淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2108201910483800
中文論文名稱 水熱法/溶劑熱法合成二硒化鎢應用於電容去離子技術
英文論文名稱 Hydrothermal/Solvothermal Synthesis of Tungsten Diselenide (WSe2) For Capacitive Deionization
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 107
學期 2
出版年 108
研究生中文姓名 董明叡
研究生英文姓名 Ming-Ruel Dong
學號 607480125
學位類別 碩士
語文別 中文
口試日期 2019-07-23
論文頁數 99頁
口試委員 指導教授-彭晴玉
共同指導教授-許世杰
委員-林正嵐
委員-秦靜如
中文關鍵字 水熱法  溶劑熱法  過渡金屬硫化物  二硒化鎢  電容去離子 
英文關鍵字 Capacitive Deionization  Transition Metal Dichalcogenides  Tungsten Diselenide (WSe2)  Hydrothermal  Solvothermal 
學科別分類 學科別應用科學環境工程
中文摘要 過渡金屬硫化物(Transition metal dichalcogenides, TMD)擁有非凡的電化學、光學和電催化性能,近年受到科學界矚目。作為TMD的關鍵成員之一,二硒化鎢(Tungsten Diselenide, WSe2) 具有1.2 eV的間接帶隙並且在單層中具有1.7 eV的直接帶隙、超低導熱率(0.05 W m-1 k-1)、邊緣位置提供更多活性位點等優勢;本研究之目的即以水熱法或溶劑熱法合成高質量少層數的WSe2,並應用WSe2於電容去離子系統。
電容去離子(Capacitive Deionization, CDI)是深具潛力的低能耗脫鹽技術,透過在兩個電極之間施加電壓從鹽水中去除離子。本研究以二硒化鎢以作為CDI的電極材料。WSe2表現出良好的循環穩定性,50 mg/L NaCl溶液,施加1.2 V電壓,鈉離子電吸附容量為1.8 mg Na+/g WSe2 (水熱合成法)與2.9 mg Na+/g WSe2 (溶劑熱合成法)。
本研究的另一個目的是製備WSe2/rGO複合材料,石墨烯可以提高WSe2的比電容值(116.6 F/g)。於50 mg / L NaCl溶液中,施加1.2 V,WSe2/rGO具有更高的鈉離子電吸附容量(3.1 mg Na+/g WSe2/rGO)。
英文摘要 Layered transition metal dichalcogenides (TMDs) have attracted much attention from the scientific community due to their extraordinary electrical, optical and electrocatalytic properties. As a key member of TMDs, WSe2 has indirect bandgap of 1.2 eV in bulk and direct one of 1.7 eV in monolayer, ultralow thermal conductivities (0.05W m-1 k-1), more exposed edges providing active sites. Therefore, the objective of this study is to synthesize high quality and few-layered WSe2 nanosheets by hydrothermal or solvothermal method and then apply it to the capacitive deionization system.
Capacitive deionization (CDI) is a promising technology for removal of ions from saline water upon applying a voltage between two electrodes. In this study, Tungsten Diselenide (WSe2) has been employed as electrode material for CDI. Tungsten Diselenide (WSe2) demonstrates a good cycling stability, high sodium electrosorption capacity of 1.8 mg Na+/g WSe2 (hydrothermal synthesized) and 2.9 mg Na+/g WSe2 (solvothermal synthesized) at 1.2 V applied voltage in 50 mg/L NaCl solution.
Another purpose of this study is to prepare WSe2/rGO composites, which can improve specific capacitance to 116.6 F/g by adding graphene. Higher sodium electrosorption capacity of 3.1 mg Na+/g WSe2/rGO was found with WSe2/rGO composites at 1.2 V applied voltage in 50 mg/L NaCl solution.
