淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2108201816314300
中文論文名稱 使用區塊配對技術達到可逆資訊隱藏
英文論文名稱 Reversible Data Hiding using Block Permutation Technique
校院名稱 淡江大學
系所名稱(中) 資訊工程學系全英語碩士班
系所名稱(英) Master’s Program, Department of Computer Science and Information Engineering (English-taught program
學年度 106
學期 2
出版年 107
研究生中文姓名 梁正模
研究生英文姓名 Jeong-Mo Yang
學號 605785020
學位類別 碩士
語文別 英文
第二語文別 英文
口試日期 2018-07-12
論文頁數 54頁
口試委員 指導教授-陳建彰
委員-洪文斌
委員-楊權輝
中文關鍵字 可逆資訊隱藏技術(RDH)  加密圖像的可逆式資料隱藏技術(RDH-EI)  區塊像素置换(BPP) 
英文關鍵字 Reversible Data Hiding (RDH)  Reversible Data Hiding in Encrypted Image (RDH-EI)  Block Pixel Permutation(BPP) 
學科別分類 學科別應用科學資訊工程
中文摘要 可逆浮水印方案旨在從已嵌入浮水印的圖像中恢復原始圖像。我們提出了一種可逆數據隱藏方法(RDH),通過區塊匹配策略將加密圖像嵌入到目標圖像中。與以往的Prediction Error (PE)方法或Histogram Shifting(HS)方法不同,本文探討了如何使用隨機區塊配對方案嵌入浮水印。區塊配對策略用一個區塊的像素來替代另一個指定區塊的像素。通過使用隨機預處理和迭代映射(mapping)策略實現,所提出的方案比僅使用傳統的BPP加密方案更好。實驗結果表明,本技術產生的圖像與目標圖像不只具有相似的視覺效果,並可以利用BPP區塊配對資訊完美恢復原始圖像。
英文摘要 A reversible image watermarking scheme recovers the original image after extracting the embedded watermarks. We propose a reversible data hiding method (RDH) that embeds the secret image into the target image through block matching and Block Pixel Permutation (BPP) table’s strategies. Different from previous reversible data hiding methods, such as basic Prediction Error (PE) or Histogram Shifting (HS), this paper shows how to embed watermark image using randomized block pairing scheme. The block pairing scheme reorders pixel in one block to fit the order of another block pixel. Through the usage of randomized pre-processing and iterated mapping strategy, the proposed scheme performs better than only using the conventional BPP encryption scheme. Experimental results show that the watermarked image has a similar visual effect to the target image but can perfect recover to the original image by using the BPP recovery block pairing information.
論文目次 Content
1. INTRODUCTION 1
2. BACKGROUND REVIEW 5
3. PROPOSED SCHEME 9
3.1 RANDOM IMAGE PREPROCESSING 9
3.1.1 IMAGE RANDOMNESS 11
3.1.2 DATA EMBEDDING 13
3.1.3 IMAGE RECOVERY 15
3.2 BLOCK MAPPING METHOD 17
3.2.1 BLOCK MATCHING 19
3.2.2 SORTING 21
3.2.3 THRESHOLD VALUE 22
3.2.5 RECOVERY 26
4. EXPERIMENTAL RESULT 27
4.1 NON-RANDOM IMAGE RESULT 27
4.2 RANDOM IMAGE RESULT 31
4.3 MAPPING METHOD RESULT 35
4.4 MAPPING METHOD WITH THRESHOLD RESULT 38
4.5 COMPARISON 40
5. CONCLUSION 43
6. REFERENCE 44






