淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2108201814084000
中文論文名稱 奈米銀線棒的製作與應用
英文論文名稱 Manufacturing and Application of Nano-silver wires and rods
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 106
學期 2
出版年 107
研究生中文姓名 劉百銓
研究生英文姓名 Pai-Chung Liu
學號 801370031
學位類別 博士
語文別 中文
口試日期 2018-07-04
論文頁數 109頁
口試委員 指導教授-林清彬
委員-廖文毅
委員-張子欽
委員-劉昭華
委員-康尚文
中文關鍵字 氯化銀  奈米銀線  奈米銀棒  導電墨水  繞射極限  蜘蛛絲紡錘體  光子奈米噴流  偶氮染料降解 
英文關鍵字 silver chloride  silver nanowires  silver nanorods  conductive silver ethanol ink  Diffraction limit  Spider silk spindle  photonic nanojet  photocatalyst 
學科別分類
中文摘要 本研究以氯化銀/銀原子簇晶種合成法製備奈米銀線棒,將所製作的奈米銀棒製成奈米銀棒乙醇溶液之導電墨水。將感光性樹脂混合奈米銀棒浸塗於蜘蛛絲,會在蜘蛛絲親油端處形成紡錘體透鏡,藉由RGB雷射照射藉以觀察紡錘體透鏡之光子奈米噴流特徵,以期克服光學顯微鏡無法避免的繞射極限問題。藉由氯化銀薄膜複合加奈米銀棒提出一種嶄新的Orange II偶氮染料降解方法。我們將製備的奈米銀晶種在160℃環境下加入聚乙烯吡咯烷酮(PVP)及硝酸銀合成高展弦比的奈米銀線溶液,在室溫下利用往復式活塞唧筒衝擊奈米銀線溶液後得到低展弦比奈米銀棒,破壞與重新成長過程中節錄一系列TEM圖藉以說明奈米旗幟與奈米銀棒的成長機制,並與滲透理論相互印證。感光樹脂混合奈米銀棒的紡錘體在紅光(波長617nm)於3μm穿透厚度下產生的光子奈米噴流特徵接近繞射極限。氯化銀複合奈米銀棒薄膜在紫外和可見光照射下對Orange II偶氮染料的光催化降解具有完全脫色效果。
英文摘要 In this study, nano silver rods were prepared by silver chloride/silver cluster seed crystal synthesis method and UV exposure and the prepared silver nanorods glycol solution was applied to the conductive ink and photo curable resin coating. The photocurable resin mixed nano silver rod is dip coated on the spider silk, and a spindle lens is formed at the oleophilic end of the spider silk, and the photonic nano jet characteristics of the spindle lens are observed by RGB laser irradiation, in order to overcome the problem of diffraction limit that the optical microscope is hard to avoid.
This study proposes a process for fabricating nano-silver crystal seeds and silver nanowires / nanorods that were prepared by seed synthesis method The formed spider silk spindle is used to observe and study the photonic nanojet characteristics in order to overcome the problem of diffraction limit that the optical microscope is hard to avoid. It also proposes a renewal Orange II degradation method by a film of silver chloride and silver nanorods glycol solution. In this process, UV-irradiated silver chloride nanoparticles are added to ethylene glycol solution containing polyvinyl pyrrolidone (PVP) and silver nitrate at 160 C. With the seed crystal synthesis method, this process yielded a solution containing silver nanowires with high aspect ratio (AR) in the ambient, and using a reciprocating piston cylinder to impact the silver nanowires solution at room temperature to obtain a low aspect ratio silver nanorods, In the process of destruction and re-growth, a series of TEM images are recorded to illustrate the growth mechanism of the nano-flag and the nano-silver rod, and demonstrate the theory of percolation. The photonic nanojet characteristics of the spider silk spindle coating with photosensitive resin and nanorods mixed solution at red light (wavelength 617 nm) on a penetration thickness of 3 μm approach the diffraction limit. The silver chloride and nano-bar silver film has complete decolorization effect on the photocatalytic degradation of Orange II azo dye under ultraviolet and visible light irradiation.
