§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2107202105113400
DOI 10.6846/TKU.2021.00544
論文名稱(中文) 具快速追鎖機制之非同步骨牌式低壓降線性穩壓器
論文名稱(英文) A Fast Settling Asynchronous Low Dropout Regulator with Domino Control Mechanism
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 古書羽
研究生(英文) Shu-Yu Ku
學號 608450093
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-06-25
論文頁數 76頁
口試委員 指導教授 - 楊維斌(robin@ee.tku.edu.tw)
委員 - 羅有龍(yllo@nknu.edu.tw)
委員 - 江正雄(chiang@mail.tku.edu.tw)
關鍵字(中) 電源管理系統
數位式低壓降線性穩壓器
二元搜尋
非同步控制迴路
5G
關鍵字(英) Power management system
Digital LDO
Binary search
Asynchronous control loop
5G
第三語言關鍵字
學科別分類
中文摘要
隨著穿戴式電子產品以及智聯網的蓬勃發展,IC產業也越來越專注在超低電壓、超低功耗、高整合度…等等方面設計,而數位式低壓降線性穩壓器不僅能操作在超低電壓,也因為不需使用外接電感元件故有體積小的優勢,所以較常被使用在可攜式產品中。因此本論文提出  具快速追鎖機制之非同步骨牌式低壓降線性穩壓器,其操作在輸入電壓0.35V而輸出電壓為0.3V,可供給許多系統作使用例如:感測器、類比數位 轉化器、靜態隨機存取記憶體…等等。此研究採用數位式非同步控制迴路,相對於大家熟悉的同步電路先天上設計有些限制與缺點,非同步電路設計由於不需要用到整體時脈(Global Clock),而有下列優點:低功率消耗、操作速度快、無時脈分配效應(Clock Distribution)、無時脈歪斜效應(Clock Skew)以及不受快速時脈振盪所造成的磁波干擾(Electro Magnetic Interference, EMI)。為了有更快的電壓追鎖速度,而有了雙迴路、3D電晶體陣列或是二元搜尋法等不同的想法被提出。然而這些電路都有共同的問題就是不論是同步或是非同步的架構,都仍然受限於固定工作週期的限制。此研究將採用數位式骨牌二元搜尋進行電壓追鎖並結合非同步控制迴路設計用於穩壓模式。其中數位式骨牌二元搜尋可以完全不需要固定的工作週期,取而代之的是如同骨牌一般的單向交握訊號傳輸,此交握訊號不是完整周期的訊號,而是只有低電位到高電位的訊號,因此可以省下許多的時間。此電路有以下優點:可操作在超低電壓、低功率消耗、高速的電壓追鎖。而非同步控制迴路能在穩壓模式時降低輸出漣波,輸出更穩定的電壓,並且只需極低的靜態電流。在骨牌式二元搜尋法的追鎖模式下將藉由尺寸較大的二進制功率電晶體迅速的提供大量電流以有效的提升整體系統追鎖速率,而在追鎖完成後系統及切換至穩壓模式,透過非同步控制迴路控制小尺寸的功率電晶體達到降低輸出電壓漣波的擺幅的目的。切換兩個迴路則是利用雙緣觸發的電壓誤差偵測器,利用非同步控制單元的交握訊號正負緣作為電壓誤差偵測器的輸入時脈,以達到更快的電壓誤差偵測。本研究預計結合非同步骨牌式二元搜尋電路研製、非同步控制迴路研製、電壓誤差偵測器、負載偵測器、功率電晶體陣列、五大區塊,並且透過分析各個子電路在超低電壓的工作情形,完成具快速追鎖機制之非同步骨牌式低壓降線性穩壓器。
英文摘要
With the development of wearable electronic products and intelligent networking, the IC industry is increasingly focusing on the design of ultra-low voltage, ultra-low power consumption, high integration... etc., and digital low-dropout regulators can not only operating at ultra-low voltage, and because it does not need to use external inductance components, it has the advantage of small size, so it is more often used in  wearable products. Therefore, this paper proposes A Fast Settling Asynchronous Low Dropout Regulator with Domino Control Mechanism. It operates at input voltage of 0.35V and an output voltage of 0.3V. This research uses a digital asynchronous control loop, which has some limitations and shortcomings compared to the familiar design of synchronous circuits. Since the design of asynchronous circuits does not need to use the global clock, it