rasmussen, T. K. and Krink, T., “Hybrid particle swarm optimiser with breeding and subpopulations”, in Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, CA, 2001.

[21]Deb, K., Gulati, S. and Chakrabarti, S., “Optimal Truss-Structure Design Using Real-Coded Genetic Algorithms,” Proceedings of the Third Annual Conference, pp. 479−486 ,1998.


[22] Eberhart, R. C. and Shi, Y. ,“ Comparison between genetic algorithms and particle swarm optimization”, Evolutionary programming vii: proc. 7th ann. conf. on evolutionary conf., Springer-Verlag, Berlin, San Diego, CA., pp.611−616, 1998.

[23] Tchomte, S. K. and Gourgand, M., “Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems”. INT. J .Production Economic 121, pp.57-67
,2009.

[24] Xin, J. B., Chen , G. M. and Hai, Y. B., “A Particle Swarm
Optimizer with Multi-Stage Linearly-Decreasing Inertia Weight”
. International Joint Conference on Computational Sciences and Optimization ,pp. 505 – 508, 2009.

[25] Carlos, C. A. and Christiansen, A. D. “Multiobjective Optimization of Trusses using Genetic Algorithms”, Computers and Structures, Vol. 75, No. 6, pp. 647-660, April 2000.

[26] 康祐嘉,含移動漸近線法與模糊理論於多目標拓樸最佳化之研究,淡江大學航空太空工程學系研究所碩士論文,2011年。


[27] Luh,Guan-Chun. and Chueh, Chung-Huei. “Multi-objective optimal design of truss structure with immune algorithm” Computers and Structures, 82, pp. 829-844 ,2004.


[28] Ray, T. and Liew, K. M., “A Swarm Metaphor for Multiobjective Design Optimization”, Engineering Optimization, Vol. 34(2), pp. 141–153 ,2002.

[29] 柯星竹,應用遺傳演算法與類神經網路於結構最佳化設計之研究,淡江大學航空太空工程學系研究所碩士論文,2006年。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-01-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-01-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信