論文目次 目錄
第1章 導論
1.1前言 1
1.2文獻回顧 5
1.2.1奈米銀線性質 5
1.2.1.1奈米銀線的製備方法 5
1.2.2奈米銀線棒與導電墨水 22
1.2.2.1滲透理論 35
1.2.3感光性樹脂複合奈米銀棒紡錘體透鏡的光子奈米噴流 35
1.2.4 氯化銀薄膜複合奈米銀棒之偶氮染料降解 42
1.3研究動機 46
第2章 實驗設計 48
2.1奈米銀線製作 48
2.1.1氯化銀晶種製備 48
2.1.2奈米銀線的製作與純化 55
2.2 奈米銀棒與導電墨水的製作及奈米銀線溶液臨界濃度測定與片阻值關係 60
2.2.1奈米銀棒與導電墨水的製作 60
2.2.2奈米銀線溶液臨界濃度測定與片阻值關係 65
2.3 感光性樹脂複合奈米銀棒蜘蛛絲紡錘體透鏡的光子奈米噴流 70
2.3.1感光性樹脂複合奈米銀棒蜘蛛絲紡錘體透鏡的製作 70
2.4 氯化銀薄膜複合奈米銀棒之偶氮染料降解 81
2.4.1氯化銀薄膜複合奈米銀棒的製作 81
第3章 結果與討論 85
3.1奈米銀線合成 85
3.2奈米銀棒與導電墨水的製作 86
3.3感光性樹脂複合奈米銀棒紡錘體透鏡的光子奈米噴流 95
3.4氯化銀複合奈米棒之偶氮染料降解 100
第4章 結論 102
第5章 參考文獻 103

圖目錄
圖 1-1(a)AAO模板AFM圖;(b)AAO模板截面的FE-SEM圖[11] 8
圖 1-2 AAO模板移除後的奈米銀線陣列SEM圖(a)上視圖;(b)上視放大圖;(c)橫截面;(d)較短的奈米銀線圖[11] 8
圖 1-3 晶種合成法步驟示意圖:利用銀晶種合成奈米銀線 14
圖 1-4 通過加入不同濃度的硝酸銀生長出不同展弦比的銀[21] 18
圖 1-5 孿生五面體銀晶種成長為奈米銀線[21] 18
圖 1-6 聚醚合成法製備奈米銀線,加入銅鹽之反應[20] 19
圖 1-7 來自DMF中奈米銀棒的奈米銀片的成長機制[41] 21
圖 1-8(a)乾燥後均勻的銀產生;(b)銀晶體的是寸大小之SEM照片[42] 25
圖 1-9 相對時間給予墨水的溫度分佈導致的質量損失百分比[42] 26
圖 1-10 備樣的圖案與尺寸[43] 30
圖 1-11 導電墨水A、B在不同基材上的片電阻[43] 31
圖 1-12 三種加熱的方法用不同時間乾燥後的片電組推移圖[44] 34
圖1-13不同光觸媒(N-doped TiO2 、AgCl、AgCl/Ag-bulk、AgCl/Ag-NP50 及AgCl/Ag-NP20)在可見光照射下對甲基藍染料降解效率比較[55] 44
圖 1-14 Orange II 偶氮染料之化學結構[62] 46
圖 2-1奈米銀線利用衝槌機構經管壁渦流式衝擊的機構圖 64
圖 2-2形成紡錘體的過程的示意圖 74
圖 2-3光子奈米噴流特性量測系統圖 79
圖 2-4正規化0.01 mm 標準試片 80
圖 2-5正規化0.01 mm 標準試片電腦數據分析圖 80
圖 2-6(a)對偶氮染料降解應用之示意圖(一) 83
圖 2-6(b)對偶氮染料降解應用之示意圖(二) 83
圖 2-6(c)對偶氮染料降解應用之示意圖(三) 84
圖 3-1 X射線衍射分析奈米氯化銀顆粒表面銀簇相對應的衍射峰 86
圖 3-2衝槌機構衝擊1000次加工未成長前奈米銀棒的TEM圖 87
圖 3-3衝槌機構衝擊1000次加工成長後奈米銀棒的TEM圖 88
圖 3-4漩渦式的機械交互作用加工後未成長前奈米銀棒的TEM圖 89
圖 3-5粉碎後未成長前奈米爆米花或鏤空銀棒的TEM圖 89
圖 3-6粉碎成長後的奈米銀棒滲透發端的TEM圖 90
圖 3-7粉碎後奈米銀簇聚在長出旗幟的奈米銀棒滲透開放端的TEM圖 90
圖 3-8孤島型奈米銀旗幟的TEM圖 92
圖 3-9紡錘體透鏡的光子奈米噴流 97
圖 3-10(a) 紡錘體透鏡的光子奈米噴流半高全寬 97
