§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2107202122552100
DOI 10.6846/TKU.2021.00557
論文名稱(中文) 無網格邊界積分方程法求解內域勢能問題及外域反平面力場問題
論文名稱(英文) Numerical analysis of interior potential and exterior anti-plane problems by using the mesh-free boundary integral equation method
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 鄧適婕
研究生(英文) Shih-Chieh Teng
學號 609380125
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-07-02
論文頁數 91頁
口試委員 指導教授 - 李家瑋
委員 - 洪宏基
委員 - 郭世榮
委員 - 李家瑋
關鍵字(中) 無網格邊界積分方程法
勢能問題
反平面力場問題
高斯積分
局部正確解
關鍵字(英) Meshfree boundary integral equation method
Potential problems
External anti-plane field problems
Gauss integral
Local exact solution
第三語言關鍵字
學科別分類
中文摘要
本文提出了一種求解滿足拉普拉斯(Laplace)方程二維邊界問題的無網格邊界積分方程方法(Meshfree Boundary Integral Equation Method)來解決內域勢能問題和反平面力場外域問題,此方法與需要生成元素網格的傳統邊界元方法不同,本方法只需要邊界節點。在處理柯西主值奇異積分和固體角的計算時,引入了邊界點局部正確解的邊界積分方程。該局部正確解必須滿足三個條件,其中包括1.場解要滿足拉普拉斯方程式 2.邊界點的原始場量 3.其對邊界點場量的法向導數,因此,局部正確解是邊界物理量與滿足二維拉普拉斯方程對應形狀函數的線性組合。透過減去原問題的邊界積分方程式和局部正確解的邊界積分方程式,可技巧性地計算柯西主值奇異積分,也可以免去計算邊界點上的固體角。計算上述的邊界積分方程式只使用了一次高斯積分,所以邊界積分方程式只不過是一個代數方程式,這些邊界節點就是高斯積分點,這就是為什麼在本方法中只需要邊界節點的原因,同時它們也是獲得聯立方程式的配置點,這個想法還可以保留數值方法的靈活性,因此它適用於任何幾何形狀。總之,本方法有兩個優點,一種是無網格化,另一種是不用主值計算奇異積分。最後,本文考慮了一些例子,如壩基滲流問題、穩態熱傳導問題和受反平面剪切應力中的包含孔洞/剛性夾雜物的無限域問題,以檢驗此無網格邊界積分方程方法的有效性。
英文摘要
In this thesis, a meshfree boundary integral equation method is proposed to solve 2D boundary value problems for the Laplace equation. Both interior potential problems and exterior problems under anti-plane shear are considered. Only boundary nodes are required for the present method different from the conventional boundary element method that needs to generate the mesh. To technically deal with the Cauchy principal value and the solid angle, a boundary integral equation of a local exact solution for a boundary point is introduced. This local exact solution must satisfy three conditions, including Laplace equation for the domain point, original boundary datum and its normal derivative on a boundary point. Therefore, a local exact solution is a linear combination of boundary data with corresponding shape functions which satisfy the 2D Laplace equation. By subtracting the boundary integral equation of original problem and boundary integral equation of a local exact solution, the singular integral in the sense of the Cauchy