§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2107201015005400
DOI 10.6846/TKU.2010.00652
論文名稱(中文) 玻尿酸溶液透析過濾操作中電解質對移除蛋白質之影響
論文名稱(英文) Effect of electrolytes on removal of protein from hyaluronic acid solution with using diafiltration
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 鍾燕雯
研究生(英文) Yan-Wen Zhong
學號 697400132
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-16
論文頁數 76頁
口試委員 指導教授 - 鄭東文
委員 - 李篤中
委員 - 莊清榮
委員 - 童國倫
委員 - 黃國禎
關鍵字(中) 透析過濾
玻尿酸
蛋白質
電解質
分離效率
關鍵字(英) Diafiltration
Hyaluronic acid
Protein
Electrolyte
Separation efficiency
第三語言關鍵字
學科別分類
中文摘要
本研究以恆壓過濾系統,採透析過濾操作方法移除玻尿酸溶液中之蛋白質溶菌酶,探討在電解質種類及濃度、攪拌速度、進料溶液濃度、透析體積及透析液電解質濃度下,對濾速、過濾阻力、玻尿酸/溶菌酶分離效率之影響。
     研究結果顯示,透析過濾玻尿酸與溶菌酶雙成分時,電解質離子強度越大,造成玻尿酸分子脫水效應使HA堆積形態越緊密,濾速相對較低;而電解質造成溶菌酶與薄膜之間的靜電作用力降低,使溶菌酶較不易吸附於膜面上,較易通過薄膜,提高移除效率。加入攪拌可有效降低過濾阻力而提高濾速。隨著透析過濾操作之進行,若透析液中電解質濃度持續增大,對溶菌酶之移除率有顯著改善。
英文摘要
This study investigated the effect of electrolytes on removal of protein(lysozyme,LY) from hyaluronic acid(HA) solution with using diafiltration in a dead-end stirred cell. The flux behavior, filtration resistance and HA/LY separation efficiency were discussed under various operating parameters such as electrolyte types, electrolyte concentrations, stirred rates, feed concentrations and diavolumes.
     Experimental results showed that the permeate flux decreased with the increase of ion strength of electrolyte which caused the HA molecules to form a more compact deposited layer on membrane surface. Meanwhile, the LY molecules did not aggregate because the surface charge of LY was covered by the electrode ion strength. The isolated LY molecules can pass through the membrane more smoothly. Therefore, the reduction of LY from the mixture solution of HA/LY increased with in creasing the ion strength, the permeate flux can be effectively enhanced by the addition of stir that disturbed the polarization layer of HA and reduced the filtration resistance. In diafiltrating the HA/LY solution, the step increase of electrolyte concentration in dialyate solution has significant.
第三語言摘要
論文目次
致謝                                                     I
中文摘要                                          II                                                  
英文摘要                                         III                                                 
目錄                                           IV
圖目錄                                          VIII                                                  
表目錄                                                 XII
第一章 緒論	1
1.1 前言	1
1.2 薄膜分離	1
1.3 薄膜型態與模組	4
1.4結垢現象	5
1.5 研究目的	7
第二章 文獻回顧	11
2.1 玻尿酸	11
2.1.1 玻尿酸的由來	11
2.1.2 玻尿酸之純化	12
2.1.3 玻尿酸之應用	14
2.2 透析過濾相關研究	17
2.2.1 透析過濾理論分析與純化效果之研究	17
2.2.2 透析過濾之應用	19
2.3影響濾速之因素	20
2.4提升濾速之方法	22
2.5 濾速分析模式	23
第三章 實驗裝置與方法	28
3.1 實驗裝置	28
3.2實驗藥品	29
3.3實驗步驟	30
3.4 操作條件	31
3.5 分析方法	32
3.5.1 玻尿酸含量之測定	32
3.5.2蛋白質含量之測定	33
3.5.3 阻隔率之計算(Rejection,Rj)	35
3.5.4 排除率之計算(Reduction,Rd)	35
3.6 實驗後薄膜之清洗	35
第四章 結果與討論	39
4.1 薄膜純水濾速	39
4.2 單成分透析過濾	40
4.2.1 電解質對單成分LY溶液透析過濾之影響	40
4.2.2 電解質對單成分HA溶液透析過濾之影響	41
4.3 雙成分HA/LY透析過濾行為	41
4.3.1操作參數對濾速及阻力之影響	41
4.3.1-1 電解質種類	41
4.3.1-2 電解質(NaCl)濃度	42
4.3.1-3攪拌速度	42
4.3.1-4透析體積	42
4.3.1-5透析液電解質濃度	43
4.3.1-6進料溶液濃度	43
4.3.2 移除HA溶液之電解質	43
4.3.3 雙成分HA/LY之分離效率	44
4.3.3-1電解質種類	44
4.3.3-2電解質(NaCl)濃度	44
4.3.3-3攪拌速度	45
4.3.3-4透析體積	45
4.3.3-5透析液電解質濃度	45
4.3.3-6進料溶液濃度	46
第五章 結論	65
參考文獻	67
附錄A	75
附錄B	76

