淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2108200909474500
中文論文名稱 金奈米粒子崁入二氧化矽奈米線與二十面準晶體Al70Pd22.5(Re1−xMnx )7.5的電子與原子結構之研究
英文論文名稱 Electronic and atomic structures of gold nanoparticles embedded in silica nanowires and icosahedral quasi-crystals Al70Pd22.5(Re1−xMnx)7.5
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 97
學期 2
出版年 98
研究生中文姓名 包志文
研究生英文姓名 Chih-Wen Pao
學號 691180136
學位類別 博士
語文別 英文
口試日期 2009-07-08
論文頁數 75頁
口試委員 指導教授-彭維鋒
委員-李志甫
委員-林麗瓊
委員-杜昭宏
委員-林大欽
中文關鍵字 輻射  吸收光譜  光電子發射能譜  螢光發射譜 
英文關鍵字 XANES  EXAFS  XES  VB-PES  Au-Peapod 
學科別分類
中文摘要 利用X-光吸收光譜(XAS)、X-光價電帶光電子發射能譜(VB-XPS)以及X-光螢光發射譜(XES)研究金奈米粒子崁入二氧化矽奈米線與二十面準晶體Al70Pd22.5(Re1−xMnx )7.5的電子與原子結構。其中金奈米粒子崁入二氧化矽奈米線具有相當奇特的光電流反應。尤其在照射綠光雷射之後,電阻值降低的幅度相對於照射藍光與紅光雷射要來的大上許多。由光吸收的量測數據可推斷此一奇特的現象應與其金奈米粒子的表面電漿共振有關。由O K-edge X光吸收進邊結構(XANES)與O Kα-螢光發射譜可得知金奈米粒子崁入二氧化矽奈米線的能系為6.8eV。另外由金的L3-edge XANES與O K-edge XANES可以觀察到入射不同波段的雷射光會引起電荷轉移的現象。

二十面準晶體Al70Pd22.5(Re1−xMnx )7.5是一種相當奇特的材料。可藉由其電阻值比r來判斷其電性為金屬態或絕緣態。由Al K-edge、Pd L3-edge、Re L3-edge XANES譜圖可得知其未占據態密度與Mn參雜的量無關。由Mn L3-edge XANES可得知其導電性與Mn的未占據態密度成正比。由Mn K-edge EXAFS譜圖可得知Mn園子周圍的原子結構不隨Mn參雜的含量改變。再者,由共振光電子發射能譜可得知Mn原子在靠近費米面的位置有貢獻相當強的電子態密度分布。並且藉由針對費米面的分析可得知r值無法用來判斷二十面準晶體Al70Pd22.5(Re1−xMnx )7.5的電性。
英文摘要 The photoresponse associated with the electronic and atomic structures of Au nanoparticles embedded in silica nanowires (Au-peapod) and icosahedral quasi-crystals (i-QCs) Al70Pd22.5(Re1−xMnx)7.5 were studied using Al K-, Au L3-, Re L3-, Pd L3-, Si L3,2- Mn L3-, and O K-edge x-ray absorption near edge structure (XANES), Au L3- and Mn-K edge extended x-ray absorption fine structure (EXAFS), valance-band photoemission (VB-PES), and x-ray emission spectroscopy (XES). The band gap of SiOx-NWs was determined to be 6.8eV by XES and XANES measurements. The XANES results showed illumination induced electron transfer from Au nanoparticles to SiOx-NWs. Photo-conductivity was found to be small for illumination with red and blue light, but greatly enhanced with green light at surface plasmon resonance, which also suggests an Au-silica interface barrier higher than 3.1 eV possibly due to interface-state pinning of the Fermi level or chemical potential. Additionally, Pd and Re L3-edge and Al K-edge XANES spectra for reveal that the unoccupied Pd 4d, Re 5d and Al 3p states are insensitive to the Mn doping. The VB-PES and resonant VB-PES spectroscopy analysis indicate a marked Mn 3d contribution within ~5 eVof the Fermi level, suggesting that the Mn doping increases the conductivity of Al70Pd22.5(Re1−xMnx)7.5 i-QCs.
論文目次 Table of Contents