principal value can be technically determined. Free of calculating the solid angle for the boundary point is also gained. Then, the Gaussian quadrature is employed only once for the above boundary integral equation, the boundary integral equation is nothing but an algebraic equation. This is the reason why only boundary nodes are required in the present method. Those boundary nodes are just the Gaussian quadrature points. Simultaneously, they are also the collocation points to obtain the simultaneous equation. This idea can also preserve the flexibility of numerical method, hence it is suitable for any geometry shape. In a word, there are two advantages in the present method. One is meshfree. The other is free of calculating singular integral by using the sense of principal value. Finally, some examples such as a seepage problem with a dam foundation, steady heat conduction problems and infinite plane problems containing a hole/rigid inclusion in anti-plane shear are considered to examine the validity of the present meshfree boundary integral equation method.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	III
表目錄	VII
第一章 緒論	1
1.1	研究動機與目的	1
1.2	文獻回顧	1
1.2.1	內域勢能問題	1
1.2.2	外域反平面力場問題	2
1.2.3	零場邊界積分方程法	4
1.2.4	局部正確解	5
1.3 論文架構	5
第二章 勢能場問題	7
2.1 問題描述	7
2.2邊界積分方程式	10
2.3 解析計算奇異積分	13
2.3.1局部正確解	13
2.3.2 積分方程式轉換代數方程	16
2.3.3 局部正確解處理近乎奇異積分	18
2.4 數值例題	19
2.4.1 矩形領域的流場	19
2.4.2 三角形領域	20
2.4.3 圓形領域	21
2.4.3 三葉草形狀領域	22
2.4.4 大壩滲流問題	23
2.5 數值結果探討	24
2.5.1 矩形問題	25
2.5.2 三角形問題	25
2.5.3 圓形問題	26
2.5.4 三葉草圖形問題	27
2.5.5 大壩滲流問題	27
第三章 反平面力場	40
3.1 問題描述	40
3.2 無網格邊界積分方程法求解外域問題	42
3.3 應力集中因子	46
3.4 數值結果與討論	47
3.4.1 圓形邊界問題	48
3.4.2 橢圓形邊界問題	53
3.4.3 正三角形問題	57
3.4.4 正方形邊界問題	62
3.4.5 五角星形邊界問題	66
3.4.6 雙圓孔洞問題	68
第四章 結論與未來展望	85
4.1 結論	85
4.2 未來展望	86
參考文獻	87
  
圖目錄
圖1.1 論文架構圖	6
圖2.1 流體控制體積示意圖	7
圖2.2 積分路徑的分解	11
圖2.3 矩形流場示意圖	19
圖2.4 三角形流場示意圖	20
圖2.5 圓形流場示意圖	21
圖2.6 三葉草圖形數值問題示意圖	22
圖2.7 滲流問題水頭差示意圖	23
圖2.8 高斯積分點位分佈圖	28
圖2.9 矩形積分點位分佈圖	28
圖2.10 矩形邊界的高斯積分分佈圖	29
圖2.11 矩形邊界的矩形積分分佈圖	29
圖2.12 三角形邊界的高斯積分分佈圖	30
圖2.13 三角形邊界的矩形積分分佈圖	30
圖2.14 矩形問題使用高斯積分法的勢能等高線圖	31
圖2.15矩形問題使用矩形積分法的勢能等高線圖	31
圖2.16 矩形問題正確解的勢能等高線圖	32
圖2.17 三角形問題使用高斯積分法的勢能等高線圖	32
圖2.18 三角形問題使用矩形積分法勢能等高線圖	33
圖2.19 三角形問題的有限元素法結果	33
圖2.20 三角形問題的有限元素法網格分佈(元素數32256,節點數16369)	33
圖2.21 圓形問題使用高斯積分法的勢能等高線圖	34
圖2.22 圓形問題使用矩形積分法的勢能等高線圖	34