圖目錄
Fig.1.1 The classification of membrane separation process.	9
Fig.1.2 The diagram of (a)dead end filtration and (b)cross-flow filtration.	10
Fig.2.1 The Schematic diagram of diafiltration.	26
Fig.2.2 Typical methods to reduce concentration polarization and fouling in pressure driving membrane processes.	27
Fig.3.1 The experimental apparatus of dead-end.                 	 37
Fig.4.1 Pure water fluxes at different pressures of 100kDa membrane.	39
Fig.4.2 Time courses filtration flux on diafiltration of lysozyme(LY) under different electrolyte concentrations.	47
Fig.4.3 Time courses filtration resistances on diafiltration of lysozyme(LY) under different electrolyte concentrations.	47
Fig.4.4 Effect of electrolyte concentrations on reduce of LY conc.	48
Fig.4.5 Time courses filtration flux on diafiltration of HA under different electrolyte concentrations.	48
Fig.4.6 Time courses filtration resistances on diafiltration of HA under different electrolyte concentrations.	49
Fig.4.7 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolyte types.	50
Fig.4.8 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolyte types.	50
Fig.4.9 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolyte concentrations.	51
Fig.4.10 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolyte concentrations.	51
Fig.4.11 Time courses filtration flux on diafiltration of binary HA/LY solution under different Stirring speeds.	52
Fig.4.12 Time courses filtration resistances on diafiltration of binary HA/LY solution under different Stirring speeds.	52
Fig.4.13 Time courses filtration flux on diafiltration of binary HA/LY solution under different diavolumes.	53
Fig.4.14 Time courses filtration resistances on diafiltration of binary HA/LY solution under different diavolumes.	53
Fig.4.15 Time courses filtration flux on diafiltration of binary HA/LY solution under different diavolumes.	54
Fig.4.16 Time courses filtration resistances on diafiltration of binary HA/LY solution under different diavolumes.	54
Fig.4.17 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolyte concentrations of dialysate.	55
Fig.4.18 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolyte concentrations of dialysate.	55
Fig.4.19 Time coursesfiltration flux on diafiltration of binary HA/LY solution under different electrolyte concentrations of dialysate.	56
Fig.4.20 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolyte concentrations of dialysate.	56
Fig.4.21 Time courses filtration flux on diafiltration of binary HA/LY solution under different feed solution concentrations.	57
Fig.4.22 Time courses filtration resistances on diafiltration of binary HA/LY solution under different feed solution concentrations.	57
Fig.4.23 Removal of electrolyte from hyaluronic acid solution after diafiltration.	58
Fig.4.24 Effect of different electrolyte types on reduce of LY conc. of binary HA/LY solution.	58
Fig.4.25 Effect of different electrolyte concentrations on reduce of LY conc. of binary HA/LY solution.	59
Fig.4.26 Effect of different Stirring speeds on reduce of LY conc. of binary HA/LY solution.	59
Fig.4.27 Effect of different diavolumes on reduce of LY conc. of binary HA/LY solution.	60
Fig.4.28 Effect of different electrolyte concentrations of dialysate on reduce of LY conc of binary HA/LY solution.	60
Fig.4.29 Effect of different feed solution concentrations on reduce of LY conc of binary HA/LY solution.	61
Fig.4.30 Effect of different electrolyte types on the rejection of HA of binary HA/LY solution.	61
Fig.4.31 Effect of different electrolyte concentrations on the rejection of HA of binary HA/LY solution.	62
Fig.4.32 Effect of different stirring speeds on the rejection of HA of binary HA/LY solution.	62
Fig.4.33 Effect of different diavolumes on the rejection of HA of binary HA/LY solution.	63
Fig.4.34 Effect of different electrolyte concentrations of dialysate on the rejection of HA of binary HA/LY solution.	63
Fig.4.35 Effect of different feed solution concentrations on the rejection of HA of binary HA/LY solution.	64
Fig.A.1 The calibration curve of HA solution.	75
Fig.B.1 The calibration curve of LY solution.	76

表目錄
Table1.1 The classification of driving force in different operation process.	9
Table3.1 The property of disc membrane.	38
Table3.2 The properties of hyaluronic acid(HA).	38
Table3.3 The properties of lysozyme(LY).	38
參考文獻
Balazs, E. A., Laurent, T. C. and Jeanloz, R. W., “Nomenclature of hyaluronic acid ”, Biochem. J., 235, 903 (1986).