圖 3-10(b) 紡錘體透鏡的光子奈米噴流能量強度 98
圖 3-10(c) 紡錘體透鏡的光子奈米噴流衰減長度 98
圖 3-10(d) 紡錘體透鏡的光子奈米噴流焦距 99
圖 3-11蜘蛛絲的多孔隙結構具有超親水特性[22] 99
圖 3-12不同幾何形狀之奈米金屬結構其侷域性表面電漿共振之電場強度分佈圖[63~65] 100
圖 3-13氯化銀複合奈米銀棒對Orange II偶氮有機染料降解速率 101

表目錄
表 1-1奈米銀線結構形狀最常用的分類 5
表 1-2奈米銀線最常用的合成法[10~21] 6
表 1-3 AAO模板法合成法實驗步驟及參數或內容[11] 6
表 1-4晶種合成法之一的實驗步驟及參數或內容[13] 9
表 1-5晶種合成法之二的實驗步驟及參數或內容[14] 11
表 1-6聚醚合成法之一的實驗步驟及參數或內容[18] 14
表 1-7聚醚合成法之二的實驗步驟及參數或內容[19] 15
表 1-8聚醚合成法之三的實驗步驟及參數或內容[20] 16
表 1-9三種典型製備複雜的奈米銀結構的多重步驟法[25] 19
表 1-10複雜奈米銀結構的應用[29~40] 20
表 1-11銀墨水製備的實驗步驟及參數或內容[42] 22
表 1-12製造者資料表上的導電墨水特性[43] 26
表 1-13製備樣品的圖案、線寬、尺寸與測試項目對照表[43] 28
表 1-14三種導電墨水材料和多水準固化條件的測試計畫表[43] 30
表 1-15材料清單 (Bill of Material) [44] 32
表 1-16實驗設備清單 (List of Experimental Equipment) [44] 32
表 1-17實驗步驟 (Experimental Steps) [44] 33
表 1-18穿隧電子與滲透原理關係說明表[45] 35
表 1-19滲透理論專有名詞與符號對照表[45] 36
表 1-20滲透現象發生前後專有名詞與符號及數學式對照表[45] 37
表 1-21光子奈米噴流的發展沿革[48~52] 39
表 3-1滲透理論專有名詞與奈米銀棒成長之滲透現象對照表[45] 93
表 3-2光子奈米噴流特徵 96
參考文獻 [1] Lewis, B. G., and David C. P., “ Applications and processing of transparent conducting oxides,”Mrs Bulletin Vol. 25, No. 8 (2000) pp. 22-27.
[2] Wu, Z., Chen, Z., Du, X., Jonathan M. L., Jennifer S., Maria N., Katalin K., John R. R., David B. T., Arthur F. H., and Andrew G. R., “ Transparent, conductive carbon nanotube films,”Science Vol. 305, No. 5688 (2004) pp. 1273-1276.
[3] Liu, Cai-Hong, and Xun Y., “ Silver nanowire-based transparent, flexible, and conductive thin film,”Nanoscale Research Letters Vol. 6, No. 1 (2011) pp. 1.
[4] Hecht, D. S., Liangbing H., and Glen I., “ Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,”Advanced Materials Vol. 23, No. 13 (2011) pp. 1482-1513.