has the following advantages: Low power consumption , Fast operating speed, no clock distribution effect, no clock skew and no electromagnetic interference (Electro Magnetic Interference, EMI) caused by fast clock oscillation. In order to have a faster voltage tracking speed, different ideas such as dual loops, 3D transistor arrays, or binary search methods have been proposed. However, these circuits have a common problem that whether they are synchronous or asynchronous architectures, they are still limited by the clock or pulse cycle. In this research, digital domino binary search will be used for voltage tracking and combined with asynchronous control loop designed for voltage regulation mode. The digital domino binary search does not require a work cycle at all. Instead, it is a one-way handshaking signal transmission. This handshaking signal is not a complete cycle signal, but only a signal from low to high potential. , So it can save a lot of time. This circuit has the following advantages: It can be operated at ultra-low voltage, low power consumption, and high-speed voltage tracking. The asynchronous control loop can reduce the output ripple in the voltage regulation mode and only requires a very low quiescent current. In the tracking mode of the domino binary search method, a large binary power transistor will quickly provide a large amount of current to effectively increase the overall system tracking rate. After the tracking is completed, the system switch to voltage regulation. In this mode, a small-sized power transistor is controlled through an asynchronous control loop to achieve the purpose of reducing the output ripple. To switch between the two loops, a double-edge triggered voltage error detector is used, and the positive and negative edges of the handshake signal of the asynchronous control unit are used as the input clock of the voltage error detector to achieve faster voltage error detection.
第三語言摘要
論文目次
致謝	I
中文摘要	III
英文摘要	IV
目錄	V
圖目錄	VIII
表目錄	XI
第一章  緒論	1
1.1 研究背景與動機	1
1.2 論文架構	5
第二章  低壓降線性穩壓器介紹	6
2.1穩壓器的分類	6
2.1.1切換式穩壓器(Switching Regulator)	6
2.1.2切換式電容穩壓器(Switching Capacitance Regulator)	8
2.1.3低壓降線性穩壓器(Low-Dropout Regulator)	9
2.1.4穩壓器比較	11
2.2低壓降線性穩壓器分類	12
2.2.1類比式低壓降線性穩壓器	12
2.2.2數位式同步低壓降線性穩壓器	13
2.2.3數位式非同步低壓降線性穩壓器	14
2.3低壓降線性穩壓器之特性參數	15
2.3.1輸出電壓差	16
2.3.2靜態電流	17
2.3.3線性調節率	18
2.3.4負載調節率	19
2.3.5電源效率	21
2.3.6輸出準確率	21
2.4穩定性分析	23
2.4.1暫態響應	27
2.4.2頻率響應	30
第三章  文獻分析與探討	34
3.1 文獻分析	34
3.1.1 65奈米製程之數位控制低壓降線性穩壓器	34