Barba, D., F. Beolchini and F. Veglio, “Water saving in a two stage diafiltration for the production of whey protein concentrates”, Desalination, 119, 187-188 (1998).

Barba, D. and F. Beolchini, “Minimizing water use in diafiltration of whey protein concentrates”, Sep. Sci. Technol., 35, 951-965 (2000).

Bauser, H., H. Chmiel, N. Stroh and E. Walitza, “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application”, J. Membr. Sci. 27, 195-202 (1986).

Bellara, S.R., Z.F. Cui and D.S. Pepper, “Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes”, J. Membr. Sci. , 121, 175-184 (1996).

Berot, S., Y. Popineau, J.-P. Compoint, C. Blassel and B. Chaufer, “Ultrafiltration to fractionate wheat polypeptides”, J. Chromatogr. B, 753, 29-35 (2001).

Bhattacharjee, S., C. Bhattacharjee and S. Datta, “Studies on the fractionation of β–lactoglobin from casein whey using ultrafiltration and ion-exchange membrane chromatography”, J. Membr. Sci., 275, 141-150 (2006).
Bitter, T.,Muir and H. M., “A modified uronic acid carbazole reaction”, Anal. Biochem., 4, 330-334 (1962).

Brake, J. W. and Thacker,K., “Hyaluronic acid from bacterial culture”, U. S. Pat. 4517295 (1985).

Bradford, M. M., “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding”, Anal, Biochem,72,248-254 (1976).

Carlino, S. and Magnette, F. C. O., “Process for purifying high molecular weighthyaluronic acid”, U. S. Pat. 6489467 (2002).

Cheng, T. W., H. M. Yeh and C. T. Gau, “Enhancement of Permeate Flux by Gas Slugs for Crossflow Ultrafiltration in Tubular Membrane Module”, Sep. Sci. Technol., 33, 2295-2309 (1998).

Cheng, T. W. and S. Y. Pan “Recovery of Sizing Agent by Gas Sparging Ultrafiltration”, J. Chin. Inst. Chem. Engrs., 32, 431-436 (2001).

Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, Tech-nomic Publishing Co. Inc. Pennsylvania (1998).

Cho, C.W., D.Y. Lee and C.W. Kim, “Concentration and purification of soluble pectin from mandarin peels using crossflow microfiltration system”, South Korea, Carbohydrate Polymers, 54, 21-26 (2003).

Chong, R., P. Jelen and W. Wang, “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol. 20 393-402 (1985).

Crum, R.H., E.M. Murphy and C.K. Keller, “A non-adsorptive method for the isolation and fractionation of natural dissolved organic carbon”, Water Resour., 30, 1304-1311 (1996).

Drobink, J., “Hyaluronan in drug delivery”, Adv. Drug Delivery Rev., 7,295–308 (1991).

Duranti, F., G. Salti, B. Bovani, M. Calandra and M. L. Rosati. “Injectable hyaluronic acid gel for soft tissue augmentation”, Dermatol. Surg. 24, 1317-1325 (1998).

E. Fouissac, M. Milas, M. Rinaudo and R. Borsali, ” Influence of the Ionic Strength on the Dimensions of Sodium Hyaluronate“,Macromolecules, 25, 5613-5617 (1992)

Fane, A. G., C. J. D. Fell and A. Suki, “The Effect of pH and Ionic Environment on the Ultrafiltration of Protein Solutions with Retentive Membranes”, J. Membrane Sci., 16, 195 (1983).

Fell, C. J. D., K. J. Kim, V. Chem, D. E. Wiley, and A. G.Fane, “Factors Determining Flux and Rejection of Ultrafiltration Membranes”, Chem. Eng. Process.,27, 165 (1990).

Foley, G., “Minimisation of process time in ultrafiltration and continuous diafiltration: the effect of incomplete macrosolute rejection”, J. Membr. Sci., 163, 349-355 (1999).

Foley, G. and J. Garcia, “Ultrafiltration flux theory based on viscosity and osmotic effects: application to diafiltration optimization”, J. Membr. Sci., 176, 55-61 (2000).

Foley, G., “Ultrafiltration with variable volume diafiltration: a novel approach to water saving in diafiltration processes”, Desalination, 199, 220-221 (2006).

Foley, G., “Water usage in variable volume diafiltration: comparison with ultrafiltration and constant volume diafiltration”, Desalination, 196, 160-163 (2006).

Gill, W. N., D. E. Wiley, C. J. D. Fell, and A. G. Fane, “Effect of Viscosity on Concentration Polarization in Ultrafiltration”, AIChE J., 34, 1563 (1988).

