§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2201201309181000
DOI 10.6846/TKU.2013.00832
論文名稱(中文) 應用最佳化法則於室內超寬頻通訊系統之研究
論文名稱(英文) Ultra-Wide Band Communication Systems for Indoor Environments by Applying Optimization Methods
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 1
出版年 102
研究生(中文) 賀敏慧
研究生(英文) Min-Hui Ho
學號 896440095
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2013-01-02
論文頁數 189頁
口試委員 指導教授 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 李慶烈(chingliehli1@gmail.com)
委員 - 曹恆偉(tsaohw@cc.ee.ntu.edu.tw)
委員 - 方文賢(whf@mail.ntust.edu.tw)
委員 - 林信標(hplin@mail.ntut.edu.tw)
關鍵字(中) 基因演算法
粒子群聚演算法
非同步粒子群聚最佳化法
動態差異型演化法
超寬頻
接收能量
多目標函數
位元錯誤率
多輸入多輸出
通道容量
關鍵字(英) Genetic Algorithm
Particle Swarm Optimization
Asynchronous Particle Swarm Optimization
Dynamic Differential Evolution
Ultra-Wide Band
Received Power
Multiple Objective Functions
Bit Error Rate
Multiple-Input Multiple-Output
Channel Capacity
第三語言關鍵字
學科別分類
中文摘要
本研究計劃擬以基因演算法(Genetic Algorithms, GA)、粒子群聚演算法(Particle Swarm Optimization, PSO)、非同步粒子群聚最佳化法(Asynchronous Particle Swarm Optimization, APSO)與動態差異型演化法(Dynamic Differential Evolution, DDE)最佳化法則於室內超寬頻(Ultra Wideband, UWB)通訊系統之研究。第一部份研究的目標是探討在一般大型室內環境UWB無線通訊系統上對接收能量的影響。考慮的通訊系統為脈衝無線電UWB通訊系統,接收天線均勻分佈在環境內。利用演算法來最佳化發射天線位置,計算發射天線與接收天線間之通道接收能量,須使接收能量相對於傳送能量相差–40dB內。若接收能量未及–40dB內,此稱為失效點。本研究以『最少發射天線個數』及『最佳發射天線位置』達到『接收能量滿足系統要求』。在正確的選擇與擺設下,可以有效降低相同頻道的干擾,藉由模擬去計算UWB系統在真實環境下之覆蓋率。此外,亦研究藉由演算法找到『最少發射天線個數』及『最佳發射天線位置』,使系統的『位元錯誤率降低』及『接收能量提升』之『多目標』最佳化。利用射線彈跳追蹤法,計算出發射天線與接收天線間之通道頻率響應與脈衝響應,並求出通訊過程中的『位元錯誤率』與『接收能量』,其中接收點的位元錯誤率大於10–6或接收能量未及–40dB內,只要一項不符合系統要求稱為失效,並將不合格接收點個數交給演算法做適應值分析。本研究將演算法和射線彈跳追蹤法結合模擬複雜環境,選用適當發射天線的位置預測無線電波傳輸時的特性,可以提升通訊品質。
第二部份研究以演算法調整智慧型天線發射端的激發電壓與信號饋入線長度,使得傳輸『位元錯誤率降低』。發射端是環型UWB天線陣列,接收端則是單一一個UWB偶極天線。首先利用射線追蹤法計算出任意給定室內環境之脈衝響應,根據已知的天線陣列以及考慮具同步電路的脈衝無線電UWB通訊系統,利用演算法做最佳化的運算,期望能合成出具有指向性的輻射場型並對系統效能做分析,進而將此結果應用在室內無線區域的通訊上。此外,亦研究多輸入多輸出(Multiple Input Multiple Output, MIMO)UWB智慧型陣列天線,以演算法做最佳化天線場型的調整,使得MIMO-UWB系統『通道容量提高』。為了因應未來更高傳輸率以及傳輸品質,其UWB系統本身即具有高通道容量的特性,另一方面,MIMO可以有效的用來增加通道容量,為了滿足未來高傳輸率的需求,合併此二者是可以增加傳輸容量以及增強傳輸距離。MIMO-UWB智慧型天線系統可在電波傳送與接收方面利用波束合成的技術,提供同一頻道多個使用者同時使用的功能,以增加系統的容量與改善通訊品質。本研究中,發射和接收天線皆由八根UWB偶極天線所構成之環型陣列,和一般以天線場型為目標函數所不同的地方是,本研究擬以室內通信『通道容量提高』做最佳化,利用演算法調整發射天線的激發電壓和信號饋入線長度,尋找出滿足『最高通道容量』時的天線場型,此種場型最能滿足室內無線通訊的需求。
英文摘要
The genetic algorithm (GA), particle swarm optimization (PSO), asynchronous particle swarm optimization (APSO) and dynamic differential evolution (DDE) are used to optimizing the objective functions (criterion for measuring the effectiveness of the obtained optimized algorithm solution) and solved in indoor ultra-wide band (UWB) communication system. First, the optimal locations of the transmitter antenna for maximum received power in large area (>10m) UWB wireless communication systems with a mobile transmitter and uniformly distributed receivers are evaluated in the whole indoor environment, algorithm optimizers are used to search the best location of the transmitter antenna to maximize the received powers. The number of the receiver points is chosen as the objective function where the received power from any transmitter is less than –40dB. An optimization procedure for the location of the transmitter is employed to minimize the number of the transmitting antennas and maximize the received power in the coverage area. Based on the shooting and bouncing ray/image (SBR/Image) performance, the channel received power for any given location of the transmitter can be computed. The optimal transmitting antenna location for maximizing the received power is searched by algorithms. Obtained simulation results illustrate the feasibility of using the integrated ray-tracing, and optimization methods to find the optimal transmitter locations in determining the optimized coverage of a wireless network. The investigated results can help communication engineers improve their planning and design of indoor wireless communication. Besides, the algorithm are used to search the multiple objective functions which maximize the received power and minimize the bit error rate (BER) in indoor UWB communication system. The impulse responses of different transceiver antenna locations are computed by SBR/Image techniques, and the channel impulse response is further used to calculate corresponding BER. The BER performance of the binary pulse amplitude modulation (B-PAM) impulse radio UWB system is calculated. The objective function is chosen as the number of the receiver points where the received power from any transmitter is less than –40dB or at 100M bps transmission rate and for a BER > 10-6. Numerical results show that the performance for increasing of received power and decreasing of BER by optimization algorithm is quite good.
