§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2108200813165500
DOI 10.6846/TKU.2008.00715
論文名稱(中文) 微拍翼機可撓翼之氣動特性實驗
論文名稱(英文) The Aerodynamic Experiments of Flexible Wings on a Flapping Micro Aerial Vehicle
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 高敏維
研究生(英文) Min-Wei Kao
學號 695372671
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-06-16
論文頁數 71頁
口試委員 指導教授 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 苗志銘(jmmiao@ndu.edu.tw)
委員 - 洪健君(hung@ndu.edu.tw)
委員 - 蕭富元(fyhsiao@mail.tku.edu.tw)
委員 - 楊龍杰(ljyang@mail.tku.edu.tw)
關鍵字(中) 拍翼式飛行器
聚對苯二甲酸乙二醇脂
聚對二甲苯
8字型軌跡
關鍵字(英) MAV
PET
parylene
figure-of-eight
第三語言關鍵字
學科別分類
中文摘要
本研究以輕量化之鋁製連桿組搭配塑膠齒輪,組成拍翼式飛行器之傳動機構,並且,利用聚對苯二甲酸乙二醇脂薄膜及聚對二甲苯薄膜做為翼膜,彈性碳纖維棒做為機翼骨架,鋰電池為動力來源,構成全機重量為6公克左右之拍翼式飛行器。
本研究主要針對聚對苯二甲酸乙二醇脂翼膜及聚對二甲苯翼膜,進行拍翼式飛行器的升推力量測及能量消耗的探討,經由風洞實驗,發現本研究拍翼式飛行器之升推力足以供給實際飛行所需。
本研究亦利用高速攝影機拍攝拍翼式飛行器之翼尖軌跡,分析此翼尖軌跡的形狀,分析的結果顯示本研究拍翼式飛行器之翼尖軌跡為一8字型軌跡,此8字型是因為機翼本身具備撓性所形成。
本研究最後將拍翼式飛行器實際飛行於空中,飛行時間已可超過100秒,高度10公尺左右,飛行距離超過60公尺。
英文摘要
This research is about the aerodynamic experiments of the flexible wings on a flapping micro aerial vehicle(MAV). Flapping MAV is a kind of biomimetic mechanism. It gains the lift force and thrust force via the cyclic up and down motions of the wings like birds or insects. Because of the complicated motions, the aerodynamic characteristics of the flapping MAV are unsteady. 
In this research, first we use aluminum linkages, aluminum motor base, and plastic gears to assemble the gear transmission system of the MAV. Then we use the flexible carbon fiber as the wing spars, and use the PET and the parylene as the wing films. We choose the lithium battery as the power source. Finally, we make up a MAV which is only 6 grams in weight, 20 centimeters in width.
After making up the MAV, we use PET films and the parylene films to do some aerodynamic experiments of it. From the experiment results, we know that the aerodynamic forces are sufficient to the MAV.
Besides, we also use the high speed CCD to record the wing tip trajectory of the MAV. After analysis, we find that the wing tip trajectory is a figure-of-eight. And this figure-of-eight trajectory is produced by the flexible wing spars.
Finally, we have some flying tests. The parameters of the flying MAV are the same to the experimental one. The endurance of the MAV is more than 100 seconds, the range is more than 60 meters, and the height is more than 10 meters.