圖2.23 圓形問題使用高斯積分佈點的平均相對誤差收斂分析圖	35
圖2.24圓形問題使用矩形積分佈點的平均相對誤差收斂分析圖	35
圖2.25 圓形問題使用高斯積分佈點的最大絕對誤差收斂分析圖	35
圖2.26圓形問題使用矩形積分佈點的最大絕對誤差收斂分析圖	35
圖2.27 不同數值積分法的平均誤差比較圖	35
圖2.28 圓形問題其邊界t(s)的絕對誤差比較圖(採一段路徑)	36
圖2.29圓形問題其邊界t(s)的絕對誤差比較圖(採上下段路徑)	36
圖2.30 三葉草圖形問題使用高斯積分法的勢能等高線圖	37
圖2.31三葉草圖形問題使用矩形積分法的勢能等高線圖	37
圖2.32三葉草圖形問題的勢能等高線圖	37
圖2.33 未處理近乎奇異積分的勢能等高線圖	38
圖2.34 已處理近乎奇異積分的勢能等高線圖	38
圖2.35 大壩滲流問題使用有限元素法的結果	38
圖2.36 大壩滲流問題文獻結果[2]	39
圖3.1 無限域中含有單一孔洞的反平面力場問題示意圖	40
圖3.2 圓形孔洞問題疊加示意圖	41
圖3.3 外域邊界值問題示意圖	43
圖3.4 含圓形孔洞/剛性夾雜的無限平面示意圖	48
圖3.5含圓形邊界反平面力場問題的位移等高線圖	49
圖3.6含圓形邊界反平面力場問題的主應力場等高線圖	50
圖3.7含圓形邊界反平面力場問題的邊界位移分佈圖(孔洞,剪切應力在x方向時)	51
圖3.8含圓形邊界反平面力場問題的邊界位移分佈圖(孔洞,剪切應力在y方向時)	51
圖3.9 圓形邊界反平面力場問題的應力集中因子分佈圖(孔洞,剪切應力在x方向時)	51
圖3.10圓形邊界反平面力場問題的應力集中因子分佈圖(孔洞,剪切應力在y方向時)	52
圖3.11 圓形邊界反平面力場問題的應力集中因子分佈圖(剛性夾雜,剪切應力在x方向時)	52
圖3.12圓形邊界反平面力場問題的應力集中因子分佈圖(剛性夾雜,剪切應力在y方向時)	52
圖3.13 含橢圓形孔洞/剛性夾雜的無限平面示意圖	53
圖3.14 含橢圓形邊界反平面力場問題的位移等高線圖	54
圖3.15含橢圓形邊界反平面力場問題的主應力場等高線圖	55
圖3.16含橢圓形邊界反平面力場問題的邊界位移分佈圖	56
圖3.18 含正三角形形孔洞/剛性夾雜的無限平面示意圖	57
圖3.19 含正三角形邊界反平面力場問題的位移等高線圖	58
圖3.20 含正三角形邊界反平面力場問題的主應力場等高線圖	59
圖3.21 含正三角形邊界反平面力場問題的剪應力場τxz等高線圖	60
圖3.22 含正三角形邊界反平面力場問題的剪應力場τyz等高線圖	60
圖3.23 正三角形孔洞例題的邊界切向應力分佈圖	61
圖3.24 含正方形孔洞/剛性夾雜的無限平面示意圖	62
圖3.25含正方形邊界反平面力場問題的位移等高線圖	63
圖3.26 含正方形邊界反平面力場問題的主應力場等高線圖	64
圖3.27 正方形孔洞例題的邊界切向應力分佈圖	65
圖3.28 含五角星形孔洞/剛性夾雜的無限平面示意圖	66
圖3.29含五角星形邊界反平面力場問題的位移等高線圖	67
圖3.30 含五角星形邊界反平面力場問題的主應力場等高線圖	67
圖3.31 無限域中含有雙圓孔洞的反平面力場問題示意圖	68
圖3.32 無限域中含有雙圓孔洞之座標幾何關係[30]	68
圖3.33無限域中含有任意雙圓孔洞之座標幾何關係	69
圖3.34 含雙圓邊界反平面問題的位移等高線圖(d=2)	71
圖3.35含雙圓邊界反平面問題的位移等高線圖(d=0.1)	71
圖3.36 含雙圓邊界反平面問題的位移等高線圖(d=0.01)	72
圖3.37含雙圓邊界反平面問題的位移等高線圖(d=0)	72
圖3.38含雙圓邊界反平面力場問題的主應力場等高線圖(d=2)	73
圖3.39含雙圓邊界反平面力場問題的主應力場等高線圖(d=0.1)	73
圖3.40含雙圓邊界反平面力場問題的主應力場等高線圖(d=0.01)	74
圖3.41含雙圓邊界反平面力場問題的主應力場等高線圖(d=0)	74
圖3.42孔洞1的應力集中因子分佈圖(剪切應力在x方向)	75
圖3.43使用更多點數時孔洞1的應力集中因子分佈圖(剪切應力在x方向)	76
圖3.44孔洞2的應力集中因子分佈圖(剪切應力在x方向)	77
圖3.45使用更多點數時孔洞2的應力集中因子分佈圖(剪切應力在x方向)	78
圖3.46孔洞1的應力集中因子(剪切應力在y方向)	79
圖3.47使用更多點數時孔洞1的應力集中因子分佈圖(剪切應力在y方向)	80
圖3.48孔洞2的應力集中因子(剪切應力在y方向)	81
圖3.49使用更多點數時孔洞2的應力集中因子分佈圖(剪切應力在y方向)	82
圖3.50 x1,y1=(-1.5,3)及x2,y2=(0,0)時的位移等高線圖	83
圖3.51 x1,y1=(-1.5,3)及x2,y2=(0,0)時的主應力等高線圖	84

表目錄
表3-1 正方形孔洞例題的邊界最大主應力與積分總點數比較表	64
參考文獻
[1]	J.T. Chen, H.-K. Hong, “Dual boundary integral equations at a corner using contour approach around singularity”, Advances in Engineering Software, Vol. 21, pp. 169-178, (1994). 