The second part, a circular array of eight UWB printed dipole transmitting antennas, which the excitation voltage and feed length was regulated by algorithm, is used to minimize the BER. The receiving antenna is one UWB dipole antenna. The UWB impulse responses of the indoor channel for any transmitter-receiver location are computed by SBR/Image techniques, inverse fast Fourier transform and Hermitian processing. By using the impulse response of multipath channel, the performance of the B-PAM impulse radio UWB system with circular antenna array can be calculated. Based on the topography of the circular antenna array and the BER formula, the array pattern synthesis problem can be reformulated into an optimization problem and solved by the algorithm. The algorithm is used to regulate the antenna excitation voltage and feed length of each array element to minimize the BER performance of the communication system. Simulation results show that the synthesized antenna array pattern is effective to focus maximum gain to the LOS path which scales as the number of array elements. In other words, the receiver can increase the received signal energy to noise ratio. The synthesized array pattern also can mitigate severe multipath fading in complex propagation environment. As a result, the BER can be reduced substantially in indoor UWB communication system. Moreover, communication characteristic of indoor multiple-input multiple-output (MIMO)UWB circular antenna array is presented. The transmitting and receiving antennas are both circular array of eight UWB printed dipole antennas. By using the frequency responses of multipath channel, the channel capacity of the MIMO-UWB system with circular antenna array can be calculated. Based on the topography of the antenna and the channel capacity formula, the array pattern synthesis problem can be reformulated into an optimization problem and solved by the algorithm. The algorithm is used to regulate the antenna excitation voltage and feed length of each array element to maximize the channel capacity performance of the communication system. The algorithm optimization is applied to a high order nonlinear optimization problem. The novelties of our approach is not only choosing channel capacity as the objective function instead of side-lobe level of the antenna pattern, but also consider the antenna excitation voltage and feed length effect of each array element. The strong point of the algorithm is that it can find out the solution even if the performance index cannot be formulated by simple equations. Obtained simulation results illustrate MIMO-UWB smart antenna transmission dramatically increases channel capacity not only due to the beamforming gain and diversity gain but also MIMO spatial multiplexing technique makes full use of multipath fading.
