淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2201201311035400
中文論文名稱 大型風力發電機扇葉之抖振反應分析
英文論文名稱 Buffeting Analysis of Large Wind Turbine Blade
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 劉牧宇
研究生英文姓名 Mu-Yu Liu
學號 699380456
學位類別 碩士
語文別 中文
口試日期 2013-01-09
論文頁數 86頁
口試委員 指導教授-林堉溢
委員-陳振華
委員-王怡仁
委員-林堉溢
中文關鍵字 風力發電機扇葉  顫振分析  抖振反應 
英文關鍵字 flutter Analysis  buffeting Analysis  Wind Turbine Blade 
學科別分類 學科別應用科學土木工程及建築
中文摘要 台灣地理位置四面環海適合發展風力發電,但也是位屬於颱風侵襲地帶,也曾出現風力發電機損壞的報導,儘管國內外的研究者對於扇葉的性質、材料、形狀早已經研究多年。因現階段風力發電扇葉分析比較缺乏動態影響分析和抖振反應的研究,所以本文利用結構風工程的觀點來分析風力發電機扇葉受風力作用下之顫振及抖振反應進行探討。
為了簡化問題,本文假設扇葉為變化寬度水平無扭轉角度方式進行分析,將扇葉視為靜止的懸臂樑進行模擬,模擬分析中的風力係數及顫振導數皆參考於文獻。在顫振臨界風速分析時,採用複數特徵值法疊代計算,而扇葉抖振反應是採用頻譜進行分析。
為了驗證正確性,利用既有機翼來驗證機翼斷面顫振分析,發現與文獻上結果吻合。本文中採用兩種不同的風力發電扇葉之例題模型來進行顫振及抖振分析,例題扇葉於顫振分析中,在風速低於100(m/s)時並沒有顫振現象,是因為扇葉頻率很高的關係;於抖振分析中可以發現垂直向的反應比順風向及扭轉向來的顯著,利用等值勁力風載重的概念,可以求得等值靜力,並且推算出動態載重下扇葉垂直向所受的最大正向應力。
英文摘要 Since Taiwan is surrounded by sea and is in the typhoon-prone area, it is an appropriate place for developing wind power. However, some damages of wind turbine blades have been reported. Although the aerodynamic behavior of wind turbine blades have been investigated and discussed in many literatures, the buffeting responses of wind turbine blades were seldom studied. The purpose of this thesis is to investigate the flutter wind speeds and the buffeting responses of wind turbine blades by using an analytical approach based on flutter and buffeting theories.
To simplify the analysis, the wind turbine blade was assumed to be horizontal and modeled as a cantilever beam. The static wind force coefficients and the flutter derivatives of airfoils, adopted from literatures, were used in the analysis. The complex eigen-value analysis was used to calculate the flutter wind speed of the wind turbine blade. The buffeting responses of the blade were analyzed based on a spectral analysis.
To examine the validity of this analysis, the flutter wind speed of an airfoil was evaluated first. It can be found that the results agree well with those in the literatures. Two types of wind turbine blades were then studied in this thesis. As the mean wind velocity is less than 100m/s, there is no flutter identified in these blades. This is because the torsional frequencies of these blades are very high. The results also indicated that the buffeting responses in the vertical direction are more significant than those in the drag and torsional directions. Using the vertical displacement, the equivalent static wind loads were then generated and used for the calculations of the maximum stresses in the blades.