3.1.2低靜態電流非同步低壓降線性穩壓器	35
3.1.3具雙緣觸發控制之數位式低壓降線性穩壓電路架構	36
3.1.4二元搜尋之同步低壓降線性穩壓器電路架構	37
3.1.5二元搜尋之快閃式非同步低壓降線性穩壓器電路架構	38
3.2 文獻比較	40
第四章  電路設計與模擬	41
4.1具快速追鎖機制之非同步骨牌式低壓降線性穩壓器設計	43
4.1.1 時脈控制之栓鎖比較器	43
4.1.2 七位元非同步骨牌二元搜尋控制迴路	45
4.1.3 電壓誤差偵測器	48
4.1.4六位元可調式非同步雙向控制迴路	49
4.1.5 PMOS電源陣列	51
4.2電路佈局與模擬	54
4.2.1全系統之電路佈局	56
4.2.2全系統之模擬結果	58
第五章  量測考量	66
5.1量測考量	66
5.2量測結果	67
第六章  結論與未來展望	71
參考文獻	72
 
圖目錄
圖1.1智慧手錶電路架構	2
圖1.2同步數位式低壓降線性穩壓器架構	4
圖1.3同步數位式低壓降線性穩壓器特性	4
圖1.4非同步控制示意圖	5
圖2.1切換式穩壓器基本架構	7
圖2.2升壓型切換式電容穩壓器	8
圖2.3低壓降線性穩壓器基本架構	10
圖2.4類比式低壓降線性穩壓器基本架構	12
圖2.5數位式同步低壓降線性穩壓器基本架構	14
圖2.6數位式非同步低壓降線性穩壓器基本架構	15
圖2.7低壓降線性穩壓器之輸入對輸出電壓曲線圖	17
圖2.8靜態電流示意圖	18
圖2.9 低壓降線性穩壓器線性調節率示意圖	19
圖2.10低壓降線性穩壓器負載調節率示意圖	20
圖2.11輸出電壓誤差示意圖	22
圖2.12誤差放大器偏移示意圖	23
圖2.13電阻值誤差示意圖	23
圖2.14應用於SoC內的補償方式	26
圖2.15利用DFC調整相位邊限	26
圖2.16低壓降線性穩壓器與輸出電容及負載電流	27
圖2.17低壓降線性穩壓器輸出對負載電流反應圖	28
圖2.18低壓降線性穩壓器之交流分析等效模型	30
圖2.19等效串聯電阻過大與過小之影響	32
圖3.1 65奈米製程之數位控制低壓降線性穩壓器	35
圖3.2低靜態電流非同步低壓降線性穩壓器	36
圖3.3(a)雙緣觸發之同步架構	37
圖3.3(b)單緣觸發之同步架構	37
圖3.4二元搜尋之同步低壓降線性穩壓器	38
圖3.5 二元搜尋之快閃式非同步架構	39
圖4.1全系統電路架構圖	42
圖4.2時脈控制之栓鎖比較器及遲滯示意圖	44
圖4.3時脈控制之栓鎖比較器佈局	45
圖4.4 (a)七位元非同步骨牌二元搜尋控制迴路 (b)穩壓模式啟動電路 (c)電壓誤差偵測器	46
圖4.5 (a)骨牌二元搜尋之操作模式 (b)骨牌二元搜尋與傳統SAR之比較	47
圖4.6 (a)七位元非同步骨牌二元搜尋控制迴路與穩壓模式啟動電路佈局及(b)電壓誤差偵測器佈局	47
圖4.7 電壓誤差偵測器操作示意圖	49
圖4.8 六位元可調式非同步雙向控制迴路及操作流程	50
圖4.9 六位元可調式非同步雙向控制迴路佈局	51
圖4.10 PMOS電源陣列電路圖	53
圖4.11 PMOS電源陣列中M0之電路佈局	53
圖4.12 PMOS電源陣列之電路佈局	54
圖4.13 超低電壓快鎖式數位控制低壓降線性穩壓器架構圖	54
圖4.14 電路模擬之Bonding wire模型	56
圖4.15 電路佈局圖與示意圖	57
圖4.16 晶片微影圖	57
圖4.17 在TN90GUTM利用三級Inverter的環型震盪器做溫度對震盪頻率之模擬分析	58
圖4.18 Pre-layout Simulation (TT, 27°C, Load Current= 2.4mA-480uA-2.4mA )	59
圖4.19 Pre-layout Simulation (FF, 75°C, Load Current= 2.4mA-480uA-2.4mA )	59
圖4.20 Pre-layout Simulation (SS, 0°C, Load Current= 2.4mA-480uA-2.4mA )	60
圖4.21 Post-layout Simulation(TT, 27°C, Load Current= 2.4mA-480uA-2.4mA )	60
圖4.22 Post-layout Simulation(FF, 75°C, Load Current= 2.4mA-480uA-2.4mA )	61
圖4.23 Post-layout Simulation(SS, 0°C, Load Current= 2.4mA-480uA-2.4mA )	61
圖4.24 線性調節率(Line regulation)之模擬	62
圖4.25 負載調節率(Load regulation)之模擬	62
圖4.26 各製程與溫度變異下之靜態電流以及電壓追鎖時間	63
圖4.27 Asynchronous SAR在TT 27°C下的電壓追鎖情形	64
圖5.1量測儀器示意圖	66
圖5.2 負載電流2.4mA電壓追鎖量測結果	67
圖5.3 負載電流1.2mA電壓追鎖量測結果	67
圖5.4 負載電流480µA電壓追鎖量測結果	68
圖5.5 2.4mA到480µA負載轉換量測結果	68
圖5.6 負載電流2.4mA時之輸出電流	69
圖5.7 負載電流2.4mA時之輸入電流(IQ=4.7µA)	69

表目錄
表2.1線性穩壓器與切換式穩壓器之特性比較	11
表2.2 NMOS與PMOS功率電晶體之比較表	24
表3.1 文獻比較表	40
表4.1超低電壓數位控制低壓降線性穩壓器各特性之設計方法	43
表4.2預計規格表	55
表4.3 預計規格與模擬結果比較	64
表5.1佈局後模擬與量測結果比較表	66
表5.2 本篇論文提出之低壓降線性穩壓器與參考文獻之特性比較表	70