[5] Murphy, C. J., and Nikhil R. J., “ Controlling the aspect ratio of inorganic nanorods and nanowires,”Advanced Materials Vol. 14, No. 1 (2002) pp. 80.
[6] Sukanta, D., Thomas, M. H.,Philip,E. L., Evelyn, M. D.,Peter,N. N., Werner, J. B., John, J. B., and Jonathan, N. C., “ Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conducticity ratios, ”ACS Nano Vol. 3, No. 7 (2009) pp. 1767-1774.
[7] Huang ,C. Y., Chiu W. M., “ A studying for preparation and characterization of graph en E oxide / silver nano wire conductive composite films,”Technology Journal Vol. 31,No. 1 (2016) pp. 43-49
[8] Lee, P., Lee, J, Lee, H., Yeo, J., Hong, S., Koo, H. N., Lee, D., Lee, S. S., and Ko, S. H., “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,”Advanced Materials Vol. 24, No. 25 (2012) pp. 3326-3332.
[9] Rahul, G., Sri, P.,“ What's the difference between silver nanowire and ITO for touch screens?”Electronic Design, (2013)
[10]Yang, R., Sui, C., Gong, J., and Qu, L.,“ Silver nanowires prepared by modified AAO template method,”Materials Letters Vol. 61, No. 3 (2007) pp. 900-903.
[11]Sun, X. Y., Xu, F. Q., Li, Z. M., Zhang, W. H.,“ Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template,”Materials Chemistry and Physics Vol. 90, No. 1 (2005) pp. 69-72.
[12]Yang, R., Sui, C., Gong, J., and Qu, L.,“Silver nanowires prepared by modified AAO template method,”Materials Letters Vol. 61, No. 3 (2007) pp. 900-903.
[13]Jana, N. R., Latha G., and Catherine J. M.,“ Wet chemical synthes is of silver nanorods and nanowires of controllable aspect ratio,”Chemical Communications Vol. 7 (2001) pp. 617-618.
[14]Brendan, P., Matthew, M., and Vladimir, K.,“ Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods,”ACS nsno Vol. 3, No. 1 (2008) pp. 21-26.
[15]Nikoobakht, B., and Mostafa A. E. S.,“ Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,”Chemistry of Materials Vol. 15, No. 10 (2003) pp. 1957-1962.
[16]Chang, G., Zhang, J., Munetaka, O., and Kazuyuki, H.,“ Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach,”The Journal of Physical Chemistry B Vol. 109, No. 3 (2005) pp. 1204-1209.
[17]Prieto, P., Valentin, N., Khalid, N., Munetaka, O., Mohammed, A. L., and Raquel, D.,“ XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth,”Applied Surface Science Vol. 258, No. 22 (2012) pp. 8807-8813.
[18]Sun, Y, and Younan, X.,“ Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,”Nature Vol. 353, No. 1991 (1991) pp. 737.
[19]Sun, Y., Yin, Y., Brian, T. M., Thurston, H., and Younan, X.,“ Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone),”Chemistry of Materials Vol. 14, No. 11 (2002) pp. 4736-4745
[20]Korte, K. E., Sara, E. S., and Younan X.,“ Rapid synthesis of silver nanowires through a CuCl-or CuCl2-mediated polyol process,”Journal of Materials Chemistry Vol. 18, No. 4 (2008) pp. 437-441.
[21]Tang, X., and Masaharu, T.,“ Syntheses of silver nanowires in liquid phase,”Intech. Open Access Publisher (2010) pp. 25-42.
[22] Yongmei Zheng,Hao Bai, Zhongbing Huang, Xuelin Tian, Fu-Qiang Nie, Yong Zhao, Jin Zhai1 & Lei Jiang,“Directional water collection on wetted spider silk”, Nature, Vol.463, (2010), pp. 640-644
[23] 高肇藩, 給水工程, (1987) p1–3
[24] 林健三, 環境工程概論, 鼎茂圖書出版有限公司, (1999)
[25] Tong Zhang, Yuan-Jun Song, Xiao-Yang Zhang and Jing-Yuan Wu,“Synthesis of Silver Nanostructures by Multistep Methods” Sensors (2014), 14, pp. 5860-5889.