第三語言摘要
論文目次
目錄
中文摘要 ……………………………………………………………………II
英文摘要……………………………………………………………………IV
第一章 簡介	1
1.1 研究計畫之背景	1
1.2 研究動機	7
1.3 本研究之貢獻	10
1.4 國內外有關本計畫之研究情況	12
1.5 各章內容簡述	14
第二章 傳輸通道系統描述	15
2.1 無線電波傳播通道分析	15
2.2 通道計算模型分析	16
2.3 射線彈跳追蹤法程式流程分析	17
2.4 二位元脈衝振幅調變位元錯誤率系統架構	21
2.4.1 發射訊號波形	21
2.4.2 位元錯誤率之計算	22
第三章 多輸入多輸出系統理論	26
3.1 多輸入多輸出窄頻系統通道容量	26
3.2 影響因素MIMO容量	27
3.2.1 空間自由度Spatial Degree of Freedom	27
3.2.2 特徵矩陣Eigenmatrix和條件數目Condition Number	28
3.3 MIMO–UWB系統之通道容量	30
第四章 智慧型天線系統	31
4.1 智慧型天線的基本定義與工作原理	31
4.2 智慧型天線的優點	32
第五章 基因演算法、動態差異型演化法、粒子群聚最佳化法與非同步粒子群聚最佳化法	36
5.1 基因演算法(Genetic Algorithm)	36
5.2 差異型演化法(Differential Evolution)	38
5.3 動態差異型演化法(Dynamic Differential Evolution)	39
5.4 粒子群聚最佳化法(Particle Swarm Optimization)	40
5.5 非同步粒子群聚最佳化法(Asynchronous Particle Swarm Optimization)	42
第六章 最佳發射天線位置與個數達到提升覆蓋率	44
6.1 摘要	44
6.2 數值模擬結果	45
6.2.1 模擬環境與參數設定	45
6.2.2 單一發射天線	48
6.2.3 增加發射天線	53
6.2.4 模擬結果分析與比較	56
6.3 結論	61
第七章 調整發射天線位置與個數達到位元錯誤率降低與接收能量提升之多目標最佳化	63
7.1 摘要	63
7.2 數值模擬結果	64
7.2.1 模擬環境與參數設定	64
7.2.2 單一發射天線	67
7.2.3 增加發射天線	72
7.2.4 模擬結果分析與比較	75
7.3 結論	79
第八章 利用智慧型超寬頻天線陣列降低室內無線通訊位元錯誤率	81
8.1 摘要	81
8.2 研究方法	81
8.2.1 研究方法與原因	81
8.2.2 超寬頻天線環型陣列元件介紹	87
8.3 數值模擬結果	90
8.3.1 模擬環境與參數設定	90
8.3.2 環型陣列於不同演算法模擬結果分析與比較	95
8.3.3 PSO演算法於不同天線陣列模擬結果分析與比較	110
8.4 結論	127
第九章 利用多輸入多輸出天線陣列提高室內無線通訊通道容量	130
9.1 摘要	130
9.2 研究方法	130
9.2.1 研究方法與原因	130
9.2.2 超寬頻天線環型陣列元件介紹	131
9.3 數值模擬結果	132
9.3.1 模擬環境與參數設定	132
9.3.2 環型陣列於不同演算法模擬結果分析與比較	137
9.3.3 GA演算法於不同天線陣列模擬結果分析與比較	152
9.4 結論	168
第十章 結論	171
參考文獻	175
Publication of M. H. Ho	185

 
圖目錄
圖2.1 求得通道脈衝響應的步驟	17
圖2.2 SBR/Image程式流程圖	20
圖2.3 二位元脈衝振幅調變位元錯誤率系統架構圖	21
圖2.4 傳送高斯二次微分脈波的波形	22
圖2.5 FCC對室內及室外UWB系統的頻段及輻射能量限制	23
圖3.1 MIMO窄頻系統矩陣示意圖	26
圖4.1 智慧型天線同時服務兩個同頻道之用戶端示意圖	31
圖6.1 淡江大學二樓研究室俯視圖,其長為31.1m、寬為39m、高度為3m。TxCenter為一個發射天線置放於環境中央。	46
圖6.2 僅一個發射天線時其發射天線位置。(▼)傳送點位於室內環境中心點TxCenter。(▲)GA最佳傳送位置TxGA。(●)PSO最佳傳送位置TxPSO。(◎)APSO最佳傳送位置TxAPSO。(▓)DDE最佳傳送位置 TxDDE。	49
圖6.3(a) 一個發射天線位於室內環境中心點TxCenter 其失效區域(接收能量–40dB以下)	51
圖6.3(b) 一個發射天線利用GA搜尋最佳傳送位置TxGA其失效區域(接收能量–40dB以下)	51
圖6.3(c) 一個發射天線利用PSO搜尋最佳傳送位置TxPSO其失效區域(接收能量–40dB以下)	52
圖6.3(d) 一個發射天線利用APSO搜尋最佳傳送位置TxAPSO其失效區域(接收能量–40dB以下)	52
圖6.3(e) 一個發射天線利用DDE搜尋最佳傳送位置TxDDE其失效區域(接收能量–40dB以下)	53
圖6.4(a) 兩個發射天線其傳送位置Tx51 (7.6m, 13.85m, 1.2m)和Tx58 (31.4m, 13.85m, 1.2m)其失效區域(接收能量–40dB以下)	55
圖6.4(b) 兩個發射天線其傳送位置Tx27 (7.6m, 7.05m, 1.2m)和Tx94 (31.4m, 24.05m, 1.2m)其失效區域(接收能量–40dB以下)	55
圖6.4(c) 兩個天線時其最佳傳送位置。(▲)GA最佳傳送位置TxGA。(●)PSO最佳傳送位置TxPSO。(◎)APSO最佳傳送位置TxAPSO。(▓)DDE最佳傳送位置 TxDDE。	56
圖6.5 一個發射天線下比較四種演算法其代數對平均接收能量(dB)在搜尋過程變化趨勢圖	60
圖6.6 兩個發射天線下比較四種演算法其代數對平均接收能量(dB)在搜尋過程變化趨勢圖	60
圖7.1(a) 辦公室俯視圖長為20m、寬為20m、高度為3m。TxCenter為一個發射天線置放於環境中央。	66