論文目次 第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 二硒化鎢 4
2.1.1 過渡金屬二硫族化物簡介 4
2.1.2 二硒化鎢簡介 8
2.1.3 二硒化鎢合成 10
2.2 電容去離子技術之原理與應用發展 15
2.2.1 傳統常見淡化技術 16
2.2.2 電容去離子技術之原理 17
2.2.3 電容去離子技術電極材料 19
2.2.4 電容去離子技術之應用發展 25
第三章 研究材料及方法 28
3.1 實驗架構 28
3.2 實驗藥品與設備 30
3.2.1 實驗藥品 30
3.2.2 實驗儀器設備 32
3.3 材料之合成 33
3.3.1 水熱法合成二硒化鎢 33
3.3.2 溶劑熱法合成二硒化鎢 35
3.3.3 溶劑熱法合成二硒化鎢/還原氧化石墨烯複合材料 37
3.4 電極之製備 39
3.5 實驗分析方法 41
3.5.1 X光繞射分析儀(XRD) 41
3.5.2 拉曼光譜(Raman spectroscopy) 41
3.5.3 掃描式電子顯微鏡(SEM) 41
3.5.4 穿透式電子顯微鏡(TEM) 42
3.5.5 恆電位儀(Potentiostat) 42
3.5.6 感應耦合電漿原子發射光譜儀(ICP-OES) 46
3.6 電容去離子技術系統 47
第四章 結果與討論 49
4.1 水熱法合成二硒化鎢 49
4.1.1 水熱合成二硒化鎢之表面型態與特性分析 49
4.1.2 水熱合成二硒化鎢之電化學特性分析 55
4.1.3 水熱合成二硒化鎢應用於電容去離子技術 60
4.2 溶劑熱法合成二硒化鎢 62
4.2.1 二硒化鎢之表面型態與特性分析 62
4.2.2 二硒化鎢之電化學特性分析 67
4.2.3 二硒化鎢應用於電容去離子技術 71
4.3 二硒化鎢/石墨烯複合材料 74
4.3.1 二硒化鎢/石墨烯之表面型態與特性分析 74
4.3.2 二硒化鎢/石墨烯之電化學特性分析 80
4.3.3 二硒化鎢/石墨烯應用於電容去離子技術 84
4.4 二硒化鎢電極材料應用於CDI系統之電吸附能力綜述 87
第五章 結論與建議 89
Reference 92


List of Figure
Figure 1.2.1 WSe2 for capacitive deionization (CDI) in saline water. 3
Figure 2.1.1.1 Sketch of the layered structure of transition metal dichalcogenides 6
Figure 2.1.1.2 Crystal structures of TMDs with a typical formula of MX2. (a) Three-dimensional model of the MoS2crystal structure. (b) Unit cell structures of 2H-MX2 and 1T-MX2 (Lv et al., 2015). 6
Figure 2.1.2.1 Schematic of WSe2 structure (a) side view and (b) top view (Chakravarty et al., 2015). 8
Figure 2.1.2.2 (a, b) SEM images and (c, d) TEM images of graphene-like WSe2.(X.Wang et al., 2017) 9
Figure 2.1.3.1 (a) Schematic illustration for the growth of WSe2 layers on sapphire substrates by the reaction of WO3 and Se powders in a CVD furnace. A photo of the setup is also shown. (b,c) Optical microscopy images of the WSe2 monolayer flakes and monolayer film grown at 850 and 750°C, respectively. Scale bar is 10 μm in length. The inset in (c) shows the photograph of a uniform monolayer film grown on a double side polished sapphire substrate. (d) AFM image of a WSe2 monolayer flake grown at 850°C on a sapphire substrate (Huang et al., 2014). 11
Figure 2.1.3.2 The Schematic illustrations of (a) the synthesis process and (b) the formation mechanism of graphene-like WSe2 (X.Wang et al., 2017). 13
Figure 2.2.2.1 (A) capacitive deionization (CDI) and (B) membrane capacitive deionization (MCDI) during the electroadsorption process (Porada et al., 2013). 18
Figure 2.2.3.1 SEM images of activated carbon cloth (a) Pore structures of non-treated carbon fiber (b) chemically modified carbon fiber in KOH (c)HNO3 (d) solutions (Oh et al., 2006). 19
Figure 2.2.3.2 Synthetic scheme showing the versatility associated with carbon aerogel synthesis (Biener et al., 2011). 21
Figure 2.2.3.3 Structural models of a SWCNT (left) and a MWCNT (right) 21
Figure 2.2.3.4 Formation of reduced graphene oxide (rGO) from graphene oxide (GO) using strong oxidizing agents (Szunerits &Boukherroub, 2014). 24
Figure 2.2.3.5 Schematic illustration for the preparation of WSe2/RGO hybrid (X.Wang et al., 2018). 24
Figure 2.2.3.6 Proposed photocatalytic mechanism of the WSe2/RGO 24
Figure 2.2.4.1 Effect of applied voltage on the removal capacities of activated carbon electrodes for (up) As(V) and (down) As(III) solutions with an initial concentration of 0.2 mg/L (Fan et al., 2016). 27