Abstract………………………………………………………….……...………………...…......i

List of Tables……………………………………………………………………....…………...iii

List of Figures………………………………………………………………………………….iii

1 Introduction
1-1 Gold nanoparticles embedded in silica nanowires………………………...…………........1
1-2 Icosahedral quasi-crystals Al70Pd22.5(Re1−xMnx )7.5 …………...…………………….……3
2. Basic knowledge
2-1 Surface plasmon resonance…………………………………………………………..……7
2-2 The r-rule of metal-insulator transition in QCs………………………………...………..12
2-3 Metal-Induced gap state…………………………………………………………….……18
3. Experimental Techniques
3-1 Synchrotron radiation…………………………………………………………...…….21
3-2 Interaction between synchrotron radiation and material…………………...…………23
3-3 X-ray absorption spectroscopy………………………………………….….…….….24
3-4 X-ray photoemission spectroscopy……………………………………….……….……31
3-5 X-ray emission spectroscopy………………………………………….…….……….36
4. Gold nanoparticles embedded in silica nanowires
4-1 Sample preparation and experimentation………………………………………..……….38
4-2 Results and discussion….…………………………………………………..……..……40
5. Icosahedral quasi-crystals Al70Pd22.5(Re1−xMnx )7.5
5-1 Sample preparation and experimentation…………………………………….….….59
5-2 Results and discussion………………………………………………………..……..61
6. Conclusion
6-1 Gold nanoparticles embedded in silica nanowires……………………...……….….........70
6-2 Icosahedral quasi-crystals Al70Pd22.5(Re1−xMnx )7.5 …………………………..…..……68
7. Bibliography…….…………………………………………………………………………..71


List of Tables
1-1 The resistivities of some icosahedral quasicrystals at 4.2K and that of their constituent metals at room temperature……………………………….………………………….……4

2-1 Surface Plasmon resonance frequency of each type metal………………………..……..11
2-2 Values of , m and α by fitting the data of to the relation:
...…………………………………………………………………………………………14

4-1 Structural parameters of the Au peapod and foil. N is the corresponding coordination number, R is the nearest-neighbor Au-Au bond length and is the Debye-Waller fact………………………………………………………………………………………..41

4-1 The composition, r-value and the expected conductive behaviour (ecb) of the i-Al70Pd22.5(Re1−xMnx)7.5 QC samples………………..……………………………...…….60

List of figures
1-1 Room-temperature resistance versus measurement time, which is divided into periods of illumination-on and illumination-off conditions and with three different wave lengths of incident light. The upper and lower curves are for the pure SiOx-NWs and those embedded with Au nanoparticles, i.e. Au nanopeapods, respectively……………………2

1-2 2-D Penrose tiling…………………………………………………………………………5

1-3 The resistivity curves of i-Al70Pd22.5(Re1−xMnx )7.5 QCs as function of temperature at various Mn doping concentration x. The inset shows normalized curves of x=0.5, 0.8 and 1.0 at room temperature. The curves a1(0.0) and a2(0.0) are i-Al70Pd22.5Re7.5 QCs with annealing process (900℃24hr) and (900℃24hr+650℃2hr), respectively………..………6

2-1 (a) Kretschmann and (b) Otto configuration of an Attenuated Total Reflection setup for coupling surface plasmons. In both cases, the surface plasmon propagates along the metal/dielectric interface…………………………………………………………..………7

2-2 Coordinate system for 2 material interface………………………………………………10

2-3 Dispersion curve for surface plasmons. At low k, the surface plasmon curve (red) approaches the photon curve (blue)………………………………………………...……10

2-4 The conductivity as function of temperature for i-QCs Al70Pd22.5Re7.5 with resistivity ratio r from 6.23 to 33.8 at low temperature……………………………….…………….13

2-5 The calculated as function of T with difference r value…………………………..17

2-6 The schematic diagram of the Schottky Barrier in metal and n-type semiconductor junction…………………………………………………………………………………18

2-7 The diagram of metal induce gap state (MIGS)…………………………………….……19

3-1 Schematic diagram of a synchrotron accelerator……………………………….....……22

3-2 A simplified diagram of the interactions between photons and material…….…..…….23

3-3 A typical X-ray absorption spectrum showing the XANES and EXAFS regions….…...24

3-4 Photoelectron scattering processes in the (a) single-scattering regime, EXAFS and (b) in the multiple-scattering regime, EXAFS…….……………………………………………27

3-5 Schematic diagram of beamline 17C of NSRRC and XAS experiment setup…………..29

3-6 Energy relationships associated with photoemission. Kinetic energy distribution of excited electrons gives a replica of the electronic band structure. E f is at the top of the valence-band and is separated by_from the vacuum level Evac………………….....……32

