§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2108201810215700
DOI 10.6846/TKU.2018.00638
論文名稱(中文) 脈衝爆震引擎噴嘴流場之初步數值模擬
論文名稱(英文) Preliminary Numerical Simulation of Flow Field Through the Nozzle of Pulse Detonation Engines
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 吳彥澂
研究生(英文) Yen-Cheng Wu
學號 605430049
學位類別 碩士
語言別 英文
第二語言別
口試日期 2018-07-17
論文頁數 69頁
口試委員 指導教授 - 牛仰堯
委員 - 劉登
委員 - 楊世昌
關鍵字(中) 爆震引擎
爆震現象
航空發動機
關鍵字(英) Pulse Detonation Engines
Detonation Wave
Aircraft Engine
第三語言關鍵字
學科別分類
中文摘要
近期以來,脈衝爆震引擎(PDE)被認為是有發展性的推進技術,其在熱力循環效率,結構的簡單性和操作使用的可擴展性方面具有潛在的優勢。本文目的為針對實際應用較少的爆震引擎進行文獻的回顧與整理,並且建構基礎的模擬模型以利日後發展其相關的分析與評估。在數值模擬的部分,我們探討了三個不同計算模型所產生的不同差異性以及引擎內部的大致流體特性,其模型分別為利用不同算則計算之無黏性的冷流以及無黏性氫氧燃燒化學反應模型。以上模型皆能成功模擬出相似的物理現象,並在之後的研究加以應用。
英文摘要
The Pulse Detonation Engine (PDE) has been considered a developmental propulsion technology with advantages in thermal efficiency, simple in structure, and widely of operational application. The purpose of this paper is to review the literature for a detonation engine, and to construct a basic simulation model to facilitate the development of its analysis and evaluation. In the numerical simulation, we used the different variations of the three different computational models to simulate the approximate fluid properties inside the engine. The models are the inviscid cold flow with two different scheme and the first-order inviscid chemical reaction model. All of the above models can successfully simulate mostly physical phenomena and apply them in later studies.
第三語言摘要
論文目次
Nomenclature	v
List of Figure	vi
1. Introduction	1
1.1. Background	1
1.3. Literature Review	6
1.4. Cycle Operation of PDE	15
1.4.1 Filling Process	16
1.4.2 Detonation Process	17
1.4.3 Purging Process	17
1.4.4 Rarefaction or Blowdown Process	18
1.5. Detonation Theory	18
1.5.2 ZND Model	34
2. Governing Equation	39
3. Numerical Results	40
3.1 The Numerical Results	45
3.2. Enlarged View	53
3.2.1 Nozzle	53
3.2.2 Throat	55
3.3. Distributions along Centerline	57
3.5 Result Discussion	58
4. Conclusions	62
5. Future Works	63
6. References	64
Figure 1.1 Specific impulse vs. Mach number regimes of various propulsion systems (Ma, 2008)	3
Figure1.2 Comparsion of PDEs with other engines (Ma, 2008)	5
Figure 1.3 Cycle Operation of PDE (Ma, 2008)	16
Figure 1.5 Schematic of Rayleigh lines and Hugoniot curve (Lee, 2008)	20
Figure 1.4 Steady planar detonation wave in a tube (Ma, 2008)	21
Figure 1.6 Schematic of pressure profile for a ZND detonation propagation in a tube (Ma, 2008)	34
Figure 1.7 Comprparison of Brayton and Humphrey cycle	35
Figure 3.1 Geometry (Ma, 2008)	41
Figure 3.2 Time evolution of Mach number field during the first cycle of operation. (Ma, 2008)	42
Figure 3.3 Time evolution of and density-gradient field during the first cycle of operation. (Ma, 2008)	43
Figure3.4 Time evolution of Mach number field and density-gradient field during the first cycle of operation. At t=1.33ms, 1.59 ms, 1.84ms, 2.25 ms, 3.08 ms, 3.83ms.	47