[2]	Q.N. Yang, J.J. Zheng, Y. Miao and Y.Z. Sima, “An improved hybrid boundary node method for solving steady fluid flow problems”, Engineering Analysis with Boundary Elements, Vol. 35, pp. 18-24, (2011).
[3]	J.T. Chen, W.S. Huang, Y. Fan and S. K. Kao, “Revisit of the dual BEM using SVD updating technique”, Journal of Mechanics, Vol. 31(5), pp. 505-514, (2015).
[4]	F.L. Sun, Y.M. Zhang, D.L. Young and W. Chen, “A new boundary meshfree method for potential problems”, Advances in Engineering Software, Vol. 100, pp. 32-42, (2016). 
[5]	Y.M. Zhang, F.L. Sun, D.L. Young, W. Chen and Y. Gu, “Average source boundary node method for potential problems”, Engineering Analysis with Boundary Elements, Vol. 70,pp. 114-125, (2016).
[6]	J.J. Yang, J.L. Zheng and P.H. Wen, “Generalized method of fundamental solutions (GMFS) for boundary value problems”, Engineering Analysis with Boundary Elements, Vol. 94,pp. 25-33, (2018).
[7]	Y.M. Zhang, F.L. Sun, W.Z. Qu, Y. Gu and D.L. Young, “A meshless average source boundary node method for steady-state heat conduction in general anisotropic media”, Computers and Mathematics with Applications, Vol. 75,pp. 1739-1755, (2018).
[8]	E. Honein, T. Honein and G. Herrmann, “Further aspects of the elastic field for two circular inclusions in antiplane elastostatics”, Journal of Applied Mechanics, Vol. 59(4), pp. 774-779, (1992).
[9]	E. Honein, T. Honein and G. Herrmann, “On two circular inclusions in harmonic problems”, Quarterly of Applied Mathematics, Vol. 50(3), pp. 479-499, (1992).
[10]	E. Honein, T. Honein, and G. Herrmann, “Energetics of two circular inclusions in anti-plane elastostatics”, International Journal of Solids and Structures, Vol. 37(27), pp. 3667-3679, (2000).
[11]	S.I. Chou, “Stress field around holes in antiplane shear using complex variable boundary element method”, Journal of Applied Mechanics, Vol. 64(2), pp. 432-435, (1997).
[12]	M.D. Bird and C.R. Steele, “A solution procedure for Laplace’s equation on multiply-connected circular domains” Journal of Applied Mechanics, Vol. 59(2), pp. 398-404, (1992).
[13]	C.Q. Ru and P. Schiavone, “A circular inclusion with circumferentially inhomogeneous interface in antiplane shear” Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 453, pp. 2551-2572, (1967).
[14]	V.A. Lubarda, “Circular inclusions in anti-plane strain couple stress elasticity”, International Journal of Solids and Structures, Vol. 40(15), pp. 3827-3851, (2003).
[15]	K.H. Chen, J.T. Chen and J.H. Kao, “Regularized meshless method for antiplane shear problems with multiple inclusions”, International Journal for Numerical Methods in Engineering, Vol. 73(9), pp. 1251-1273, (2008).
[16]	Y.Z. Chen, X.Y. Lin and Z.X. Wang, “Evaluation of the degenerate scale for BIE in plane elasticity and antiplane elasticity by using conformal mapping”, Engineering Analysis with Boundary Elements, Vol. 33(2), pp. 147-158, (2009).
[17]	M.P. Savruk, A. Kazberuk and G. Tarasyuk, “Stress concentration near holes in the elastic plane subjected to antiplane deformation” ,Materials Science, Vol. 48(4), pp. 415-426, (2013).