參考文獻
[1].	“Wearable Communications in 5G: Challenges and Enabling Technologies”, https://www.researchgate.net/profile/Haijian_Sun5/publication/319186303_Wearable_Communications_in_5G_Challenges_and_Enabling_Technologies/links/5be09726299bf1124fbe082f/Wearable-Communications-in-5G-Challenges-and-Enabling-Technologies.pdf
[2].	 “因應物聯網與穿戴式設備需求 美信電源IC強化整合設計”, https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=13&id=0000565124_GIQ0ALUP3KDWQF3GYVBZW
[3].	“全球 B4G/5G、IoT 需求情境、應用與技術發展趨勢”, https://www.ncc.gov.tw/chinese/files/18102/5056_40607_181023_1.pdf
[4].	“智慧手錶/智慧手環產品市場與技術趨勢”,https://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000381068_26H1GV115MD4FP9PMOUIF
[5].	“(Texas Instruments)Smartwatch system integrated circuits and reference designs”,http://www.ti.com/solution/smartwatch?variantid=34352&subsystemid=27277
[6].	“有效縮小穿戴式裝置電源電路”, https://www.ctimes.com.tw/DispArt/tw/Intel/PMIC/%E9%AB%98%E9%80%9A/%E8%8B%B1%E4%BB%A3%E7%88%BE/%E9%9B%BB%E6%BA%90%E7%AE%A1%E7%90%86IC/1609210949U3.shtml
[7].	“電源晶片尺寸更小/效率更高 通訊電源功率密度攀升”, https://www.2cm.com.tw/2cm/zh-tw/magazine/-CoverStory/B2A90AA23D23458B8365A500FEFE3A37
[8].	“英特矽爾 (Intersil)低壓降線性穩壓器提供75mV低壓降”, http://www.mem.com.tw/article_content.asp?sn=1208030013 
[9].	“凌力爾特新款LDO適用於可攜式電池供電系統”, http://www.mem.com.tw/article_content.asp?sn=1408250001 
[10].	“交大307實驗室 > Power Management ICs”, http://www.alab.ee.nctu.edu.tw/wpmu/ed307/about/power-management-ics/
[11].	“兼顧低功耗/小尺寸設計 醫療穿戴裝置電源管理再進化”,      https://www.2cm.com.tw/2cm/zh-tw/tech/40870914A4E04A8CAA7FC17D8BD2E6A8
[12].	“便攜式設備中的電源效率”, http://218.14.151.180:82/www.eetrend.com/technology/100054500
[13].	“亞德諾電源管理IC整合兩顆LDO更具彈性”, http://www.mem.com.tw/article_content.asp?sn=1107280006
[14].	“選擇適當的超低靜態電流LDO穩壓器將電子系統能耗降至最低”, http://wenews.nownews.com/news/69/news_69758.htm 
[15].	“新興ULP無線應用推動電源管理IC成長”, http://www.eettaiwan.com/ART_8800470009_675763_NT_9036996d.HTM?jumpto=view_welcomead_1418269648997 
[16].	“便攜式應用處理器設計中的電源管理”, http://www.autooo.net/utf8-classid85-id39216.html 
[17].	“如何將CMOS LDO應用於便攜式產品中”, http://www.autooo.net/utf8-classid164-id91240.html 
[18].	L. M. Lawrence and J. K. Antony, "Design and performance analysis of RF to DC converter for wireless sensors," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, 2017, pp. 1660-1665.
[19].	S. Orguc, H. S. Khurana, H. Lee and A. P. Chandrakasan, "0.3 V ultra-low power sensor interface for EMG," ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, 2017, pp. 219-222.