[26] Cobley, C.M.; Skrabalak, S.E.; Campbell, D.J.; Xia, Y. Shape-Controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics (2009), 4, pp. 171–179.
[27] Ray, P.C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. (2010), 110, pp. 5332–5365.
[28] Pietrobon, B.; Kitaev, V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem. Mater. (2008), 20, pp. 5186–5190.
[29] Butun, S.; Sahiner, N. A versatile hydrogel template for metal nano particle preparation and their use in catalysis. Polymer (2011), 52, pp. 4834–4840.
[30] Harish, S.; Sabarinathan, R.; Joseph, J.; Phani, K.L.N. Role of pH in the synthesis of 3-aminopropyl trimethoxysilane stabilized colloidal gold/silver and their alloy sols and their application to catalysis. Mater. Chem. Phys. (2011), 127, pp. 203–207.
[31] Yang, J.; Wang, Z.; Zong, S.; Song, C.; Zhang, R.; Cui, Y. Distinguishing breast cancer cells using surface-enhanced Raman scattering. Anal. Bioanal. Chem. (2012), 402, pp. 1093–1100.
[32] Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. (2004), 22, pp. 47–52
[33] Hong, Y.; Huh, Y.M.; Yoon, D.S.; Yang, J. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater. (2012), 2012, pp. 1–13.
[34] Tripp, R.A.; Dluhy, R.A.; Zhao, Y. Novel nanostructures for SERS biosensing. Nano Today (2008), 3, pp. 31–37.
[35] Samanta, A.; Maiti, K.K.; Soh, K.S.; Liao, X.; Vendrell, M.; Dinish, U.S.; Yun, S.W.; Bhuvaneswari, R.; Kim, H.; Rautela, S.; et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. Engl. (2011), 50, pp. 6089–6092.
[36] Kumar, A.; Boruah, B.M.; Liang, X.-J. Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J. Nanomater. (2011), 2011, pp. 1–17.
[37] Cao, Y.; Li, D.; Jiang, F.; Yang, Y.; Huang, Z. Engineering metal nanostructure for SERS application. J. Nanomater. (2013), 2013, pp. 1–12.
[38] Botta, R.; Upender, G.; Sathyavathi, R.; Narayana Rao, D.; Bansal, C. Silver nanoclusters films for single molecule detection using Surface Enhanced Raman Scattering (SERS). Mater. Chem. Phys. (2013), 137, pp. 699–703.
[39] Zhu, S.Q.; Zhang, T.; Guo, X.L.; Wang, Q.L.; Liu, X.F.; Zhang, X.Y. Gold nanoparticle thin films fabricated by electrophoretic deposition method for highly sensitive SERS application. Nanoscale Res. Lett. (2012), 7, pp. 1–7.
[40] Zhang, X.Y.; Hu, A.M.; Zhang, T.; Lei, W.; Xue, X.J.; Zhou, Y.H.; Duley, W.W. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano (2011), 5, pp. 9082–9092.
[41] Tsuji, M.; Tang, X.; Matsunaga, M.; Maeda, Y.; Watanabe, M. Shape evolution of flag types of silver nanostructures from nanorod seeds in PVP-assisted DMF solution. Cryst. Growth Des. (2010), 10, pp. 5238–5243.
[42]Angela, L. D., Patrick, J. S., Shin, D. Y., Nuno, R., Brian, D., and Paul, O. B.,“ A low curing temperature silver ink for use in ink jet printing and subsequent production of conductive tracks,”Macromolecular Rapid Communications Vol. 26, No. 4 (2005) pp. 315-318.
[43] Merilampi, S., T. Laine, M., and Pekka, R.,“ The characterization of electrically conductive silver ink patterns on flexible substrates,”Microelectronics Reliability Vol. 49, No. 7 (2009) pp. 782-790.
[44] Martyn, C., Tim, C. C., David, D., Ian, M., Trystan, W., and David, W.,“ Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink,”Journal of Materials Chemistry Vol. 21, NO. 21 (2011) pp. 7562-7564.