Jaffrin, M.Y. and J.Ph. Charrier, “Optimization of ultrafiltration and diafiltration processes for albumin production”, J. Membr. Sci., 97, 71-81 (1994).

Kim, B.S. and H.N. Chang, “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation , 2 , 9-23 (1991).
Laborie, S., C. Cabassud, L. Durand-Bourlier and J.M. Lainé, “Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibres for drinking water production: effect of slug flow on cake structure”, presented at the 7th World Filtration Congress in Budapest, Hungary in May (1996).

Martinez-Ferez, A., A. Guadix and E.M. Guadix, “Recovery of caprine milk oligosaccharides with ceramic membranes”, J. Membr. Sci., 276, 23-30 (2006).

Meacle, F., A. Aunins, R. Thornton and A. Lee, “Optimization of the membrane purification of a polysaccharide-protein conjugate vaccine using backpulsing”, J. Membr. Sci., 161, 171-184 (1999).

Mercier-Bonin, M., C. Fonade and C. Lafforgue-Delorme, “How slug Flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci., 128, 103-113 (1997).

Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent.,4,  412 (1983).

Morel, G., A. Gracina and J. Lachise, “Enhanced nitrate ultrafiltration by cationic surfactant”, J. Membr. Sci., 56 , 1-12 (1991).

Moreno-Villoslada, I., V. Miranda, M. Jofré, P. Chandía, J.M. Villatoro, J. L. Bulnes, M. Cortés, S. Hess and B. L. Rivas, “Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration”, J. Membr. Sci., 272, 137-142 (2006).

Mulder, M., “Basic Principles of Membrane Technology”, Kluwer Academic Publishers, The Netherlands (1996).

Murkes, J. and C.G. Carlsson, “Crossflow Filtration-Theory and Practice”, John  Wiley & Sons,New York (1988)

Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao and S. Kimura, “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin”, AIChE J., 36, 907-915 (1990).

Nel, R. G., S. F. Oppenheim and V.G.J. Rodgers, “Effect of solution properties on solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog., 10, 539-542 (1994).

Nimrod, A., Greenman, B., Kanner, D., Landsberg, M. and Beck, Y., “Methodof producing high molecular weight sodium hyallronate by fermentation of streptococcus”, U. S. Pat. 4780414 (1988).

Pisarcik,M.,Bakos,D.,Ceppan,M.,”Non-Newtonia properties of hyaluronic acid aqueous solution“, Colloids and Surfaces, 97, 197-202 (1995).

Rangaswamy,V. and Jain,D., “An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp.
zooepidemicus”, Biotechnology Letters, 30, 493-496 (2008).

Reis, R.V. and S. Saksena, “Optimization diagram for membrane separations”,  J. Membr. Sci., 129, 19-29 (1997).

Romero, J. and A.L. Zydney, “pH and salt effects on chiral separations using affinity ultrafiltration”, Desalination, 148, 159-164 (2002).
Sharif, M., “Serum hyaluronic acid levels as a predictor of disease  progression in osteoarthritis of the knee”, arthritis and rheumatism, 38, 760 – 767 (1995).

Wang, S. S., “Effect of Solution Viscosity on Ultrafiltration,” J. Membrane Sci., 39, 187 (1988).

Winzeler, H.B. and G. Belfort, “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, J. Membr. Sci., 80, 35-47 (1993).

Yang, P. F, and C. K. Lee, “Hyaluronic acid interaction with chitosan-conjugated magnetite particles and its purification ”, Biochemical Engineering Journal, 33, 284-289 (2007).

Yazdanshenas, M., A.R. Tabatabaeenezhad, R. Roostaazad and A.B. Khoshfetrat, “Full scale analysis of apple juice ultrafiltration and optimization of diafiltration”,  Sep. Purif. Technol., 47, 52-57 (2005).

Zhou, H. J. Ni, W. Huang and J. Zhang, “Separation of Hyaluronic Acid from Fermentation Broth by Tangential Flow Microfiltration and Ultrafiltration”,  Sep. Purif. Technol., 52, 29-38 (2006).

Zydney, A.L., “Protein separations using membrane filtration: New opportunities for whey fractionation”, International Dairy Journal, 8, 243-250 (1998).

呂維明編著,”固液過濾技術”, 高立圖書有限公司 (2004).

陳毓華、陳松青,”透明質酸與其生醫應用”,化工資訊與商情,第37期 (2006).

蘇芳儀,”以超過濾回收玻尿酸”,碩士論文,高雄應用科技大學,高雄,台灣(2007).

黃定國,”透明質酸之開發與應用”, 菌種保存及研究簡訊, 3: 1~9 (2001).

李明軒,”以超過濾去除玻尿酸發酵液中微量蛋白質之製程開發”,碩士論文,成功大學,台南,台灣,(2007).
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信