淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2107201012520500
中文論文名稱 利用1H,13C NMR探討hNPY C端衍生物在TFE溶液中之結構、自結合狀態 及動力學
英文論文名稱 Structure, self-association and dynamics in aqueous TFE by 1H and natural abundance 13C NMR of a C-terminal analog of hNPY
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 98
學期 2
出版年 99
研究生中文姓名 喬思敏
研究生英文姓名 Szu-Min Chiao
學號 697160256
學位類別 碩士
語文別 中文
口試日期 2010-07-01
論文頁數 92頁
口試委員 指導教授-李長欣
委員-鄧金培
委員-徐駿森
中文關鍵字 神經胜肽  固相胜肽合成  圓二色光譜  核磁共振  自結合  弛緩  動力學  無模型法則 
英文關鍵字 NPY  SPPS  CD  NMR  self-association  Relaxation  dynamic  Model-Free 
學科別分類 學科別自然科學化學
中文摘要 利用NMR 和CD 研究人類神經肽Y 的C 端衍生物hNPY(20-36)和
P34-hNPY(20-36)在30%三氟乙醇溶液中,在283 K 和310 K 下的變化。其結構的變化、自結合狀態和動力學行為的差異皆可能是由於單殘基突變,Q34→P34 所造成的。P34-hNPY(20-36)的最佳結構為形成一個α-螺旋片段在殘基25-30 及25-29 的位置,分別在283 K 和310 K 下。而hNPY(20-36)則會形成更長的α-螺旋片段,其位置在23-34 和24-35,分別在283K 和310 K。擴散實驗(DOSY)中顯示出P34-hNPY(20-36)在三氟乙醇溶液中會具有比hNPY(20-36)大的流體力學半徑。相較之下,從弛緩實驗得到此兩個胜肽片段在三氟乙醇溶液中具有相近的全相關時間。推測造成其結果可能為P34-hNPY(20-36)形成較大的寡聚體,使得P34-hNPY(20-36)的溶合作用較hNPY(20-36)小所造成。
英文摘要 Analog of human neuropeptide Y based on the region of C -terminus (hNPY(20-36)) and mutant at position 34 with proline were studied by NMR and CD in 30% trifluoroethanol (TFE) at 283K and 310K. The variation of structure, aggregation, and dynamics may be attributed to the single-residue mutation, Q34→P34. The optimal structure of mutated peptide consists of an α-helical segment with residues 25-30 and 25-29, at 283K and 310K, respectively. More extended α-helical segments were observed for hNPY(20-36), of which are ranged with residues 23-34 and 24-35, at 283K and 310K , respectively. Diffusion Ordered Spectroscopy (DOSY) experiment reveal P34-hNPY(20-36) forms larger aggregate than hNPY(20-36) in TFE aqueous solution. In contrast, the overall correlation times derived from relaxation data indicated similar size of both peptides in TFE. The result may be explained as a consequence of P34-hNPY(20-36) with more intermolecular interactions that increase the size of the “diffusion unit” which contains the molecule of interst and its surrounding, e.g., solvent or other solute molecules since the more extended structure.