[45]Hsu, Y. I.,“ The study of compound conductive effect of silver flake and carbon black to epoxy resin,”(2009)
[46] M.-S. Kim and T. Scharf, S. Mühlig, “Engineering photonic nanojets”, Optics express, vol. 19, no. 11, (2011) , pp. 10206-10220
[47] D. McCloskey, J. J. Wang, and J.F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks”, Optics Express, vol. 20, (2012), no. 1, pp. 129-140
[48] C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles”, John Wiley & Sons, American, (1998)
[49] Z..Hengyu, et al, “Photonic jet with ultralong working distance by hemispheric shell. ” Optics express, vol. 23, no. 5, (2015) pp. 6626-6633
[50] McCloskey, D. Ballantine, K. E. Eastham, P. R.,& Donegan, J. F.“Photonic nanojets in Fresnel zone scattering from non-spherical dielectric particles.”Optics express,23(20) , (2015) pp. 26326-26335
[51] Guoqiang Gu, Rui Zhou, Huiying Xu, Guoxiong Cai, and Zhiping Cai ” Subsurface nano-imaging with self-assembled spherical cap optical nanoscopy”, Optics express, Vol. 24, No. 5, (2016) pp. 4937- 4948
[52] Yongmei Zheng,Hao Bai, Zhongbing Huang, Xuelin Tian, Fu-Qiang Nie, Yong Zhao, Jin Zhai1 & Lei Jiang,“Directional water collection on wetted spider silk”, Nature,Vol 463, (2010) pp. 640-644
[53] Kawashita M1, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K.” Antibacterial silver-containing silica glass prepared by sol-gel method.” Biomaterials. (2000) Feb;21(4): pp. 393-8.
[54] Peng Wang. Baibiao Huang, et al. “Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light” Angew. Chem. Int. Ed. (2008), 47, pp. 7931 –7933.
[55] Moonjung Choi, Kyoung-Hwan Shin, Jyonhsik Jang, “Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light”, Journal of Colloid and Interface Science, 341, (2010) pp. 83-87.
[56] Noriyoshi Kakuta, Naoko Goto, Hironobu Ohkita, and Takanori Mizushima, “Silver Bromide as a Photocatalyst for Hydrogen Generation from CH3OH/H2O Solution”, Journal of Physical Chemistry B, Vol. 103, No. 29, (1999) pp. 5917-5919.
[57] H. Haefke, et al, “Thin Film Growth of AgCl on NaCl (001)”, Thin Solid Films, 195 , (1991) pp. 225-235.
[58] A. Belkind and E. Ezell, “Compositional and Morphological Analysis of AgCI Films Deposited by Evaporation and R.F. Sputtering”, Thin Solid Films, 142 , (1986) pp. 113-125.
[59] M. Zayat, et al, “Reversible Photochromism of Sol-Gel SiO2 :AgCl Films”, Journal of Sol-Gel Science and Technology, 10, (1997) pp. 203–211.
[60] Song Cheng-fnag et al., “Preparation of Highly Efficient Photocatalyst Ag/AgCl film and study on Its Methyl Orange Degradation under Sunlight”, Journal of Anhui Agri. Sci. vol. 37, No. 18, (2009) pp. 8318-8319, 8342.
[61] Gray Hodes and Gion Calzaferri, “Chemical Solution Deposition of Silver Halide Films”, Advanced Functional Materials, 12, No. 9, August, (2002) pp. 501-505.
[62] Nilsson, R., R. Nordlinder, U. Wass, B. Meding and L.Belin, “Asthma, Rhinitis, and dermatitis in workers exposed to reactive dyes”, British Journal of Industrial Medicine, 50, (1993) pp. 65-70.
[63] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Philosophical Magazine, vol. 4, no. 21, (1902) pp. 396-402
[64] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)”, Journal of the Optical Society of America, vol. 31, (1941) pp. 213-222
[65] 邱國斌、蔡定平, “金屬表面電漿簡介”, 物理雙月刊, (2006) pp. 472-485
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-08-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-08-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信