圖7.1(b) 辦公室放入100個接收點之分佈圖	66
圖7.2 僅一個發射天線時其發射天線位置。(․)傳送點位於室內環境中心點TxCenter。(▼)GA最佳傳送位置TxGA。(▲)PSO最佳傳送位置TxPSO。(◎)APSO最佳傳送位置TxAPSO。(▓)DDE最佳傳送位置 TxDDE。	67
圖7.3(a) 一個發射天線位於室內環境中心點TxCenter 其失效區域(接收能量–40dB以下或位元錯誤率大於10–6)	69
圖7.3(b) 一個發射天線利用GA搜尋最佳傳送位置TxGA其失效區域(接收能量–40dB以下或位元錯誤率大於10–6)	70
圖7.3(c) 一個發射天線利用PSO搜尋最佳傳送位置TxPSO其失效區域(接收能量–40dB以下或位元錯誤率大於10–6)	70
圖7.3(d) 一個發射天線利用APSO搜尋最佳傳送位置TxAPSO其失效區域(接收能量–40dB以下或位元錯誤率大於10–6)	71
圖7.3(e) 一個發射天線利用DDE搜尋最佳傳送位置TxDDE其失效區域(接收能量–40dB以下或位元錯誤率大於10–6)	71
圖7.4(a) 兩個發射天線其傳送位置Tx53 (5m, 9m, 1.2m)和Tx58 (15m, 9m, 1.2m)其失效區域(接收能量–40dB以下或位元錯誤率大於10–6)	73
圖7.4(b) 兩個發射天線其傳送位置Tx35 (9m, 13m, 1.2m)和Tx65 (9m, 7m, 1.2m)其失效區域(接收能量–40dB以下或位元錯誤率大於10–6)	74
圖7.4(c) 兩個天線時其最佳傳送位置。(▼)GA最佳傳送位置TxGA。(▲)PSO最佳傳送位置TxPSO。(◎)APSO最佳傳送位置TxAPSO。(▓)DDE最佳傳送位置 TxDDE。	74
圖7.5 一個發射天線下比較四種演算法其代數對失效率在搜尋過程變化趨勢圖	77
圖7.6 兩個發射天線下比較四種演算法其代數對失效率在搜尋過程變化趨勢圖	78
圖8.1 含N個天線元件組成的環型陣列示意圖[75]	83
圖8.2 智慧型UWB天線陣列系統架構圖	86
圖8.3 UWB環型天線陣列示意圖	87
圖8.4 模擬環境平面圖	92
圖8.5(a) 環型天線陣列的空間幾何排列	96
圖8.5(b) 環型天線陣列X–Y平面的輻射場型	97
圖8.6(a) UCAA–GA Rx1輻射場型圖(LOS Case)	97
圖8.6(b) UCAA–PSO Rx1輻射場型圖(LOS Case)	98
圖8.6(c) UCAA–APSO Rx1輻射場型圖(LOS Case)	98
圖8.6(d) UCAA–DDE Rx1輻射場型圖(LOS Case)	99
圖8.7(a) UCAA–GA Rx2輻射場型圖(NLOS Case)	99
圖8.7(b) UCAA–PSO Rx2輻射場型圖(NLOS Case)	100
圖8.7(c) UCAA–APSO Rx2輻射場型圖(NLOS Case)	100
圖8.7(d) UCAA–DDE Rx2輻射場型圖(NLOS Case)	101
圖8.8 六種天線在Rx1中位元錯誤率比較圖(LOS Case)	102
圖8.9 六種天線在Rx2中位元錯誤率比較圖(NLOS Case)	103
圖8.10 在LOS(Rx1)情況下比較四種演算法其代數對目標函數在搜尋過程變化趨勢圖	106
圖8.11 在NLOS(Rx2)情況下比較四種演算法其代數對目標函數在搜尋過程變化趨勢圖	107
圖8.12(a) 環型天線陣列的空間幾何排列	113
圖8.12(b) L型天線陣列的空間幾何排列	113
圖8.12(c) Y型天線陣列的空間幾何排列	113
圖8.13(a) 環型天線陣列X–Y平面的輻射場型	114
圖8.13(b) L型天線陣列X–Y平面的輻射場型	114
圖8.13(c) Y型天線陣列X–Y平面的輻射場型	115
圖8.14(a) 環型天線陣列–PSO Rx1輻射場型圖(LOS Case)	115
圖8.14(b) L型天線陣列–PSO Rx1輻射場型圖(LOS Case)	116
圖8.14(c) Y型天線陣列–PSO Rx1輻射場型圖(LOS Case)	116
圖8.15(a) 環型天線陣列–PSO Rx2輻射場型圖(NLOS Case)	118
圖8.15(b) L型天線陣列–PSO Rx2輻射場型圖(NLOS Case)	118
圖8.15(c) Y型天線陣列–PSO Rx2輻射場型圖(NLOS Case)	119
圖8.16 環型、L型和Y型天線在Rx1中位元錯誤率比較圖(LOS Case)	120
圖8.17 環型、L型和Y型天線在Rx2中位元錯誤率比較圖(NLOS Case)	121
圖9.1 UWB環型天線陣列示意圖	132
圖9.2 模擬環境平面圖	134
圖9.3(a) 環型天線陣列的空間幾何排列	138
圖9.3(b) 環型天線陣列X–Y平面的輻射場型	139
圖9.4(a) MIMO–GA Rx1輻射場型圖(LOS Case)	139
圖9.4(b) MIMO–PSO Rx1輻射場型圖(LOS Case)	140
圖9.4(c) MIMO–APSO Rx1輻射場型圖(LOS Case)	140
圖9.4(d) MIMO–DDE Rx1輻射場型圖(LOS Case)	141
圖9.5(a) MIMO–GA Rx2輻射場型圖(NLOS Case)	141
圖9.5(b) MIMO–PSO Rx2輻射場型圖(NLOS Case)	142
圖9.5(c) MIMO–APSO Rx2輻射場型圖(NLOS Case)	142
圖9.5(d) MIMO–DDE Rx2輻射場型圖(NLOS Case)	143
圖9.6 六種天線在Rx1中通道容量比較圖(LOS Case)	144
圖9.7 六種天線在Rx2中通道容量比較圖(NLOS Case)	145
圖9.8 在LOS(Rx1)情況下比較四種演算法其代數對目標函數在搜尋過程變化趨勢圖	148
圖9.9 在NLOS(Rx2)情況下比較四種演算法其代數對目標函數在搜尋過程變化趨勢圖	149
圖9.10(a) 環型天線陣列的空間幾何排列	155
圖9.10(b) L型天線陣列的空間幾何排列	155
圖9.10(c) Y型天線陣列的空間幾何排列	155
圖9.11(a) 環型天線陣列X–Y平面的輻射場型	156
圖9.11(b) L型天線陣列X–Y平面的輻射場型	156