第三語言摘要
論文目次
目錄
中文摘要.....................................................................................................I
英文摘要...................................................................................................II
目錄..........................................................................................................IV
圖目錄....................................................................................................VII
表目錄....................................................................................................XII
第一章 緒論..............................................................................................1
		1-1 研究背景.........................................................................1
		1-2 文獻回顧...........................................................................3
		1-3 研究目的與架構.................................................................9
第二章 飛行參數與材料特性............................................................14
		2-1 拍翼飛行方式概述...........................................................14
		2-2 拍翼式飛行器機構設計...................................................16
          2-2-1 電池與馬達.............................................................16
          2-2-2 傳動機構設計.........................................................17
          2-2-3 翼膜設計................................................................19
		2-3 拍翼式飛行器設計參數...................................................19
		   2-3-1 幾何相似................................................................19
		   2-3-2 翼展..........................................................................20
          2-3-3 翼面積.....................................................................20
          2-3-4 翼負載.....................................................................21
          2-3-5 展弦比....................................................................24
          2-3-6 雷諾數.....................................................................25
		2-4 翼膜材料特性...................................................................26
        2-4-1 parylene特性...........................................................26
          2-4-2 PET特性...........................................................27
第三章 實驗架設與實驗規劃...................................................28
		3-1 實驗設備.........................................................................28
			3-1-1 低速風洞…...............................................................28
			3-1-2 數據擷取器...............................................................29
          3-1-3 六軸力規...................................................................30
          3-1-4 高速CCD...............................................................30
          3-1-5 電源供應器...............................................................32
       3-2 實驗架設與流程.................................................................32
		3-3 實驗規劃.............................................................................35
          3-3-1 實驗一:PET翼膜之氣動特性量測..........................35
          3-3-2 實驗二:parylene翼膜之氣動特性量測...................36
     3-4 實驗數值計算方法及無因次參數..............................37
          3-4-1前飛比.........................................................................38
          3-4-2升力係數與推力係數.................................................38
          3-4-3對比頻率.....................................................................39
          3-4-4史徹赫數.....................................................................39
第四章 實驗結果與討論..................................................................40
		4-1 實驗一之結果與討論.........................................................40
		4-2 實驗二之結果與討論.........................................................55
		4-3實際試飛結果................................................................62
第五章 結論與未來建議........................................................................63
		5-1 結論.....................................................................................65
		5-2 未來方向.............................................................................66
參考文獻..................................................................................................68
附錄 作者發表過的文章…...........................................................71







圖目錄
圖1-1達文西手稿中的飛行器................................................................2
圖1-2 Jobert製作以橡皮筋為動力的拍翼式飛行器...............................2
圖1-3染色尖嘴魚的游動軌跡..................................................................4
圖1-4蜂鳥正向懸停時的姿態..................................................................5
圖1-5 S. K. Agrawal 所製作的拍翼機構.................................................8
圖1-6 R. Żbikowski 製作的拍翼機構......................................................8
圖1-7 S. H. McIntosh製作的拍翼機構....................................................8
圖1-8 R. Wood製作的機器蒼蠅..............................................................9
圖1-9機器蒼蠅與硬幣大小比較..............................................................9
圖1-10淡江大學微機電研究群第一代拍翼式飛行器..........................10
圖1-11 Caltech的拍翼式飛行器 Micro Bat...........................................11
圖1-12淡江大學微機電研究群第二代拍翼式飛行器Eagle II.............11
圖1-13淡江大學微機電研究群第三代拍翼式飛行器”金探子”..........11
圖1-14飛行生物翼展與重量圖..............................................................12
圖1-15本文架構圖..................................................................................13
圖2-1鳥類翅膀拍撲頻率與身體質量的關係........................................15
圖2-2蒼蠅的翅膀翼尖做8字划動.........................................................15
圖2-3本文中拍翼式飛行器實際試飛所用之鋰電池............................17
圖2-4 MK06-04.5馬達............................................................................17
圖2-5 MK07-2.3馬達..............................................................................17
圖2-6以CAD軟體設計之拍翼式飛行器..............................................18