Figure 3.1.1.1 Experimental structure for CDI system. 29
Figure 3.3.1.1 Hydrothermal synthesis WSe2 preparation procedure. 34
Figure 3.3.2.1 Solvothermal synthesis WSe2 preparation procedure. 36
Figure 3.3.3.1 Solvothermal synthesis WSe2/ rGO preparation procedure . 38
Figure 3.3.3.1 Carbon electrodes prepared with a modified evaporation casting method.(YongLiu et al., 2016) 40
Figure 3.5.5.1 Three electrode system. 45
Figure 3.6.1.1 Schematic diagram of the CDI system. 48
Figure 4.1.1.1 XRD patterns of hydrothermal synthesized WSe2. 51
Figure 4.1.1.2 Raman spectra of hydrothermal synthesized WSe2. 52
Figure 4.1.1.3 (a、b) SEM images of hydrothermal synthesized WSe2. (c) EDS of hydrothermal synthesized WSe2. 53
Figure 4.1.1.4 TEM images of hydrothermal synthesized WSe2. 54
Figure 4.1.2.1 Cyclic voltammograms (CV) of hydrothermal synthesized WSe2 at various scan rates. 57
Figure 4.1.2.2 Mass normalized specific capacitance of hydrothermal synthesized WSe2 with respect to the scan rates. 58
Figure 4.1.2.3 The electrochemical impedance spectra (EIS) measured at frequency range of 1 MHz to 1 Hz for hydrothermal synthesized WSe2. 59
Figure 4.1.3.1 Electrosorption/desorption of hydrothermal synthesized WSe2 electrodes applied to CDI system in 50 mg/L NaCl at 1.2 V. 61
Figure 4.2.1.1 XRD patterns of solvothermal synthesized WSe2. 63
Figure 4.2.1.2 Raman of solvothermal synthesized WSe2. 64
Figure 4.2.1.3 (a-f) SEM images of solvothermal synthesized WSe2 (g) EDS of solvothermal synthesized WSe2. 65
Figure 4.2.1.4 TEM images of solvothermal synthesized WSe2. 66
Figure 4.2.2.1 Cyclic voltammograms (CV) of solvothermal synthesized WSe2 at various scan rates. 68
Figure 4.2.2.2 Specific capacitance of solvothermal synthesized WSe2. 69
Figure 4.2.2.3 The electrochemical impedance spectra (EIS) measured at frequency range of 1 MHz to 1 Hz for solvothermal synthesized WSe2. 70
Figure 4.2.3.1 Electrosorption/desorption of solvothermal synthesized WSe2 electrodes applied to CDI system in 50 mg/L NaCl at 1.2 V. 72
Figure 4.2.3.2 Electrosorption/desorption of solvothermal synthesized WSe2 electrodes applied to CDI system in 400 mg/L NaCl at 1.2 V. 73
Figure 4.3.1.1 XRD patterns of WSe2/rGO. 76
Figure 4.3.1.2 Raman spectra of WSe2/rGO . 77
Figure 4.3.1.3 (a-d) SEM images of WSe2/rGO (e) EDS of WSe2/rGO. 78
Figure 4.3.1.4 TEM images of WSe2/rGO. 79
Figure 4.3.2.1 Cyclic voltammograms (CV) of WSe2/rGO at various scan rates. 81
Figure 4.3.2.2 Specific capacitance of WSe2/rGO. 82
Figure 4.3.2.3 The electrochemical impedance spectra (EIS) measured at frequency range of 1 MHz to 1 Hz for WSe2/rGO. 83
Figure 4.3.3.1 Electrosorption/desorption of rGO electrodes applied to CDI system in 50 mg/L NaCl at 1.2 V. 85
Figure 4.3.3.2 Electrosorption/desorption of WSe2/rGO electrodes applied to CDI system in 50 mg/L NaCl at 1.2 V. 86


List of Table
Table 2.1.1.1 Summary of electroadsorption capacity of CDI electrode materials 7
Table 2.1.3.1 Details on the precursors used in each synthesis of metal chalcogenides (Lin et al., 2019). 14
Table 3.2.1.1 Manufactures and purity of experimental medicines. 30
Table 3.2.1.2 Manufactures and purity of experimental medicines. 30
Table 3.2.1.3 Manufactures and purity of experimental medicines. 31
Table 3.2.2.1 Manufacturers and model of equipment. 32