3-7 XPS three-step process. First, the electron in an atom absorbs the energy of an incident x-ray, gets excited, and departs from the atom. Second, the free electron then travels to the sample surface. And thirdly, this free electron leaves the sample, goes to vacuum, and gets detected by an energy analyzer………………………………….…………..………33

3-8 A simplified diagram of XPS spectroscopy. (a) core-level XPS, (b) valance-band XPS and (c) 3p to 3d resonance XPS………………………………………..…………...……35

3-9 Schematic representation of X-ray absorption and emission processes…….……..…….37

4-1 SEM and HR-TEM images of Au nanoparticles in SiOx-NWs…………………...…….39

4-2 Magnitude of FT of EXAFS k3χ at Au L3-edge of the Au peapod from k= 3.5 to 13.9 Å-1. Colored circles represent excitation under various wavelengths (red, green and blue) labelled as R_50 mW, G_50 mW and B_50 mW with a power of 50 mW. The illumination-off cases are represented by black solid lines. The insets present Au L3-edge EXAFS oscillation k3χ data………………………………………………….…………...42

4-3 Magnitude of FT of EXAFS k3χ at Au L3-edge of the Au foil from k= 3.5 to 13.9 Å-1. Colored circles represent excitation under various wavelengths (red, green and blue) labelled as R_50 mW, G_50 mW and B_50 mW with a power of 50 mW. The illumination-off cases are represented by black solid lines. The insets present Au L3-edge EXAFS oscillation k3χ data……………………………………………………………....43

4-4 Au L3-edge XANES spectra of the Au peapod under illumination using various wavelengths at powers of 25 and 50 mW and without illumination. Lower panels display the difference near-edge spectra of the Au peapod illumination-on and illumination-off conditions. The inset compares the Au L3-edge XANES spectra of the Au peapod and foil without illumination…………………………………………………………….…….….45
4-5 Au L3-edge XANES spectra of the foil under illumination using various wavelengths at powers of 25 and 50 mW and without illumination. Lower panels display the difference near-edge spectra of the Au peapod and foil between illumination-on and illumination-off conditions…………………………………………………………………….…………..46

4-6 K-edge XANES spectra of the Au-peapod under illumination using various wavelengths at powers of 25 and 50 mW and without illumination. Lower panels display the difference near-edge spectra of the Au-peapod between illumination-on and illumination-off conditions. The insets in figure 3-6 show the O K-edge XANES spectra of pure SiOx-NWs under illumination (green) at powers of 25 and 50 mW and under illumination-off condition. The lower panels in the insets display the difference near-edge O K-edge XANES spectra of pure SiOx-NWs between illumination-on (green) at power of 25 and 50 mW and illumination-off conditions……………………………………………....….47

4-7 Figure 3-6. Si L3,2-edge XANES spectra of the Au-peapod under illumination using various wavelengths at powers of 25 and 50 mW and without illumination. Lower panels display the difference near-edge spectra of the Au-peapod between illumination-on and illumination-off conditions. The insets in figure 3-6 show the Si L3,2-edge XANES spectra of pure SiOx-NWs under illumination (green) at powers of 25 and 50 mW and under illumination-off condition. The lower panels in the insets display the difference near-edge Si L3,2-edge XANES spectra of pure SiOx-NWs between illumination-on (green) at power of 25 and 50 mW and illumination-off conditions………………….................…………48

4-8 XES and corresponding XANES spectra of O 2p states of the Au-peapod and pure SiOx-NWs under illumination using various wavelengths at a power of 50 mW and without illumination, respectively………………………………………………………………51

4-9 Schematic of the Au-SiOx Schottky barrier, in which Ef, q and Eg indicate the Fermi Energy, barrier height and the energy gap of the SiOx-matrix embedded with Au nanoparticles, respectively. Illumination with photons with various energies is also shown……………………………………..……………………………….……..………50

4-10 Schematic diagram of the band bending and barrier due to MIGS……….......…..….…55

4-11 Schematics drawing of the oscillation of electron charge cloud in Au nanoparticls….…55

4-12 (a) HR-TEM image and (b) EFTEM image of the Au nanoparticle within an energy window of 2-4 eV…………….….……………………………………………...……….57

4-13 The line-scan of intensity profiles from the EFTEM image of the Au-peapod…….……58

5-1 This figure and the upper and lower insets present the normalized Pd and Re L3-edge and Al K-edge XANES spectra of i-Al70Pd22.5(Re1−xMnx)7.5 (x = 0.0, 0.1 and 0.2) QC samples….………………………………..…………………………………………..….62