論文目次 第一章 緒論 1
1.1 NPY介紹 1
1.2 NPY在水溶液和與微胞結合的結構變化 2
1.3 研究目的 3
第二章 實驗原理 5
2.1 固相胜肽合成(Solid-Phase Peptide Synthesis, SPPS) 5
2.2 圓二色旋光光譜儀(Circular Dichroism Spectrometer, CD Spectrometer) 6
2.2.1 CD原理 6
2.2.2 多胜肽之二級結構CD光譜 10
2.3核磁共振(Nuclear magnetic resonance, NMR) 12
2.3.1 二維核磁共振原理(2D NMR) 18
2.4 XPLOR 原理 33
2.5無模型法則(Model-Free Approach) 34
第三章 實驗材料與方法 37
3.1 實驗材料 37
3.1.1 藥品 37
3.1.2 儀器 39
3.1.3 試劑配製 40
3.2 實驗方法 41
3.2.1 胜肽合成 42
3.2.2 胜肽純化與鑑定 43
3.2.3 Circular Dichroism 44
3.2.4 NMR 45
3.2.5 結構計算 46
3.2.6無模型法則(model-free approach)計算 47
第四章 結果與討論 50
4.1 CD光譜分析 50
4.2 NMR 52
4.2.1光譜判定 52
4.2.2 化學位移 76
4.2.3 DOSY光譜 78
4.3 結構計算 81
4.4 胜肽分子的動態行為 84
第五章 結論 88
第六章 參考資料 89

參考文獻 1. Mirjam L., Hiroshi K., Gerd F., Marie-Isabel A., Annette G. B.,
Oliver Z. (2005). Strongly Altered Receptor Binding Properties in PP and NPY Chimeras Are Accompanied by Changes in Structure and Membrane Binding. Biochemistry, 44, 9255-9264.
2. Bader, R., Bettio, A., Beck-Sickinger, A. G, Zerbe, O. (2001). Structure and Dynamics of Micelle-bound Neuropeptide Y: Comparison with Unligated NPY and Implications for Receptors Selection. Journal of Molecular Biology, 305, 307-329.
3. Bettio, A., Beck-Sickinger, A. G. (2001). Biophysical Methods to Study Ligand–Receptor Interactions of Neuropeptide Y. Biopolymers (Peptide Science), 60, 420–437.
4. Nordmann, A., Marcel J. J. Blommers, Fretz, H., Arvinte, T., Drake, A.F. (1999) Aspects of the molecular structure and dynamics of neuropeptide Y. European Journal of Biochemistry, 261, 216-226.
5. 謝宛倫. (2009). 淡江大學化學學系碩士班碩士論文.
6. Nelson, D. L., Cox, M. M., Lehninger Principles of Biochemistry, 4th ed., Worth Publishers: New York.
7. Y.H Chen., J.T Yang., Martinez, H.M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. European Journal of Biochemistry,11, 4120-4131.
8. Davis, D.G., Bax, A. (1985). Assignment of complex proton NMR spectra via two-dimensional homonuclear hartmann-hahn spectroscopy. Journal of the American Chemical Society, 107(9), 2820-2821.
9. Osapay, K., Case, D.A. (1994). Analysis of proton chemical shifts in regular secondary structure of proteins. Journal of Biomolecular NMR, 4(2), 215-230.
10. Osapay, K., Case, D.A. (1991). A new analysis of proton chemical shifts in proteins. Journal of the American Chemical Society, 113(25), 9436-9444.
11. Lightner, D.A., Gurst, J.E. (2002). Organic conformational analysis and stereochemistry from circular dichroism spectroscopy.
12. Greenfield, N., Davidson, B., Fasman, G.D. (1967). The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry, 6(6), 1630-1637.
13. Greenfield, N.J., Fasman, G.D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8(10), 4108-4116.
14. Skoog Douglas A., Holler James F., Nieman Timothy A. (1998). Principles of instrumental analysis.
15. J. T. Yang, C. S. Wu and H. M. Martinez. (1986). Calculation of protein conformation from circular dichroism. Meth Enzymol, 130, 208-269.
16. F. Bloch, W. W. Hansen, and M. Packard. (1946). Nuclear induction. Physical Review, 46(127)
17. 李寬容. (2004). 2003年諾貝爾生醫獎介紹. 物理雙月刊, 26(1), 28-40.
18. G. Marius Clore, Attila Szabo, Ad Bax, Lewis E. Kay, Paul C. Driscoll, Angela M. Gronenborn. (1990). Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. Journal of the American Chemical Society, 112(12), 4989-4991.
19. W. P. Aue, E. Bartholdi, and R. R. Ernst. (1976). Two‐dimensional spectroscopy. application to nuclear magnetic resonance. Journal of Chemical Physics, 64(5), 2229-2246.