[20].	S. Orguc, H. S. Khurana, K. M. Stankovic, H. S. Leel and A. P. Chandrakasan, "EMG-based Real Time Facial Gesture Recognition for Stress Monitoring," 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, 2018.
[21].	M. S. M. Siddiqui, S. K. Sharma, S. Porwal, K. B. Pannalal and S. Kumar, "A 10T SRAM Cell with Enhanced Read Sensing Margin and Weak NMOS Keeper for Large Signal Sensing to Improve VDDMIN," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5.
[22].	H. Tseng et al., "28nm 0.3V 1W2R Sub-Threshold FIFO Memory for Multi-Sensor IoT Applications," 2019 32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 2019, pp. 248-253.
[23].	M. AL-Fayyad and K. Abugharbieh, "A 0.3V 15.6MHz 7T SRAM with Boosted Write and Read Worldlines," 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 2020, pp. 1-4.
[24].	J. Du, Y. Hu, T. Siriburanon and R. B. Staszewski, "A 0.3V, 35% Tuning-Range, 60kHz 1/f3-Corner Digitally Controlled Oscillator with Vertically Integrated Switched Capacitor Banks Achieving FoMT of -199dB in 28-nm CMOS," 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2019, pp. 1-4.
[25].	T. Kulej, F. Khateb and M. Kumngern, "0.3-V Nanopower Biopotential Low-Pass Filter," in IEEE Access, vol. 8, pp. 119586-119593, 2020.
[26].	S. -H. Wang and C. -C. Hung, "A 0.3V 10b 3MS/s SAR ADC With Comparator Calibration and Kickback Noise Reduction for Biomedical Applications," in IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 3, pp. 558-569, June 2020.
[27].	H. You, J. Yuan, W. Tang, S. Qiao and Y. Hei, "An Energy-Efficient Level Shifter for Ultra Low-Voltage Digital LSIs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3357-3361, Dec. 2020.
[28].	W. B. Yang, Y. Y. Lin, Y. L. Lo, “Design of Fast-Locked Digitally Controlled Low-Dropout Regulator for Ultra-Low Voltage Input,” Circuits System Signal Process (2017), Vol. 36, Issue 12, pp. 5041-5061, Dec. 2017.
[29].	Y. H. Lee, S. Y. Peng, C. C. Chiu, A. C. H. Wu, K. H. Chen, Y. H. Lin, S. W. Wang, T. Y. Tsai, C. C. Huang and C. C. Lee, “A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 1018-1030, Apr. 2013.
[30].	S. B. Nasir, S. Sen and A. Raychowdhury, "Switched-Mode-Control Based Hybrid LDO for Fine-Grain Power Management of Digital Load Circuits," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 569-581, Feb. 2018, doi: 10.1109/JSSC.2017.2767183.
[31].	K. Woo, T. Kim, S. Hwang, M. Kim and B. Yang, "A fast-transient digital LDO using a double edge-triggered comparator with a completion signal," 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, 2018, pp. 1-4.
[32].	Y. Huang, Y. Lu, F. Maloberti and R. P. Martins, "A Dual-Loop Digital LDO Regulator with Asynchronous-Flash Binary Coarse Tuning," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.G8351669.
[33].	J. -H. Jung, S. -K. Hong and O. -K. Kwon, "A Fast Transient Response Hybrid LDO With Highly Accurate DC Voltage Using Countable Bidirectional Binary Search and Soft Swap Switching," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3272-3276, Dec. 2020, doi: 10.1109/TCSII.2020.2992056.
[34].	Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P. Chen, K. Watanabe, M. Takamiya and T. Sakurai, “0.5-V Input Digital Low-Dropout Regulator LDO with 98.7% Current Efficiency and 2.7-μA Quiescent Current in 65 nm CMOS,” IEICE Transactions, vol. E94-C, no. 6, pp. 938-944, Jun. 2011.
[35].	M. Onouchi et al., “A 1.39-V input fast-transient-response digital LDO composed of low-voltage MOS transistors in 40-nm CMOS process,” IEEE Asian Solid-State Circuits Conference 2011, pp. 37-40, Jun, 2011.
[36].	Y. L. Lo and W. Jen, “A 0.7V Input Output-Capacitor-Free Digitally Controlled Low-Dropout Regulator with High Current Efficiency in 0.35um CMOS Technology,” Microelectronics Journal (MEJ), pp, 756-765, Aug. 2012.