圖9.11(c) Y型天線陣列X–Y平面的輻射場型	157
圖9.12(a) 環型天線陣列–GA Rx1輻射場型圖(LOS Case)	157
圖9.12(b) L型天線陣列–GA Rx1輻射場型圖(LOS Case)	158
圖9.12(c) Y型天線陣列–GA Rx1輻射場型圖(LOS Case)	158
圖9.13(a) 環型天線陣列–GA Rx2輻射場型圖(NLOS Case)	159
圖9.13(b) L型天線陣列–GA Rx2輻射場型圖(NLOS Case)	159
圖9.13(c) Y型天線陣列–GA Rx2輻射場型圖(NLOS Case)	160
圖9.14 環型、L型和Y型天線在Rx1中通道容量比較圖(LOS Case)	160
圖9.15 環型、L型和Y型天線在Rx2中通道容量比較圖(NLOS Case)	162

 
表目錄
表3.1 對應不同系統中空間自由度的數目	28
表5.1 GA相關名詞解釋與中英對照表	36
表6.1 在UWB通訊下其失效點個數一覽表	57
表6.2 在UWB通訊下四種演算法的通道參數一覽表( 和 )	58
表7.1 在UWB通訊下其失效點個數一覽表	76
表7.2 在UWB通訊下四種演算法的通道參數一覽表( 和 )	76
表8.1 在OUA、UCAA和UCAA–GA/ UCAA–PSO/ UCAA–APSO/ UCAA–DDE於LOS/NLOS中的通道特性參數表(ns)	105
表8.2 在LOS(Rx1)情況下最佳目標函數的激發電壓值與信號饋入線長度	108
表8.3 在NLOS(Rx2)情況下最佳目標函數的激發電壓值與信號饋入線長度	109
表8.4 在不同天線陣列下其LOS/NLOS中的通道特性參數表(ns)	123
表8.5 在LOS(Rx1)情況下PSO演算法其最佳目標函數的激發電壓值與信號饋入線長度	126
表8.6 在NLOS(Rx2)情況下PSO演算法其最佳目標函數的激發電壓值與信號饋入線長度	126
表9.1 在SISO、MIMO和MIMO–GA/ MIMO–PSO/ MIMO–APSO/ MIMO–DDE於LOS/NLOS中的通道特性參數表(ns)	146
表9.2 在LOS(Rx1)情況下最佳目標函數的激發電壓值與信號饋入線長度	150
表9.3 在NLOS(Rx2)情況下最佳目標函數的激發電壓值與信號饋入線長度	150
表9.4 在環型–GA、L型陣列–GA和Y型陣列–GA於LOS/NLOS中的通道特性參數表(ns)	163
表9.5 在LOS(Rx1)情況下GA演算法其最佳目標函數的激發電壓值與信號饋入線長度	166
表9.6 在NLOS(Rx2)情況下GA演算法其最佳目標函數的激發電壓值與信號饋入線長度	167
參考文獻
[1]. Federal Communications Commission, “Revision of Part 15 of the Commission`s Rules Regarding Ultra–Wideband Transmission System, First Peport and Order,” ET Docket 98–153, FCC 02–48, Feb. 14, 2002, pp. 1–118.
[2]. T. S. Rappaport, Wireless Communications, New Jersey:Prentice Hall PTR, 2002.
[3]. I. Oppermann, M. Hamalainen and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, 2004.
[4]. H. Jeffrey and Reed, An Introduction to Ultra Wideband Communication Systems, Prentice Hall PTR, 2005. 
[5]. 吳匡時, “MB–UWB技術規範,” 新通訊元件雜誌, 76期, 6月, 2007年.
[6]. G. D. Durgin, Space–Time Wireless Channels. New Jersey:Prentice Hall PTR, 2003.
[7]. D. Tse and P. Viswanath, “Fundamentals of Wireless Communication, United Kingdom,” Cambridge University Press, 2005.
[8]. B. S. Paul and R. Bhattacharjee, ‘MIMO Channel Modeling:A Review,” IETE Technical, vol. 25, issue 6, Nov–Dec. 2008.
[9]. C. Oestges and B. Clerckx, “MIMO Wireless Cimmunications,” Elsevier Ltd., Mar. 2007.
[10]. H. Ling, R. Chou and S. Lee, “Shooting and Bouncing Rays:Calculating the RCS of an Arbitrarily Shaped Cavity,” IEEE Trans. Antennas Propagate, vol. 37, Feb. 1989, pp. 194–205.
[11]. G. Liang and H. L. Bertoni, “A New Approach to 3–D Ray Tracing for Propagation Prediction in cities,” IEEE Trans. Antennas Propagate, vol. 46, June 1998, pp. 853–863.
[12]. S. Y. Seidel and T. S. Rappaport, “Site–Specific Propagation Prediction for Wireless in–Building Personal Communication System Design,” IEEE Trans. on Vehicular Technol., vol. 43, Nov. 1994, pp. 879–891.