論文目次 目錄
第一章緒論 1
1-1前言 1
1-2研究目的與方法 3
1-3論文架構 4
第二章文獻回顧 6
2-1前言 6
2-2風力發電扇葉材料 7
2-3風力發電扇葉斷面 8
2-4顫振效應 11
2-4-1顫振導數 12
2-5抖振效應 14
2-5-1風力係數 14
第三章理論背景 16
3-1前言 16
3-2運動方程式 16
3-3顫振力 19
3-3-1顫振擾動力 19
3-3-2顫振臨界風速 21
3-4抖振力 26
3-4-1抖振效應之分析 27
3-4-2風力交頻譜 28
3-4-3受風載重之位移反應 36
3-5等值靜力風載重 40
第四章結果分析 42
4-1前言 42
4-2機翼斷面顫振風速分析 42
4-3扇葉例題數值模型建立 43
4-3-1扇葉形狀與斷面性質 44
4-4扇葉振態分析 45
4-5扇葉顫振分析 45
4-5-1扇葉顫振導數建立 46
4-5-2扇葉顫振臨界風速分析 46
4-6扇葉抖振反應分析 47
4-6-1扇葉風力係數建立 47
4-6-2扇葉抖振反應 48
4-6-3扇葉抖振反應之等值靜力風載重 48
4-6-4扇葉抖振反應之正向應力、剪應力 49
第五章結論與建議 52
5-1結論 52
5-2建議 53
參考文獻 54

表目錄
表2-1顫振導數之物理意義 58
表4- 1機翼振態比較 59
表4- 2機翼顫振分析 59
表4- 3例題一扇葉斷面性質 60
表4- 4例題二扇葉斷面性質 62
表4- 5例題一扇葉前十振態頻率及振態權重 65
表4- 6例題二扇葉前十振態頻率及振態權重 66
表4- 7例題一耦合顫振風速分析 67
表4- 8例題二耦合顫振風速分析 68

圖目錄
圖2-1NACA翼型幾何定義 69
圖2-2扇葉扭轉 69
圖3-1機翼斷面漸進式旋轉 70
圖3-2風力發電扇葉水平無轉角模擬三視圖 70
圖3-3數值模擬之斷面受風力示意圖 71
圖4-1NACA0012機翼斷面 72
圖4-2機翼幾何形狀 72
圖4-3顫振導數 73
圖4-4懸臂樑簡化模擬 73
圖4-5例題一扇葉 74
圖4-6例題二扇葉 74
圖4-7例題一扇葉垂直向振態 75
圖4-8例題一扇葉順風向振態 75
圖4-9例題一扇葉扭轉向振態 76
圖4-10例題二扇葉垂直向振態 76
圖4-11例題二扇葉順風向振態 77
圖4-12例題二扇葉扭轉向振態 77
圖4-13文獻中NACA0012顫振導數 78
圖4-14轉換後NACA0012顫振導數 79
圖4-15NACA0012型垂直向風力係數CL 79
圖4-16NACA0012型順風向風力係數CD 80
圖4-17NACA0012型扭轉向風力係數CM 80
圖4-18例題一扇葉垂直向抖振反應 81
圖4-19例題一扇葉順風向抖振反應 81
圖4-20例題一扇葉扭轉向抖振反應 82
圖4-21例題二扇葉垂直向抖振反應 82
圖4-22例題二扇葉順風向抖振反應 83
圖4-23例題二扇葉扭轉向抖振反應 83
圖4-24例題一扇葉等值靜力風載重 84
圖4-25例題二扇葉等值靜力風載重 84
圖4-26例題一扇葉最大應力 85
圖4-27例題二扇葉最大應力 85
圖4-28例題一扇葉平均剪應力 86
圖4-29例題二扇葉平均剪應力 86
參考文獻 參考文獻

1. Povl-Otto Nissen, “Wind Power-The Danish Way: From Poul la Cour to Modern Wind Turbines,” (2009).
2. 蔡智銘, “不敵薔蜜,台中風力發電機組被吹倒”,自由時報(2008/9/30)。
3. A.K. Kaw,“Mechanics of Composite Materials,” (2006).
4. NACA airfoil series. Available online , visited on October at,
http://www.aerospaceweb.org/question/airfoils/q0041.shtml, http://www.aerospaceweb.org
5. T. Theodorsen,“General theory of aerodynamic instability and the mechanism of flutter,”NACA Report 496, (1935).
6. H.J. Hassig, “An approximate true damping solution of the flutter equation by determinate iteration,” Journal of Aircraft, PP. 885-889, (1971).
7. O.G. Dahlhaug,“Aeroelastic Instability and Flutter for a10 MW Wind Turbine,”Norwegian University of Science and Technology Department of Energy and Process Engineering,(2011).
8. D.W. Lobitz,“Aeroelastic Stability Predictions for a Mw-Sized Blade,” Wind Energy Vol. 7, No. 3, PP.211-224, (2004).
9. R.H. Scanlan, J.J. Tomko, “Airfoil and Bridge Deck Flutter Derivatives,“Journal of the Structural Division, ASCE, Vol. 97(6), PP.1717-1737, (1971).