Figures

Figure 1 – An example of an image block with its BPP table with t = 3 5
Figure 2 – Embedding process of using BPP tables of t = 3. 7
Figure 3 – Watermarked image acquisition from the original and target image. 8
Figure 4– Watermarked image Iw in Figure 3. 8
Figure 5 – The embedding processing. 10
Figure 6 – (a) original image: Barbara, (b) target image (c) the random image. 10
Figure 7 – Acquisition of the original random image IR. 12
Figure 8 – Acquisition of the target random image TR. 12
Figure 9 – The acquisition of watermarked random image WR. 13
Figure 10 – Acquisition of watermark image W. 14
Figure 11 – Inverse processing of the BPP encryption method, 15
Figure 12 – The proposed image recovery process. 16
Figure 13- Example of mapping images. 18
Figure 14 – Example of Block matching and average value. 19
Figure 15 – An example of block average table. 20
Figure 16 – Example of Block list and numbering 21
Figure 17 – An example of mapping method. 22
Figure 18 – Example of shifting process. 24
Figure 19 – Original block and BPP. 25
Figure 20 – Example of watermark image. 25
Figure 21– Example of recovery step processing and the original image. 26
Figure 22 - Original image and watermark image (Without random image) 28
Figure 23 - Test images (a)Baboon (b)Barbara (c)Lake (d)Lena (e)Ship 29
Figure 24 - Watermark images 29
Figure 25 – Test image: (a) Lena, (b) Baboon, (c) Barbara, (d) Lake, and (e) Ship. 31
Figure 26 – Encrypting images by the BPP encryption method: 32
Figure 27 – Encrypting images by the BPP encryption scheme: 33
Figure 28 – An example of images 35
Figure 29- Using block mapping encrypting images by the BPP encryption scheme 37
Figure 30 - The result of images 39
Figure 31 – different of watermark image 41
Figure 32 - different of watermark image (a) random image 42


Table

Table 1. Example of RDH 1
Table 2. Example of RDHEI 2
Table 3 Example of reversible data hiding in encrypted images transformation(RIT) 3
Table 4. PSNR values. 30

參考文獻 [1]. I. Lai and Wen. Tsai, “Secret-fragment-visible mosaic image-a new computer art and its application to information hiding,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 936–945, Sep. 2011.
[2]. W.M. Zhang, H. Wang, D. Hou, and N. Yu,” Reversible Data Hiding in Encrypted Images by Reversible Image Transformation”, IEEE Trans. Multimedia, vol. 18, no. 8, Aug. 2016.
[3]. Y. Lee and W. Tsai, “A new secure image transmission technique via secret-fragment-visible mosaic images by nearly reversible color transformation,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4, pp. 695–703, Apr. 2014.
[4]. I.C. Dragoi, H.G. Coanda and D. Coltuc, “Improved Reversible Data Hiding in Encrypted Images Based on Reserving Room After Encryption and Pixel Prediction” 2017 25th European Signal Processing Conference (EUSIPCO)
[5]. I.C. Dragoi and D. Coltuc, “Local-prediction-based difference expansion reversible watermarking,” IEEE Trans. Image Process., vol. 23, no. 4, pp. 1779–1790, Apr. 2014.
[6]. T. Kalker and F.M. Willems, “Capacity bounds and code constructions for reversible data-hiding,” 14th Int. Conf. Digital Signal Processing, pp. 71-76, 2002.
[7]. X. Zhang, “Reversible data hiding in encrypted images”, IEEE Signal Process. Lett., vol. 18, pp. 255–258, 2011.
[8]. W. Hong, T. Chen, and H. Wu, “An improved reversible data hiding in encrypted images using side match”, IEEE Signal Process. Lett., vol. 19, pp. 199–202, 2012.
[9]. J.C. Chang, Y.H. Chou, C.H. Ni, H.L Wu, “Reversible Data Hiding in Pairwisely Encrypted Images”, 2016 Third International Conference on Computing Measurement Control and Sensor Network, pp. 60–63, 2016.
[10]. W. Hong, T. Chen, and H. Wu, ”An Improved Reversible Data Hiding Scheme Based On Neighboring Pixel Differences,” IEEE Signal Processing Letters, vol. 19, no. 4, April 2012.
[11]. M. Johnson, P. Ishwar, V. M. Prabhakaran, D. Schonberg, and K. Ramchandran, ”On compressing encrypted data,” IEEE Transactions on Signal Processing, Vol.52 (10), pages 2992–3006, 2004.
[12]. H. J. Kim, V. Sachnev, Y. Q. Shi, J. Nam, and H. G. Choo, ”A Novel Difference Expansion Transform for Reversible Data Embedding,” IEEE Transactions on Information Forensics and Security, vol. 3, no. 3, September. 2008.
[13]. W. Liu, W. Zeng, L. Dong, and Q. Yao, ”Efficient compression of encrypted grayscale images,” IEEE Transactions on Image Processing, Vol.19 (4), pages 1097–1102, 2010.
[14]. X. Wu and W. Sun, “High-capacity Reversible Data Hiding in Encrypted Image by Prediction Error,” Signal processing, Vol.104, pp. 387-400, NOV.2014.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-08-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-08-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信