Figure3.5 Time evolution of Mach number field and density-gradient field during the first cycle of operation. At t= 0.6ms, 0.67ms, 0.8ms, 0.94ms, 1.22ms, 1.68ms.	50
Figure3.7 Enlarged views of pressure contour by CE/SE at 0.65 ms (2003, Ma)	53
Figure3.8 Enlarged views of cold flow pressure contour by AUSMD at time= 1.92ms	53
Figure3.9 Enlarged views of cold flow pressure contour by Fluent at time= 0.81ms	54
Figure3.10 Enlarged views of inviscid chemical reaction flow pressure contour by Fluent at time= 0.59ms	54
Figure3.11 Enlarged views of pressure contour by CE/SE (2003, Ma)	55
Figure3.12 Enlarged views of cold flow pressure contour by AUSMD at time= 1.44ms	55
Figure3.13 Enlarged views of cold flow pressure contour by Fluent at time= 0.62ms	56
Figure3.14 Enlarged views of inviscid chemical reaction flow pressure contour by Fluent at time= 0.44ms	56
Figure 3.15 Case cold flow (left) and chemical reaction (right) pressure and Mach number distributions along centerline during first cycle of operation at t=0.67 ms	57
Figure 3.16 Case cold flow (left) and chemical reaction (right) pressure and Mach number distributions along centerline during first cycle of operation at t=0.96 ms	57
Figure 3.17 Case cold flow (left) and chemical reaction (right) pressure and Mach number distributions along centerline during first cycle of operation at t=1.18 ms	58
Figure 3.18. Effect of valve close-up time on specific impulse	62
參考文獻
[1]	Wildon, Fickett and William, C. Davis (1979), “Detonation”, University of California Press, Berkeley doi:10.1002/prep.19810060307., ISBN 0-520-03587-9
[2]	Chapman, D. L. (1899), “VI. On the rate of explosion in gases”, Philosophical Magazine Series 5. 47 (284): 90–104, doi:10.1080/14786449908621243
[3]	Jouguet, Émile (1905), “Sur la propagation des réactions chimiques dans les gaz”, Journal de Mathématiques Pures et Appliquées, series 6, 1: 347–42.
[4]	Zel’dovich, Yakov Borisovich, “К теории распространения детонации в газообразных системах” (1940), Journal of Experimental and Theoretical Physics. 10: 542–568. Translated into English in: National Advisory Committee for Aeronautics Technical Memorandum No. 1261 (1950).
[5]	von Neumann, John (1942), “Theory of detonation waves, Aberdeen Proving Ground, Maryland: Office of Scientific Research and Development”, Report No. 549, Ballistic Research Laboratory File No. X-122.
[6]	Döring, Werner (1943), “Über Detonationsvorgang in Gasen”, Annalen der Physik. 43 (6–7): 421–436., doi:10.1002/andp.19434350605.
[7]	Glaesemann, Kurt R., and Fried, Laurence E. (2007), “Improved wood–kirkwood detonation chemical kinetics”, Theoretical Chemistry Accounts 120 (1–3): 37–43, doi:10.1007/s00214-007-0303-9
[8]	Sir Geoffrey Taylor, F. R. S. (1950), “The dynamics of the combustion products behind plane and spherical detonation fronts in explosives”, Published 6 January 1950, DOI: 10.1098/rspa.1950.0014.