[37].	Mo Huang, Yan Lu, Sai-Weng Sin, Seng-Pan U and Rui P. Martins, “A Fully Integrated Digital LDO with Coarse-Fine-Tuning and Burst-Mode Operation,” IEEE Transactions on Circuits and Systems II, pp, 683-687, July. 2016.
[38].	F. Yang and P. K. T. Mok, "A Nanosecond-Transient Fine-Grained Digital LDO With Multi-Step Switching Scheme and Asynchronous Adaptive Pipeline Control," in IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2463-2474, Sept. 2017, doi: 10.1109/JSSC.2017.2709311. 
[39].	M. Rafiee and P. Amiri, “Digital LDO regulator with a current efficiency of 99.9% and low chip area ” 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran , pp. 0565-0569, 2017.
[40].	Y. Lee et al., “A 200-mA Digital Low Drop-Out Regulator With Coarse-Fine Dual Loop in Mobile Application Processor,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 64-76, Jan. 2017.
[41].	M. A. Akram, W. Hong and I. Hwang, "Capacitorless Self-Clocked All-Digital Low-Dropout Regulator," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 266-276, Jan. 2019.
[42].	X. Liu et al., "14.7 A Modular Hybrid LDO with Fast Load-Transient Response and Programmable PSRR in 14nm CMOS Featuring Dynamic Clamp Tuning and Time-Constant Compensation," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 234-236.
[43].	S. Kundu, M. Liu, S. Wen, R. Wong and C. H. Kim, "A Fully Integrated Digital LDO With Built-In Adaptive Sampling and Active Voltage Positioning Using a Beat-Frequency Quantizer," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 109-120, Jan. 2019.
[44].	Z. Yuan, S. Fan and L. Geng, "A 225-mA Binary Searching Digital LDO with Transient Enhancement," 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi'an, China, 2019, pp. 1-2.
[45].	J. Lee et al., "A Fast-Transient and High-Accuracy, Adaptive-Sampling Digital LDO Using a Single VCO-Based Edge-Racing Time Quantizer," in IEEE Solid-State Circuits Letters. 
[46].	J. Liu and Nima Maghari, “A Fully-Synthesizable 0.6V Digital LDO with Dual-Loop Control using Digital Standard Cells,” 2016 14th IEEE international New Circuits and Systems Conference (NEWCAS), Oct. 2016.
[47].	A. De Marcellis, M. Faccio and E. Palange, "A 0.35μm CMOS 200kHz–2GHz Fully-Analogue Closed-Loop Circuit for Continuous-Time Clock Duty-Cycle Correction in Integrated Digital Systems," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5.
[48].	M. A. Akram, I. -C. Hwang and S. Ha, "Architectural Advancement of Digital Low-Dropout Regulators," in IEEE Access, vol. 8, pp. 137838-137855, 2020, doi: 10.1109/ACCESS.2020.3012467.
[49].	X. Wang and P. P. Mercier, "A Dynamically High-Impedance Charge-Pump-Based LDO With Digital-LDO-Like Properties Achieving a Sub-4-fs FoM," in IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 719-730, March 2020, doi: 10.1109/JSSC.2019.2960004.
[50].	J. Park, J. Hwang, J. Oh and D. Jeong, "32.4 A 0.4-to-1.2V 0.0057mm2 55fs-Transient-FoM Ring-Amplifier-Based Low-Dropout Regulator with Replica-Based PSR Enhancement," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 492-494, doi: 10.1109/ISSCC19947.2020.9063147.
[51].	L. G. Salem, J. Warchall and P. P. Mercier, "A Successive Approximation Recursive Digital Low-Dropout Voltage Regulator With PD Compensation and Sub-LSB Duty Control," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 35-49, Jan. 2018.
[52].	J. Liu, T. Bryant, N. Maghari and J. Morroni, "A 90nA quiescent current 1.5V–5V 50mA asynchronous folding LDO using dual loop control," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, 2016, pp. 221-224.
[53].	W. Yang, Y. Lin and Y. Lo, “Analysis and design considerations of static CMOS logics under process, voltage and temperature variation in 90nm CMOS process,” 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, pp. 1653-1656, 2014.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信