5-2 Normalized Mn L3-edge x-ray absorption spectra of i-Al70Pd22.5(Re1−xMnx)7.5 (x = 0.1 and 0.2) QC samples. The inset displays FT amplitudes of EXAFS k3χ data from k = 3.5 to 10.5 Å−1 and their corresponding oscillations at the Mn K-edge……………………...63

5-3 Valence-band PES spectra of i-Al70Pd22.5(Re1−xMnx)7.5 QCs with an incident photon energy of 80 eV. Insets (a) and (b) display the enlarged spectra near Ef for the reference Re metal and i-Al70Pd22.5(Re1−xMnx)7.5 7.5 QCs, respectively..………………………..67

5-4 Valence-band PES of i-Al70Pd22.5(Re1−xMnx)7.5 QCs (x = 0.1 and 0.2) obtained at various photon energies from hν = 48 to 58 eV. The bottom panel presents difference spectra between on-resonance (hν = 54 eV) and off-resonance (hν = 48 eV) spectra for x = 0.1 and 0.2 samples………………………………………………………...………………...69
參考文獻 Bibliography
1. M. S. Hu, H. L. Chen, C. H. Chen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, Nature Mater. 5, 102 (2006).
2. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B 3, 1647-1655 (1986).

3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
4. U. Kreibig and M. Vollmer, Optical Properties of Metal Cluster (Springer, Berlin, 1995).

5. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101 (2005).

6. J. Nelayah and M. Kociak, O. Stephan, F. J. G. de Abajo, M. Tence, L. Henrard, D. Taverna, P. S. Isabel, M. L. M. Luis, and C. Colliex, Nature Phys. 3, 348 (2007).
7. C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, Nano Lett. 8, 3081 (2008).

8. Y. Jin, and N. Friedman, J. Am. Chem. Soc. 127, 11902-11903 (2005).

9. K. Berthold, R. A. Höpfel, and E. Gornik, Appl. Phys. Lett. 46, 626 (1985).

10. G. B. Chiou and D. P. Tsai, Chinese J. Phys. 28, 472 (2006).

11. See, From Quasicrystals to More Complex Systems, edited by F. Axel, F. D´enoyer and J. P. Gazeau (2000).
12. E. J. Belin-Ferr´e, Phys.: Condens. Matter 14, R789 (2002).

13. B. D. Biggs, S. J. Poon and N. R. Munirathnam, Phys. Rev. Lett. 65, 2700 (1990).

14. F. S. Pierce, Q. Guo and S. J. Poon, Phys. Rev. Lett. 73, 2220 (1994).

15. http://www.dayah.com/periodic/

16. Q. Guo, F. S. Pierce and S. J. Poon, Phys. Rev. B 52, 3286 (1995).

17. C. R. Wang and S. T. Lin, J. Phys. Soc. Japan 68, 3988 (1999).

18. J. Delahaye and C. Berger, Phys. Rev. B 64, 094203 (2001).

19. Y. Y. Lay, J. C. Jan, J. W. Chiou, H. M. Tsai, W. F. Pong, M. H. Tsai, T. W. Pi, J. F. Lee, C. I. Ma, K. L. Tseng, C. R. Wang, and S. T. Lin, Appl. Phys. Lett. 82, 2035 (2003).
20. O. Rapp, V. Srinivas, and S. J. Poon, Phys. Rev. B 71, 012202 (2005).

21. C. R. Lin, J. Phys.: Condens. Matter 8, L725 (1996).

22. Q. Guo and S. J. Poon. Phys. Rev. B 54, 12793 (1996).

23. M. Klanjsek, P. Jelic, P. McGuiness, M. Feuerbacher, E. S. Zijlstra, J. M. Dubois and J. Dolinsek, Phys. Rev. B 68, 134210 (2003).
24. G. N. Banerjee, J. Non-Cryst. Solids 334/335, 388 (2004).

25. Belin-Ferr´e E, J. Non-Cryst. Solids 334/335 323 (2004).

26. R. H. Ritchie, Phy. Rev. 106, 874–881 (1957).

27. R. Heinz, Springer Tracts in Modern Physics 111 (1998).
28. Cottam, Michael G. New York: Cambridge University Press (1989).
29. Kittel, Charles. Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. (1996).
30. C. R. Wang and S. T. Lin, J. Phys. Soc. Japan 68, 3988 (1999).
31. A. G. Zabrodskii and K. N. Zinov’eva, Sov. Phys. JETP 59, 425 (1984).
32. See, Synchrotron Radiation Source, edited by Herman Winick (World scientific, 1997).