圖2-7本文機構所用之基座、桿件、與齒輪............................................18
圖2-8本文所用之機構............................................................................19
圖2-9本研究拍翼式飛行器之翼膜形狀示意........................................19
圖2-10在幾何相似的原則下,鳥類的重量和翼負載關係圖................22
圖2-11幾種飛行動物翼負載對身體質量關係......................................22
圖2-12大飛行圖(The Great Flight Diagram)..........................................23
圖2-13展弦比與身體質量關係圖..........................................................24
圖2-14 parylene C 顆粒..........................................................................26
圖2-15 parylene coater.............................................................................27
圖3-1淡江大學拍翼式飛行器所用之低速風洞....................................29
圖3-2 InstruNet 公司所生產之數據擷取器iNet200.............................29
圖3-3本實驗所用之高速CCD...............................................................31
圖3-4本研究所用之電源供應器............................................................32
圖3-5各軸軸向的定義............................................................................32
圖3-6風洞實驗中以六軸力規量得的訊號............................................33
圖3-7風洞實驗架設圖............................................................................34
圖3-8本研究所用機翼示意圖................................................................36
圖3-9實驗一所用之拍翼式飛行器........................................................36
圖3-10實驗二所用之拍翼式飛行器......................................................37
圖3-11數據分析方法示意圖..................................................................37
圖4-1厚度24 μm之PET翼膜升力值....................................................40
圖4-2風速1.5 m/s時頻率11.9 Hz之升力數據......................................43
圖4-3風速1.5 m/s時頻率13.2 Hz之升力數據.....................................43
圖4-4風速1.5 m/s時頻率14.5 Hz之升力數據.....................................43
圖4-5未貼翼膜,風速1.5 m/s時頻率11.9 Hz之升力數據....................44
圖4-6未貼翼膜,風速1.5 m/s時頻率13.2 Hz之升力數據...................44
圖4-7未貼翼膜,風速1.5 m/s時頻率14.5 Hz之升力數據...................44
圖4-8扣除機翼振動訊號後,頻率11.9 Hz純粹翼膜之升力數據........45
圖4-9扣除機翼振動訊號後,頻率13.2 Hz純粹翼膜之升力數據........45
圖4-10扣除機翼振動訊號後,頻率14.5 Hz純粹翼膜之升力數據......45
圖4-11厚度24 μm之PET翼膜推力值...................................................46
圖4-12風速1.5 m/s時頻率11.9 Hz之推力數據....................................48
圖4-13風速1.5 m/s時頻率13.2 Hz之推力數據...................................48
圖4-14風速1.5 m/s時頻率14.5 Hz之推力數據...................................48
圖4-15未貼翼膜,風速1.5 m/s時頻率11.9 Hz之推力數據..................49
圖4-16未貼翼膜,風速1.5 m/s時頻率13.2 Hz之推力數據.................49
圖4-17未貼翼膜,風速1.5 m/s時頻率14.5 Hz之推力數據.................49
圖4-18扣除機翼振動訊號後,頻率11.9 Hz純粹翼膜之推力數據......50
圖4-19扣除機翼振動訊號後,頻率13.2 Hz純粹翼膜之推力數據......50
圖4-20扣除機翼振動訊號後,頻率14.5 Hz純粹翼膜之推力數據......50
圖4-21 PET翼膜之CL與J之關係..........................................................51
圖4-22 PET翼膜之CT與J之關係..........................................................51
圖4-23風速0 m/s之8字型翼尖軌跡.....................................................52
圖4-24風速0.5 m/s之8字型翼尖軌跡..................................................53
圖4-25風速1.0 m/s之8字型翼尖軌跡..................................................53
圖4-26風速1.5 m/s之8字型翼尖軌跡..................................................53
圖4-27風速2.0 m/s之8字型翼尖軌跡..................................................54
圖4-28風速2.5 m/s之8字型翼尖軌跡..................................................54
圖4-29風速3.0 m/s之8字型翼尖軌跡..................................................54
圖4-30風速3.5 m/s之8字型翼尖軌跡..................................................55
圖4-31厚度26 μm之parylene翼膜升力值............................................56
圖4-32厚度 35 μm之parylene翼膜升力值..........................................56
圖4-33厚度43 μm之 parylene翼膜升力值..........................................56
圖4-34厚度26 μm之parylene翼膜推力值............................................57
圖4-35厚度35 μm之parylene翼膜推力值............................................57
圖4-36厚度43 μm之parylene翼膜推力值............................................57
圖4-37三種厚度parylene翼膜之CL與J之關係...................................58
圖4-38三種厚度parylene翼膜之CT與J之關係...................................58
圖4-39三種parylene翼膜在風速0 m/消耗的功率...............................59
圖4-40三種parylene翼膜在風速1 m/消耗的功率...............................59
圖4-41三種parylene翼膜在風速2 m/消耗的功率...............................59
圖4-42三種parylene翼膜在風速3 m/消耗的功率...............................60
圖4-43飛行時間為107秒之飛行路徑圖...............................................63
圖4-44飛行時間達83秒之飛行路徑圖.................................................64







表目錄
表2-1本研究拍翼式飛行器之雷諾數....................................................25
表2-2 parylene C與 PET之物理性質....................................................27
表3-1淡江大學六軸力規規格表............................................................30
表3-2高速CCD規格...............................................................................31
表3-3本研究實際飛行之拍翼式飛行器各項參數................................39
表4-1 PET翼膜之平均拍撲頻率............................................................40
表4-2 PET翼膜在各電壓下的升力值....................................................41
表4-3 PET翼膜在各電壓下的推力值....................................................46
表4-4 PET翼膜在各個電壓時的消耗功率............................................52
表4-5三種parylene翼膜在不同電壓之拍撲頻率.................................55
表4-6三種翼膜在電壓2.9 V時的消耗功率..........................................60
表4-7三種翼膜在電壓3.3 V時的消耗功率..........................................60
表4-8三種翼膜在電壓3.7 V時的消耗功率..........................................61
參考文獻
參考文獻
[1]	達文西手稿:http://img381.imageshack.us/img381/6046/projektmaszynylataj261cejok148.jpg
[2]	Ornithopter Zone網頁:http://www.ornithopter.org/rubber.shtml
[3]	S. Ashley, “Palm-size spy plane,” The American Society of Mechanical Engineers, pp. 74 -78, 1998.
[4]	J. A. Walker, M. W. WESTNEAT, “Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (labridae),” Journal of Experimental Biology, Vol. 200, pp. 1549-1569, 1997
[5]	U. M. Norberg, Vertebrate flight: mechanics, physiology, morphology, ecology and evolution, New York: Springer, 1990.