[13]. M. F. Iskander and Z. Yun, “Propagation Prediction Models for Wireless Communication Systems,” IEEE Trans. on Microwave Theory and Techniques., vol. 50, issue 3, Mar. 2002, pp. 662–673.
[14]. Z. Genc, W. V. Thillo, A. Bourdoux and E. Onur, “60 GHz PHY Performance Evaluation with 3D Ray Tracing under Human Shadowing,” Wireless Communications Letters, IEEE Journals & Magazines, vol. 1, issue 2, 2012. pp. 117–120.
[15]. D. E. Goldberg, Genetic Algorithm in Search Optimization and Machine Learning, Addison Wesley, 1989.
[16]. J. M. Johnson and Y. R. Samii, “Genetic Algorithms in Engineering Electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 39, issue4, Aug. 1997, pp.7–21. 
[17]. R. Storn and K. Price, “Differential Evolution–A Simple and Efficient Heuristic for Global Optimization over Continuous Space,” Journal of Global Optimization, vol. 11, 1997, pp. 341–359.
[18]. A. Qing, “Dynamic Differential Evolution Strategy and Applications in Electromagnetic Inverse Scattering Problems,” IEEE Trans. on Geoscience and Remote Sensing, vol 44, issue 1, Jan. 2006, pp.116–125.
[19]. J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” Proceedings of IEEE Int. Conf. on Neural Networks, vol. IV, 1995, pp. 1942–1948.
[20]. R. C. Eberhart and J. Kennedy, “A New Optimizer using Particle Swarm Theory,” Proceedings of the Sixth Int. Symposium on Micro Machine and Human Science, 1995, pp. 39–43.
[21]. M. Clerc and J. Kennedy, “The Particle Swarm–Explosion, Stability and Convergence in a Multidimensional Complex Space,” IEEE Trans. on Evolutionary Computation, vol. 6, issue 1, 2002, pp. 58–73.
[22]. A. Carlisle and G. Dozier, “An Off–the–Shelf PSO,” Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, Apr. 2001.
[23]. G. Yang, K. Pahlavan and T. J. Holt, "Sector Antenna and DFE Modems for High Speed Indoor Radio Communication," IEEE Trans. Veh. Technol., vol. 43, 1994, pp. 925–933.
[24]. M. R. Williamson, G. E. Athansasiadon and A. R. Nix, "Investigating the Effects of Antenna Directivity on Wireless Indoor Communication at 60 GHz," PIMRC '97, The 8th IEEE Int. Symposium vol. 2, 1997, pp. 635–639.
[25]. W. P. Siriwongpairat, M. Olfat and K. J. R. Liu, “Performance Analysis and Comparison of Time Hopping and Direct Sequence UWB–MIMO systems,” in EURASIP J. Appl. Signal Process. Special issue on UWB State of the Art., vol. 2005, Mar. 2005, pp. 328–345.
[26]. W. P. Siriwongpairat, S. Weifeng, M. Olfat and K. J. R. Liu, “Multiband–OFDM MIMO Coding Framework for UWB Communication Systems,” IEEE Trans. on Sisnal Processing, vol. 54, issue 1, 2006, pp. 214–224..
[27]. W. P. Siriwongpairat, S. Weifeng and K. J. R. Liu, “Performance Characterization of Multiband UWB Communication Systems using Poisson Cluster Arriving Fading Paths,” IEEE Journal On Selected Areas in Communications., vol. 24, issue 4, 2006, pp. 745–751.
[28]. W. P. Siriwongpairat, W. Su, M. Olfat and K. J. R. Liu, “Space–Time–Frequency Coded Multiband UWB Communication Systems,” in Proc. IEEE Wireless Communication Network, Conf.(WCNC), vol. 1, Mar. 2005, pp. 426–431.
[29]. E. Baccarelli, M. Biagi, C. Pelizzoni and P. Bellotti, “A Novel Multi–Antenna Impulse Radio UWB Transceiver for Broadband High–Throughput 4G WLANs,” IEEE Communications Letters, vol. 8, issue 7, 2004, pp. 419–421.
[30]. C. Xiantao and Z. Weile, “A Subspace Detection Method of Analog Space–Time Codes for Multi–antenna Ultra–Wideband Transmissions,” IEEE Communications Letters, vol. 9, issue 6, 2005, pp. 493–495.
[31]. L. Huaping, R. C. Qiu, and T. Zhi, “Error Performance of Pulse–Based Ultra–Wideband MIMO Systems over Indoor Wireless Channels,” IEEE Trans. on Wireless Communications, vol. 4, issue 6, 2005.
[32]. M. Weisenhorn and W. Hirt, “Performance of Binary Antipodal Signaling over the Indoor UWB MIMO Channel,” in Proc. IEEE Int. Conf. Communications(ICC), Anchorage, AK, vol. 4, 2003, pp. 2872–2878.
[33]. C. Abou–Rjeily, N. Daniele and B. Jean–Claude, “Space–Time Coding for Multiuser Ultra–Wideband Communications,” IEEE Trans. on Communications, vol. 54, issue 11, 2006.
[34]. J. Keignart, C. Abou–Rjeily, C. Delaveaud and N. Daniele, “UWB SIMO Channel Measurements and Simulations,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, issue 4, Part II, issue 4, 2006 pp. 1812–1819.