10. B.J.Vickery,“Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream,” Journal ofFluid Mesh.25, PP. 481-494, (1966).
11. T.Saito,N.Shiraishi,H.Ishizaki, “On Aerodynamic stability of double-decked / trussed girder for cable-stayed “Higashi-Kobe Bridge” ,”Journal of Wind Engineering and Industrial Aerodynamics, Vol 33, PP. 323-332, (1990).
12. H.P.Santo, F.B.Branco, “Wind forces on bridges – numerical vs. experimental methods,” JournaloWindEng. and Industrial Aerodynamics, Vol 32, PP. 145-159, (1989).
13. R.H.Scanlan, R.H.Gade, “Motion of Suspended Bridge Spans under Gusty Wind,”Journal of the Structural Division, ASCE, PP.1867-1883, (1977).
14. E.N. Jacobs, K.E. Ward, R. M. Pineerton, “The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel” Characteristics of airfoil sections from tests in Varlable-density wind tunnel, PP.299-354, (1933).
15. R.H.Scanlan, “Interpreting Aeroelastic Models of Cable-Stayed Bridges,”Journal of Engineering Mechanics, ASCE, Vol. 113(4), PP. 555-576, (1987).
16. H.Tanaka, N.Yamamura, M.Tatsumi, “Coupled Mode Flutter Analysis Using Flutter Derivatives,”Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41-44, PP.1279-1290, (1992).
17. 李鳳娟, “振態耦合對大跨度橋梁自勵振動現象之影響”,私立淡江大學土木工程研究所碩士論文, (1995),淡江大學大氣環境暨風力工程研究中心簡介,(1999)。
18. J.C. Kaimal, “Spectrum Charactertics of Surface-Layer Turbulence,”J. Royal Meteorol. Soc., pp.563-589, (1998).
19. J.L.Lumley,H.A. Panofsky,”The Structure of Atmospheric Turbulence,”Wiley, New York, (1964).
20. R.W.Liepmann,“On the application of statistical concept to the buffeting problem,”J. Aero.Sci.,Vol.19, No,12,(1952).
21. B.J. Vickery,“On the flow behind a coarse grid and its use a modal of atmospheric turbulence in studies related to wind load on building,”N. P. L. Aero. Report 1143, (1965).
22. 胡晓红, 项海帆, 葛耀君, ”大跨度拱桥等效风荷载试验研究”,(2002)。
23. X. Chen, A. Kareem, “Equivalent static wind loads for buffeting response of bridge,” Joyral of structural engineering, pp. 1467-1475, (2001).
24. E.C. Yates, “I.–WING 445.6,”AGARD Standard Aeroelastic Configurations for Dynamic Response. Candidate Configuration, NASA Technical Memorandum, (1987).
25. R.J. Beaubien, F. Nitzsche, D. Feszty, “Time and frequency domain Flutter solutions for the AGARD 445.6 WING,” Carleton University, Canada.
26. L. Cavagna, P. Masarati, S. Ricci, P. Mantegazza, “Development and validation of an investigation tool for nonlinear AeroelasticAnalysis,”26thInternationalCongress of the Aeronautical sciences, AS2008, (2008).
27. E.M. Lee-Rausch, J.T. Batina, “Calculationof AGARDWing445.6flutter. UsingNavier-Stokes aerodynamics”,AIAA 11th Applied Aerodynamics ConferenceMonterey, California, (1993).
28. A.Ahlstrom,“Aeroelastic Simulation of Wind Turbine Dynamics,”Royal Institute of TechnologyDepartment of Mechanics, (2005).
29. F.Eye,“Tjaereborgwindturbine (Esbjerg) structural dynamics data”.
30. C.Lindenburg,M.H.Hanse,E.S.Politis,“Structural pitch for a pitch-to-vane controlled wind turbine rotor,”Dampblade Project, task 3.4:Design Application,Sensitivity Analysis and Aeroelastic tailoring, (2004).
31. R.E.Sheldahl,P.C.Klimas,“Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines,”Sandia National Laboratories energy report, (1981).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-01-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-01-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信