20. 余靖, 李長欣 核磁共振專輯(二), 1998, 國科會精密儀器發展中心。
21. Cavanagh, J., Fairbrother, W. J., Palmer III, A. G., Skelton, N. J. Protein NMR Spectroscopy : principles and practice, 1996.
22. Altieri, A.S., Hinton, D.P., Byrd, R.A. (1995). Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. Journal of the American Chemical Society, 117(28), 7566-7567.
23. Morris, K.F., Charles S. Johnson Jr. (1992). Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 114(8), 3139-3141.
24. Yao, S., Howlett, G.J., Norton, R.S. (2000). Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements. Journal of Biomolecular NMR, 16(2), 109-119
25. Dingley, A. J., Mackay, J.P., Shaw, G.L., Hambly, B.D., King, G.F. (1997). Measuring macromolecular diffusion using heteronuclear multiple-quantum pulsed-field-gradient NMR. Journal of Biomolecular NMR, 10(1), 1-8.
26. Chien,W.J., Lin, S.C.,Chang, D.K. (1996). Self-diffusion measurement on synthetic biopolymers via pulsed field gradient NMR spectroscopy. Bulletin of the Institute of Chemistry, Academia Sinica, 43, 53-62.
27. W.J. Chien, S.F. Cheng ,D.K. Chang. (1998). Determination of the binding constant of a protein kinase C substrate, NG(28–43), to sodium dodecyl sulfate via the diffusion coefficient measured by pulsed field gradient nuclear magnetic resonance. Analytical Biochemistry, 264(2), 211-215.
28. Wishart,D.S., Sykes, B.D., Richards, F.M.(1992). The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry , 31, 1647-1651.
29. Wishart,D.S.,Sykes,B.D. (1994). The 13C Chemical-Shift Index: A simple method for theidentification of protein secondary structure using 13C chemical-shift data. Journal of Biomolecular NMR,4,171-180.
30. Schwieters,C.D., Kuszewski,J.J., Clore,G.M. (2006). Using Xplor-NIH for NMR molecular structure determination. Program Nuclear Magnetic Resonance Spectroscopy,48,47-62.
31. Palmer, A. G. (1998). Modelfree.
32. Koerdel, J., Skelton, N.J., Akke, M., Palmer III, A.G., Chazin, W.J. (1992). Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected nitrogen-15 NMR spectroscopy. Biochemistry, 31(20), 4856-4866.
33. Lerch, M., Mayrhofer, M., Zerbe, O. (2004). Structural similarities of micelle-bound peptide YY (PYY) and neuropeptide Y (NPY) are related to their affinity profiles at the Y receptors. Journal of Molecular Biology, 339(5), 1153-1168.
34. 黃太煌. (2004). 利用核磁共振光譜學探討蛋白質的結構、動性及功能. 物理雙月刊, 26(1), 28-40.
35. Ellis,J.P., Bakke,C.K., Kirchdoerfer,R.N., Jungbauer,L.M., Cavagnero, S. (2008). Chain dynamics of nascent polypeptides emerging from the ribosome. ACS Chemical Biology, 3(9), 555-566.
36. Yao, S., Howlett, G., Norton, R.(2000). Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurement. Journal of Biomolecular NMR, 16, 109-119.
37. Bader, R., Bettio, A.,Beck-Sickinger and Zerbe, O. (2001). Structure and dynamics of micelle-bound neuropeptide Y: Comparison with unligated NPY and implications for receptor selection. Journal of Molecular Biology, 305(2), 307-329.
38. Arvidsson,K., Jarvet,J., Allard,P., Ehrenberg,A. (1994). Solution structure by 1H and dynamics by natural abundance 13C NMR of a receptor recognising peptide derived from a C-terminal fragment of neuropeptide Y. Journal of Biomolecular NMR, 4, 653-672.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-29公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信