Table 4.1.2.1 Mass normalized specific capacitance of hydrothermal synthesized WSe2 with respect to the scan rates. 58
Table 4.1.2.2 Parameters of equivalent circuits of hydrothermal synthesized WSe2. 59
Table 4.1.3.1 Na+ removal efficiency (%) and electrosorption capacity of hydrothermal synthesized WSe2 applied to CDI system. 61
Table 4.2.2.1 Specific capacitance of solvothermal synthesized WSe2. 69
Table 4.2.2.2 Parameters of equivalent circuits of solvothermal synthesized WSe2. 70
Table 4.2.3.1 Na+ removal efficiency (%) and electrosorption capacity of solvothermal synthesized WSe2 applied to CDI system in 50 mg/L NaCl at 1.2 V. 72
Table 4.2.3.2 Na+ removal efficiency (%) and electrosorption capacity of solvothermal synthesized WSe2 applied to CDI system in 400 mg/L NaCl at 1.2 V. 73
Table 4.3.2.1 Specific capacitance of WSe2/rGO. 82
Table 4.3.2.2 Parameters of equivalent circuits of WSe2/rGO. 83
Table 4.3.3.1 Na+ removal efficiency (%) and electrosorption capacity of rGO applied to CDI system in 50 mg/L NaCl at 1.2 V. 85
Table 4.3.3.2 Na+ removal efficiency (%) and electrosorption capacity of WSe2/rGO applied to CDI system in 50 mg/L NaCl at 1.2 V. 86
Table 4.4.1.1 Summary of electrosorption capacity and specific capacitance of various electrode materials applied in CDI systems. 88
Table 5.1 Sodium removal efficiency and electrosorption capacity of WSe2 or WSe2/rGO . 91

參考文獻 AlMarzooqi, F. A., AlGhaferi, A. A., Saadat, I., &Hilal, N. (2014). Application of Capacitive Deionisation in water desalination: A review. Desalination, 342, 3–15.
Anderson, M. A., Cudero, A. L., &Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856.
Biener, J., Stadermann, M., Suss, M., Worsley, M. A., Biener, M. M., Rose, K. A., &Baumann, T. F. (2011). Advanced carbon aerogels for energy applications. Energy and Environmental Science, 4(3), 656–667.
Budd, W. W., &Young, G. L. (2006). Environmental science. Environmental Geology, 224–224.
Chakravarty, D., &Late, D. J. (2015). Microwave and hydrothermal syntheses of WSe2 micro/nanorods and their application in supercapacitors. RSC Advances, 5(28), 21700–21709.
Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., &Sberveglieri, G. (2009). Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Progress in Materials Science, 54(1), 1–67.
Fan, C.-S., Tseng, S.-C., Li, K.-C., &Hou, C.-H. (2016). Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 312, 208–215.
Fang, H., Chuang, S., Chang, T. C., Takei, K., Takahashi, T., &Javey, A. (2012). High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Letters, 12(7), 3788–3792.
Fe-based, C.-. (2014). Materials Chemistry A. Journal of Materials Chemistry A, 2(9), 3065–3071.
Gomez, I. J., Arnaiz, B., Cacioppo, M., Arcudi, F., &Prato, M. (2018). Nitrogen-doped Carbon Nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry B, 6(35).
Gopi, C. V. V. M., Reddy, A. E., Bak, J. S., Cho, I. H., &Kim, H. J. (2018). One-pot hydrothermal synthesis of tungsten diselenide/reduced graphene oxide composite as advanced electrode materials for supercapacitors. Materials Letters, 223, 57–60.
Gupta, S.Sen, Islam, M. R., &Pradeep, T. (2019). Capacitive Deionization (CDI): An Alternative Cost-Efficient Desalination Technique. Advances in Water Purification Techniques, 165–202.