[35]. M. Z. Win, R. A. Scholtz and M. A. Barnes, “Ultra–Wide Bandwidth Signal Propagation for Indoor Wireless Communications,” IEEE Int. Conf. on Towards the Knowledge Millennium, vol. 1, June 1997, pp. 56–60.
[36]. V. Hovinen and M. Hamalainen,T. Patsi, “Ultra Wideband Indoor Radio Channel Models:Preliminary Results,” IEEE Conf. on Ultra Wideband Systems and Technologies, May 2002, pp. 75–79.
[37]. D. Cassioli, M. Z. Win and A. F. Molisch, “The Ultra–Wide Bandwidth Indoor Channel:from Statistical Model to Simulations,” IEEE Journal on Selected Areas in Communications, vol. 20, issue 6, Aug. 2002, pp.1247–1257.
[38]. J. Karedal, S. Wyne, P. Almers, F. Tufvesson and A.F. Molisch, “Statistical Analysis of the UWB Channel in an Industrial Environment,” IEEE Conf. on Vehicular Technology, vol. 1, Sep. 2004, pp. 81–85.
[39]. A. H. Wong, M. J. Neve and K.W. Sowerby, “Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems,” IET Communications, vol. 1, issue 4, Aug. 2007, pp. 732–738.
[40]. D. C. K. Lee, M. J. Neve and K. W. Sowerby, “The Impact of Structural Shielding on the Performance of Wireless Systems in a Single–Floor Office Building,” IEEE Trans. on Wireless Communications, vol. 6, issue 5, May 2007, pp. 1787–1795.
[41]. C. Cho, H. Zhang and M. Nakagawa, “A Short Delay Relay Scheme using Shared Frequency Repeater for UWB Impulse Radio,” IEICE trans. Fundamentals, vol. E90–A, issue7 July 2007, pp. 1444–1451.
[42]. M. A. Mangoud, “Optimization of Channel Capacity for Indoor MIMO Systems using Genetic Algorithm,” Progress In Electromagnetics Research C, vol. 7, 2009, pp. 137–150.
[43]. U. Olgun, C. A. Tunc, D. Aktas, V. B. Erturk and A. Altintas, “Optimization of Linearwire Antenna Arrays to Increase MIMO Capacity using Swarm Intelligence,” Antennas and Propagation, EuCAP, The Second European Conf., 2007, pp. 1–6.
[44]. K. J. Lee, J. S. Kim, G. Caire and I. Lee, “A Asymptotic Ergodic Capacity Analysis for MIMO Amplify–and–Forward Relay Networks,” IEEE Trans. on Wireless Communications., vol. 9, issue 9, 2010, pp. 2712–2717.
[45]. Z. Y. Zolfa, N. K. Masoumeh and A. Behnaam, “Bit Error Probability Analysis of UWB Communication with a Relay Node,” IEEE Trans. on Wireless Communications., vol. 9, issue 2, 2010, pp. 802–813.
[46]. O. Amin, B. Gedik and M. Uysal, “Channel Estimation for Amplify–and–Forward Relaying:Cascaded Against Disintegrated Estimators,” IET Communications, vol. 4, issue 10, 2010, pp. 1207–1216.
[47]. S. Muhaidat, J. K. Cavers and P. Ho, “Transparent Amplify–and–Forward Relaying in MIMO Relay Channels,” IEEE Trans. on Wireless Communications, vol. 9, issue 10, 2010, pp. 3144–3154.
[48]. J. Aelterman, R. Goossens, F. Declercq and H. Rogier, “Ant Colony Optimisation–Based Radiation Pattern Manipulation Algorithm for Electronically Steerable Array Radiator Antennas,” Science, Measurement & Technology, IET vol. 3,  issue 4, July 2009,  pp. 302–311.
[49]. J. Puskely and Z. Novacek, “New Look to Real Valued Genetic Algorithm used to reconstruct Radiation Patterns,” Radioelektronika, 2009. 19th Int. Conf. 22–23, Apr. 2009, pp. 299–302.
[50]. P. Demarcke, H. Rogier, R. Goossens and P. D. Jaeger, “Beamforming in the Presence of Mutual Coupling Based on Constrained Particle Swarm Optimization,” Antennas and Propagation, IEEE Trans. on vol. 57, issue 6, June 2009, pp. 1655–1666.
[51]. J. L. Guo and J. Y. Li, “Pattern Synthesis of Conformal Array Antenna in the Presence of Platform using Differential Evolution Algorithm,” Antennas and Propagation, IEEE Trans. on vol. 57, issue 9, Sept. 2009, pp. 2615–2621.
[52]. Y. C. Jiao, W. Y. Wei, L. W. Huang and H. S. Wu, ”A New Low–Side–Lobe Pattern Synthesis Technique for Conformal Arrays,” IEEE Trans. Antenna Propag., vol. 41, June 1993, pp. 824–831
[53]. C. H. Chen, S. H. Liao, M. H. Ho, C. C. Chiu and K. C. Chen “A Novel Indoor UWB Antenna Array Design by GA.” in Proc. of The 2009 Int. Conf. on Future Computer and Communication(ICFCC 2009), Kuala Lumpur, Malaysia, Apr. 2009, pp. 291–295.