[18]	V.A. Lubarda, “On the circumferential shear stress around circular and elliptical holes” ,Archive of Applied Mechanics, Vol. 85(2), pp. 223-235, (2015).
[19]	F. Dal Corso, S. Shahzad and D. Bigoni, “Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part I: Formulation and full-field solution”, International Journal of Solids and Structures , Vol. 85-86, pp. 67-75, (2016).
[20]	F. Dal Corso, S. Shahzad and D. Bigoni, “Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part II Singularities, annihilation and invisibility”, International Journal of Solids and Structures, Vol. 85-86, pp. 76-88, (2016).
[21]	W.N. Zou, Y.G. Lee and Q.C. He, “Inclusions inside a bounded elastic body undergoing anti-plane shear”, Mathematics and Mechanics of Solids, Vol. 23(4), pp. 114-125, (2017). 
[22]	Y. Guan and Y. Li, “Stress concentration and optimized analysis of an arbitrarily shaped hole with a graded layer under anti-plane shear”, Applied Sciences, Vol. 8(12), pp. 2619-2631, (2018). 
[23]	S. Shahzad and J. Niiranen, “Analytical solution with validity analysis for an elliptical void and a rigid inclusion under uniform or nonuniform anti-plane loading” Theoretical and Applied Fracture Mechanics, Vol. 97, pp. 62-72, (2018).
[24]	J.T. Chen, J.H. Kao, Y.L. Huang and S.K. Kao, “On the stress concentration factor of circular/elliptic hole and rigid inclusion under the remote anti-plane shear by using degenerate kernels”, Archive of Applied Mechanics, Vol. 91, pp. 1133-1155, (2021).
[25]	J.T. Chen, J.H. Kao, Y.L. Huang, S.K. Kao, “Study on the stress intensity factor and the double-degeneracy mechanism in the BEM/BIEM for anti-plane shear problems”, Theoretical and Applied Fracture Mechanics, Vol. 112,(2021)
[26]	J.T. Chen, W.C. Shen and A.C. Wu, “Null-field integral equations for stress field around circular holes under antiplane shear”, Engineering Analysis with Boundary Elements, Vol. 30(3), pp. 205-217, (2006).
[27]	J.T. Chen and A.C. Wu, “Null-Field Approach for the multi-inclusion problem under antiplane shears”, Journal of Applied Mechanics, Vol. 74(3), pp. 469-487, (2007).
[28]	J.T. Chen and A.C. Wu, “Null-field approach for piezoelectricity problems with arbitrary circular inclusions”, Engineering Analysis with Boundary Elements, Vol. 30(11), pp. 971-993, (2006).
[29]	Y.T. Lee and J.T. Chen, “Null-field approach for the antiplane problem with elliptical holes and/or inclusions ”, Composites Part B:Engineering, Vol. 44(1), pp. 283-294, (2013).
[30]	W.C. Tang, “Anti-plane problems containing circular holes in a functionally graded material by using the null-field boundary integral equation method ”, Thesis supervised by Prof. Jia Wei Lee, Department of Civil Engineering, Tamkang University, New Taipei City, Taiwan, (2020).
[31]	J.W. Lee, L.W. Liu, H.-K. Hong and J.T. Chen, “Applications of the Clifford algebra valued boundary element method to electromagnetic scattering problems”, Engineering Analysis with Boundary Elements, Vol. 71, pp. 140-150, (2016).
[32]	H.-K. Hong, Y.C. Kao, J.W. Lee, L.W. Liu and J.T. Chen, “Quaternion boundary element method for coupled exterior and interior magnetostatic fields ”, IEEE Transactions on Magnetics, Vol. 54(6), pp. 1-10, (2018).
[33]	L.W. Liu and H.-K. Hong, “Clifford algebra valued boundary integral equations for three-dimensional elasticity ”, Applied Mathematical Modelling, Vol. 54, pp. 246-267, (2018).
[34]	W.C. Shen, “Null-Field Approach for Laplace Problems with Circular Boundaries Using Degenerate Kernels ” Thesis supervised by Prof. Jeng Tzong Chen, Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Taiwan, (2005).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信