Hanaei, H., Assadi, M. K., &Saidur, R. (2016). Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review. Renewable and Sustainable Energy Reviews, 59, 620–635.
Haro, M., Rasines, G., Macias, C., &Ania, C. O. (2011). Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon, 49(12), 3723–3730.
Huang, J. K., Pu, J., Hsu, C. L., Chiu, M. H., Juang, Z. Y., Chang, Y. H., …Li, L. J. (2014). Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 8(1), 923–930.
Hummers, W. S., &Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339.
Jiménez Sandoval, S., Yang, D., Frindt, R. F., &Irwin, J. C. (1991). Raman study and lattice dynamics of single molecular layers of MoS2. Physical Review B, 44(8), 3955–3962.
Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., &Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350–1375.
Kumar, R., SenGupta, S., Katiyar, S., Raman, V. K., Varigala, S. K., Pradeep, T., &Sharma, A. (2016). Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization. Carbon, 99, 375–383.
Lee, J., Shin, J.-H., Lee, G.-H., &Lee, C.-H. (2016). Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures. Nanomaterials, 6(11), 193.
Li, Q., &Thangadurai, V. (2010). A comparative 2 and 4-probe DC and 2-probe AC electrical conductivity of novel co-doped Ce0.9-xRExMo0.1O 2.1-0.5x (RE = Y, Sm, Gd; X = 0.2, 0.3). Journal of Materials Chemistry, 20(37), 7970–7983.
Lin, H., He, S., Liu, D., Zou, J., Li, L., Ma, Y., &Li, Q. (2019). One-pot synthesis and shape control of metal selenides, sulfides and oxides with oxalic acid as the reducing reagent. Applied Nanoscience, 0(0), 0.
Liu, P., Yan, T., Shi, L., Park, H. S., Chen, X., Zhao, Z., &Zhang, D. (2017). Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 5(27), 13907–13943.
Liu, Yong, Ma, J., Lu, T., &Pan, L. (2016). Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization. Scientific Reports, 6(August), 1–9.
Liu, Yong, Xu, X., Lu, T., Sun, Z., Chua, D. H. C., &Pan, L. (2015). Nitrogen-doped electrospun reduced graphene oxide-carbon nanofiber composite for capacitive deionization. RSC Advances, 5(43), 34117–34124.
Liu, Yu, Wang, W., Huang, H., Gu, L., Wang, Y., &Peng, X. (2014). The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chemical Communications, 50(34), 4485–4488.
Lu, G., Wang, G., Wang, P.-H., Yang, Z., Yan, H., Ni, W., …Yan, Y.-M. (2016). Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method. Desalination, 386, 32–38.
Lv, R., Robinson, J. A., Schaak, R. E., Sun, D., Sun, Y., Mallouk, T. E., &Terrones, M. (2015). Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Accounts of Chemical Research, 48(1), 56–64.
Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A., &Haddon, R. C. (2006). Solution properties of graphite and graphene. Journal of the American Chemical Society, 128(24), 7720–7721.
Oh, H.-J., Lee, J.-H., Ahn, H.-J., Jeong, Y., Kim, Y.-J., &Chi, C.-S. (2006). Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films, 515(1), 220–225.
Oladunni, J., Zain, J. H., Hai, A., Banat, F., Bharath, G., &Alhseinat, E. (2018). A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice. Separation and Purification Technology, 207, 291–320.
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment past, present and future (a review). Desalination, 228(1–3), 10–29.
Pan, H., Zhu, S., Lou, X., Mao, L., Lin, J., Tian, F., &Zhang, D. (2015). Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 5(9), 6543–6552.
Pendolino, F., &Armata, N. (n.d.). SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY Graphene Oxide in Environmental Remediation Process.
Porada, S., Zhao, R., van derWal, A., Presser, V., &Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442.
Py, M. A ., &Haering, R. R. (2011). Structural destabilization induced by lithium intercalation in MoS2 and related compounds . Canadian Journal of Physics, 61(1), 76–84.
Sakthivel, T., Gunasekaran, V., &Kim, S. J. (2014). Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Materials Science in Semiconductor Processing, 19(1), 174–178.