[6]	W. Shyy, M. Berg, and D. Ljungqvist, “Flapping and flexible wings for biological and micro air vehicles,” Progress in Aerospace Sciences, Vol. 35, pp. 455-505, 1999.
[7]	M. H. Dickinson, F. O. Lehmann, S. P. Sane, “Wing rotation and the aerodynamic basis of insect flight,” Science, Vol. 18, Vol. 284, JUNE 1999.
[8]	Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mech., Vol. 410, pp. 323-341, 2000.
[9]	S. P. Sane, M. H. Dickinson,” The control of flight force by a flapping wing: lift and drag production,” Journal of Experimental Biology, Vol. 204, pp. 2607-2626, 2001.
[10]	R. B. Srygley, A. L. R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature, Vol. 420, pp. 660-664, 2002.
[11]	Z. J. Wang, “The role of drag in insect hovering,” Journal of Experimental Biology, Vol. 207, pp. 4147-4155, 2004.
[12]	A. Hedenström, “A general law for animal locomotion,” Trends in Ecology and Evolution, Vol. 19 (5), pp. 217-219, 2004.
[13]	N. Vandenberghe, J. Zhang, S. Childress, “Symmetry breaking leads to forward flapping flight,” Journal of Fluid Mech., Vol. 506, pp. 147-155, 2004
[14]	S. Alben, M. Shelley, “Coherent locomotion as an attracting state for a free flapping body,” Proceedings of the National Academy of Sciences of the U.S.A., Vol. 102, No. 32, pp. 11163-11166, 2005.
[15]	S. K. Banala, S. K. Agrawal, “Design and optimization of a mechanism for out-of-plane insect winglike motion with twist,” Journal of Mechanical Design, Transactions of the ASME, Vol. 127 (4), pp. 841-844, 2005.
[16]	R. Żbikowski, C. Galiński, C. B. Pedersen, “Four-bar linkage mechanism for insect-like flapping wings in hover: concept and an outline of its realization,” Journal of Mechanical Design, Transactions of the ASME, Vol. 127 (4), pp. 817-824, 2005.
[17]	H. Tanaka, K. Hoshino, K. Matsumoto, I. Shimoyama, “Flight dynamics of a butterfly-type ornithopter,” Intelligent Robots and Systems, (IROS) IEEE/RSJ International conference, pp. 310-315, 02-06 Aug 2005.
[18]	S. H. McIntosh, S. K. Agrawal, and Z. Khan, “Design of a mechanism for biaxial rotation of a wing for a hovering vehicle,” IEEE/ASME Transactions on Mechatronics, Vol. 11 (2), pp. 145-153, 2006.
[19]	R. Wood, “Fly, robot fly,” IEEE Spectrum, pp. 25-29, March, 2008.
[20]	何仁揚,「拍撲式微飛行器之製作及其現地升力之量測研究」,碩士論文,機械與機電工程學系,淡江大學,台北,2005。
[21]	T. N. Pornsin-Sirirak, Parylene MEMS technology for adaptive flow control of flapping flight, Philosophy thesis, California Institute of Technology, January 7, 2002.
[22]	L. J. Yang, C. K. Hsu, J. Y. Ho, and C. K. Feng, “Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle,” Sensors and Actuators A: Physical, Vol. 139, pp. 95-103, 2007.
[23]	L. J. Yang, C. K. Hsu, C. K. Feng, H. M. Shih, G. H. Feng, M. W. Gao, “Smart flapping wings with a PVDF sensor to modify aerodynamic performance of a micro UAV,” Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’07, pp. 1705-1708, 2007.
[24]	施宏明,「結合PVDF現地量測之拍撲式微飛行器製作」,碩士論文,機械與機電工程學系,淡江大學,2007。
[25]	C. H. Greenewalt, “Dimensional relationships for flying animals,” Smithson Misc Collect, Vol. 144, pp. 1-46, 1962.
[26]	R. Żbikowski, “Fly like a fly,” IEEE Spectrum, pp. 46-51, November, 2005.
[27]	DIDEL公司網頁:http://www.didel.com/Frames.html?MainFrame=News.html
[28]	H. Tennekes, “The simple science of fight (from insects to jumbo jets),” Boston, MA: MIT Press, 1996.
[29]	V&P Scientific, INC.:http://www.vp-scientific.com/parylene_properties.htm
[30]	MatWeb:http://www.matweb.com/reference/tensilestrength.aspx
[31]	http://en.wikipedia.org/wiki/Polyethylene_terephthalate
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信