[9]	Wintenberger, E., Austin, J.M., Cooper, M., Jackson, S., and Shepherd, J.E.(2004), “Analytical model for the impulse of single-cycle pulse detonation tube”, doi:10.2514/1.9442
[10] Oh, J.Y., Ma, F.H., Hsieh, S., and Yang, V. (2005), “Interactions between shock and acoustic waves in a supersonic inlet diffuser”, Journal of Propulsion and Power, 21(3), 486-495, doi:10.2514/1.9671
[11] Ma, F.H., Choi, J. (2006), and Yang, V., “Propulsive performance of airbreathing pulse detonation engines”, Journal of Propulsion and Power, 22(6), 1188-1203, doi:10.2514/1.21755
[12]	Ma, F.H., Choi, J., and Yang, V. (2005), “Thrust chamber dynamics and propulsive performance of multitube pulse detonation engines”. Journal of Propulsion and Power, 21(4), 681-691. doi:10.2514/1.8182 
[13] Ma, F.H., Choi, J., and Yang, V. (2005), “Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines”, Journal of Propulsion and Power, 21(3), 512-526. doi:10.2514/1.7393 
[14]	Wu, Y., Yang, V., and Chang, S. (2000), “Space-time method for chemically reacting flows with detailed kinetics”, Computational fluid dynamics 2000: Proceedings of the first international conference on computational fluid dynamics, ICCFD, Kyoto, Japan, 10-14 july 2000 (pp. 207-212), doi:10.1007/978-3-642-56535-9_29 
[15] Endo, T., and Fujiwara, T. (2005), “A simplified analysis on a pulse detonation engine model”, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol.44, Issue 146, pp. 217-222doi:10.2322/tjsass.44.217
[16] Ebrahimi, H. B., and Merkle, C. L. (2002), “Numerical simulation of a pulse detonation engine with hydrogen fuels”. Journal of Propulsion and Power, 18(5), 1042-1048. doi:10.2514/2.6053
[17]	Wu, Y., Ma, F., and Yang, V. (2003), “System performance and thermodynamic cycle analysis of airbreathing pulse detonation engines”. Journal of Propulsion and Power, 19(4), 556-567. doi:10.2514/2.6166
[18] Ma, F., Choi, J., and Yang, V. (2008), “Internal flow dynamics in a valveless airbreathing pulse detonation engine”. Journal of Propulsion and Power, 24(3), 479-490. doi:10.2514/1.29957 
[19]	Frolov, S.M. (2006), “Initiation of strong reactive shocks and detonation by traveling ignition pulses” Journal of Loss Prevention in the Process Industries, Vol. 19, pp.238-244. doi:10.1016/j.jlp.2005.04.006
[20]	Browne, S., and Shepherd, J., “Numerical solution methods for shock and detonation jump conditions” GALCIT Report FM2006.006
[21]	Roy, G.D., Frolov, S.M., Borisov, A.A., and Netzer, D.W. (2004), “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective”, Progress in Energy and Combustion Science, Vol. 30, No. 6, pp. 545-672.
[22]	Kailasanath, K. (2000), “Review of Propulsion Applications of Detonation Waves” AIAA Journal, Vol. 39, No. 9, pp. 1698-1708.
[23] Wolanski, P. (2011), “Detonation Engines”, Journal of KONES Powertrain and Transport,18, 515-521
[24] Bussing, T. and Pappas, G. (1994), “An introduction to pulse detonation engines”. 32nd aerospace sciences meeting and exhibit American Institute of Aeronautics and Astronautics.doi:10.2514/6.1994-263.
[25] Barr, L. (2008), “Pulse Detonation Engine Flies Into History”, Air Force Print News Today, 16 May
[26] Niu Y.Y., Lin Y.C., and Chang C.H. (2008), “A further work on multi-phase two-fluid approach for compressible multi-phase flows”. International Journal for Numerical Methods in Fluids, 58(8),879-896. doi:10.1002/ fld.1773.
[27] Niu Y.Y. (2016), “Computations of two-fluid models based on a simple and robust hybrid primitive variable riemann solver with AUSMD”, Journal of Computational Physics Vol.308 p. 389-410.
[28] Wu, Y., Ma, F.H., and Yang, V. (2004), “Space-Time method for detonation problems with finite-rate chemical kinetics”, International Journal of Computational Fluid Dynamics, 18(3), 277-287, doi:10.1080/106185603 10001623340
[29] Jinnala, Veera Venkata Suneel (2009), “Transient Flow Analysis of Filling in Pulse Detonation Engine”, The University of Texas at Arlington
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信