[54]. C. H. Chen, C. C. Chiu and C. L. Liu, “Novel Radiation Pattern by Genetic Algorithms, in Wireless Communication,” Vehicular Technology Conf., VTC Spring. IEEE VTS 53rd, vol. 1, May 2001, pp. 8–12.
[55]. B. Sklar, Digital Communications:Fundamentals and Applications 2/e, Prentice Hall PTR, 2004
[56]. T. Zhi and G. B. Giannakis, “BER Sensitivity to Mistiming in Ultra–Wideband Impulse Radios–Part I:Nonrandom Channels,” IEEE Trans. on Signal Processing, Apr. 2005, pp. 1550–1560.
[57]. K. Siwiak, P. Withington and S. Phelan, “Ultra–Wide Band Radio:the Emergence of an Important New Technology,” IEEE VTS 53rd .Vehicular Technology Conf., VTC Spring. vol. 2, May 2001, pp. 1169–1172.
[58]. K. Siwiak, “Ultra–Wide Band Radio:Introducing a New Technology,” IEEE VTS 53rd .Vehicular Technology Conf., Spring, vol. 2, May 2001, pp. 1088–1093.
[59]. E. Saberinia and A. H, Tewfik, “Single and Multi–Carrier UWB Communications,”IEEE Seventh Int. Symposium on Signal Processing and Its Applications. Proceedings, vol. 2, July 2003, pp. 343–346.
[60]. T. Zhi and G. B Giannakis, “BER Sensitivity to Mistiming in Ultra–Wideband Impulse Radios–Part I:Nonrandom Channels,” IEEE Trans. on Speech and Signal Processing, vol. 53, Apr. 2005, pp. 1550–1560.
[61]. T. Zhi and G. B. Giannakis, “BER Sensitivity to Mistiming in Ultra–Wideband Impulse Radios–Part II:Fading Channels,” IEEE Trans. on Speech and Signal Processing, vol. 53, May 2005, pp. 1897–1907.
[62]. C. C. Chiu; C. P. Wang, “Bit Error Rate Performance of High–Speed Tunnel Communication,” IEEE MTT–S Int. Microwave and Optoelectronics Conf., vol. 1, Aug. 1997, pp. 186–191.
[63]. D. Tse and P. Viswanath, Fundamentals of Wireless Communication. United Kingdom:Cambridge University Press, 2005.
[64]. J. B. Andersen, “Array Gain and Capacity for Known Random Channels with Multiple Element Arrays at Both Ends,” IEEE Journal selected Areas Communications, vol. 18, issue 11, Nov. 2000, pp. 2172–2178.
[65]. A. J. Paulraj, R. Nabar and D. Gore, Introduction to Space–Time Wireless Communication. U.K.:Cambridge Univ. Press, 2003. 
[66]. Y. Zhang, “Ultra–Wide Bandwidth Channel Analysis in Time Domain using 3–D Ray Tracing,” High Frequency Postgraduate Student Colloquium of IEEE, Sept. 2004, pp. 189–194.
[67]. E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Weband Matlab, Prentice–Hall, 2000.      
[68]. 黃存健, “智慧型天線系統自無線通訊系統之應用,” 中原大學電子系碩士論文, 1999.
[69]. 吳志修, “智慧型天線系統於遠近迴想傳播通道模型之效能評估,” 國立東華大學電機系碩士論文, 2002.
[70]. Y. Zhao, Y. Hao, A. Akram and P. Clive, “UWB on–Body Radio Channel Modeling using Ray Theory and Subband FDTD Method,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, 2006, pp. 1827–1835.
[71]. R. M. Buehrer, A. Safaai–Jazi, W. Davis and D. Sweeney, “Ultra–Wideband Propagation Measurements and Modeling Final Report,” DARPA NETEX Program Virginia Tech, Chapter 3, 2004, pp. 38–216.
[72]. A. Muqaibel, A. Safaai–Jazi, A. Bayram, A. M. Attiya and S. M. Riad, “Ultra–Wideband Through–the–Wall Propagation,” IEE Proceedings Microwaves, Antennas and Propagation, 2005, pp. 581–588.
[73]. A. S. Jazi, S. M. Riad, A. Muqaibel and A. Bayram, “Through–the–Wall Propagation and Material Characterization,” DARPA NETEX Program Report, Nov. 2002.
[74]. M. Hamalainen and J. Iinatti, “Analysis of Interference on DS–UWB System in AWGN Channel,” IEEE Int. Conf. on Ultra–Wideband, 2005, pp. 719–723.
[75]. C. A. Balanis, Antenna Theory Analysis and Design, John Wiley & Sons, 2005. 
[76]. E. Gueguen, F. Thudor and P. Chambelin, “A Low Cost UWB Printed Dipole Antenna with High Performance,” Ultra–Wideband, ICU, IEEE Int. Conf., Sept. 2005, pp.89–92.
[77]. F. T. Talom, B. Uguen, L. Rudant, J. Keignart, J. F. Pintos and P. Chambelin, “Evaluation and Characterization of an UWB Antenna in Time and Frequency Domains,” Ultra–Wideband, The IEEE Int. Conf., Sept. 2006, pp.669–673.
[78]. R. Nabar, H. Bolcskei, V. Erceg, D. Gesbert and A. Paulraj, “Performance of Multi–Antenna Signaling Strategies in the Presence of Polarization Diversity”, IEEE Trans. on Signal Processing, vol.50, issue 10, Oct. 2002, pp. 2553–2562.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信