Sapsford, K. E., Algar, W. R., Berti, L., Gemmill, K. B., Casey, B. J., Oh, E., Medintz, I. L. (2013). Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 113(3), 1904–2074.
Seh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Nørskov, J. K., &Jaramillo, T. F. (2017). Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 355(6321).
Seo, S.-J., Jeon, H., Lee, J. K., Kim, G.-Y., Park, D., Nojima, H.,Moon, S.-H. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research, 44(7), 2267–2275.
Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., &Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47.
Szunerits, S., &Boukherroub, R. (2014). Electrochemistry of graphene: The current state of the art. In SPR Electrochemistry (Vol. 12).
Teow, Y. H., &Mohammad, A. W. (2019). New generation nanomaterials for water desalination: A review. Desalination, 451, 2–17.
Wan, J., An, B., Chen, Z., Zhang, J., &Yu, W. W. (2018). Nitrogen doped graphene oxide modified WSe2 nanorods for visible light photocatalysis. Journal of Alloys and Compounds, 750, 499–506.
Wang, H., Yuan, X., Wu, Y., Huang, H., Peng, X., Zeng, G., …Ren, M. (2013). Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 195–196, 19–40.
Wang, J.-D., Peng, T.-J., Sun, H.-J., &Hou, Y.-D. (2014). Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide’s Appearance, Structure and Super Capacitor Performance. In Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica (Vol. 30).
Wang, X., Chen, Y., Qi, F., Zheng, B., He, J., Li, Q., …Li, Y. (2016). Interwoven WSe2 /CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochemistry Communications, 72, 74–78.
Wang, X., Chen, Y., Zheng, B., Qi, F., He, J., Li, P., &Zhang, W. (2016). Few-layered WSe2 nanoflowers anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochimica Acta, 222, 1293–1299.
Wang, X., Chen, Y., Zheng, B., Qi, F., He, J., Li, Q., …Zhang, W. (2017). Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. Journal of Alloys and Compounds, 691, 698–704.
Wang, X., He, J., Zheng, B., Zhang, W., &Chen, Y. (2018). Few-layered WSe2 in-situ grown on graphene nanosheets as efficient anode for lithium-ion batteries. Electrochimica Acta, 283, 1660–1667.
Wen, R., Wei, A., Tao, L., Luo, D., Liu, J., Yang, Y., …Zhao, Y. (2018). Hydrothermal synthesis of WSe2 films and their application in high-performance photodetectors. Applied Physics A: Materials Science and Processing, 124(9), 0.
Xing, F., Li, T., Li, J., Zhu, H., Wang, N., &Cao, X. (2017). Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy, 31, 590–595.
Xu, X., Liu, Y., Wang, M., Zhu, C., Lu, T., Zhao, R., &Pan, L. (2016). Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochimica Acta, 193, 88–95.
Yang, X., Huang, H., Kubota, M., He, Z., Kobayashi, N., Zhou, X., Luo, J. (2016). Synergetic effect of MoS2 and g-C3N4 as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Materials Research Bulletin, 76, 79–84.
Yasin, A. S., Mohamed, H. O., Mohamed, I. M. A., Mousa, H. M., &Barakat, N. A. M. (2016). Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode. Separation and Purification Technology, 171, 34–43.
Yin, H., Zhao, S., Wan, J., Tang, H., Chang, L., He, L., Tang, Z. (2013). Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Advanced Materials, 25(43), 6270–6276.
Yu, B., Zheng, B., Wang, X., Qi, F., He, J., Zhang, W., &Chen, Y. (2017). Enhanced photocatalytic properties of graphene modified few-layered WSe 2 nanosheets. Applied Surface Science, 400, 420–425.
Zarzo, D., &Prats, D. (2018). Desalination and energy consumption. What can we expect in the near future? Desalination, 427, 1–9.
Zhang, D., Wen, X., Shi, L., Yan, T., &Zhang, J. (2012). Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale, 4(17), 5440–5446.
Zhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., &Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696–14704.
Zheng, C., Chen, C., Chen, L., &Wei, M. (2017). A CMK-5-encapsulated MoSe2 composite for rechargeable lithium-ion batteries with improved electrochemical performance. Journal of Materials Chemistry A, 5(37), 19632–19638.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-08-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-08-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信