33. http://www.nsrrc.org.tw/

34. See, X Ray Absorption Fine Structure for Catalysts and Surfaces, edited by Yasuhiro Iwasawa (1995).
35. See, X Ray Absorption in Bulk and Surfaces, edited by H. B. Garg, E. A. Stern and D. Norman (1992).
36. See, Photoelectron Spectroscopy, edited by Stefan Hufner (1995).

37. S. C. Ray, J. W. Chiou, W. F. Pong, and H. M. Tsai, Cri. Rev. Sol. State Mater. Sci., 31, 91 (2006).
38. A. Kotani and S. Shin Rev. Mod. Phys. 73, 203 (2001).

39. Jinghua Guo, Nanotechnologies for the Life Sciences Vol. 3, 259 (2005).

40. A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).

41. P. Zhang, and T. K. Sham, Appl. Phys. Lett. 81, 736 (2002).

42. J. W. Chiou, S. C. Ray, H. M. Tsai, C. W. Pao, F. Z. Chien, W. F. Pong, M. H. Tsai, J. J. Wu, C. H. Tseng, C. H. Chen, J. F. Lee, and J. H. Guo, Appl. Phys. Lett. 90, 192112 (2007).
43. H. M. Tsai, S. C. Ray, C. W. Pao, J. W. Chiou, C. L. Huang, C. H. Du, W. F. Pong, M. H. Tsai, A. Fukano, and H. Oyanagi, J. Appl. Phys. 103, 013704 (2008).
44. C. McGuinness, D. Fu, J. E. Downes, and K. E. Smith, J. Appl. Phys. 94, 3919 (2003).

45. G. Wiech, H. O. Feldhütter, and A. Šimúnek, Phys. Rev. B 47, 6981 (1993).

46. M. Z. Huang, and W. Y. Ching, Phys. Rev. B 54, 5299 (1996).
47. T. H. DiStefano, and D. E. Eastman, Phys. Rev. Lett. 27, 1560 (1971).
48. S. T. Pantelides, and W. A. Harrison, Phys. Rev. B 13, 2667 (1976).
49. H. Ibach, and J. E. Rowe, Phys. Rev. B 10, 710 (1974).

50. C. T. Tseng, Y. H. Cheng, M. C. Lee, C. C. Han, C. H. Cheng, and Y. T. Tao, Appl. Phys. Lett. 91, 233510 (2007).
51. S. R. Elliott, The Physics and Chemistry of Solids (John Wiley & Sons Ltd., Chichester, 1998).
52. V. Myroshnychenko, R. F. Jessic, P. S. Isabel, M. F. Alison, N. Carolina, M. Paul, M. L. Luis, and F. J. G. Abajo, Chem. Soc. Rev. 37, 1792 (2008).
53. S. Wu, K. H. Chen, L. C. Chen, and C. H. Chen, (unpublished).

54. M. Springhorg, R. Fischer, J. Phys.: Condens. Matter 10, 701 (1998).

55. M. Weinert, R. E. Watson, Phys. Rev. B 58, 9732 (1998).

56. G. W. Zhang, Z. M. Stadnik, Phys. Rev. B 50, 6696 (1994).

57. X. Wu, S. W. Kycia, C. G. Olson, P. J. Benning, A. L. Goldman, and D. W. Lynch, Phys. Rev. Lett. 75, 4540 (1995).
58. Z. M. Stadnik, D. Purdie, M. Garnier, Y. Baer, A. P. Tsai, A. Lnoue, K. Edagawa, and S. Takeuchi, Phys. Rev. Lett. 77, 1777 (1996).
59. Z. M. Stadnik, Purdie, M. Garnier, Y. Baer, A. P. Tsai, A. Lnoue, K. Edagawa, S. Takeuchi, and K. H. J. Buschow, Phys. Rev. B 55, 10938 (1997).
60. D. Naumovi´c, P. Aebi, L. Schiapbach, C. Beeli, T. A. Lograsso, S. W. Delaney, Phys. Rev. B 60, R16330 (1999).
61. For example Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia, PA: Saunders) p 251.
62. See, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters, edited by J. J. Yeh (1993).
63. Tersoff, Phys. Rev. B 30, 4874 (1984).
64. Tersoff, Phys. Rev. B 32, 6968 (1985).
65. http://www.nsrrc.org.tw/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-08-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-08-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信