§ 瀏覽學位論文書目資料
系統識別號 U0002-2107200912584800
DOI 10.6846/TKU.2009.01362
論文名稱(中文) Pseudomonas sp. TKU015殺蟲蛋白之基因選殖與純化
論文名稱(英文) Molecular Cloning and Purification of an Insecticidal Protein from Pseudomonas sp. TKU015
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 生命科學研究所碩士班
系所名稱(英文) Graduate Institute of Life Sciences
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 林詠迪
研究生(英文) Yung-Di Lin
學號 696180024
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-07-02
論文頁數 74頁
口試委員 指導教授 - 王三郎
委員 - 劉嚞睿
委員 - 梁慈雯
關鍵字(中) Pseudomonas sp.
納豆激酶
基因選殖
殺蟲蛋白
關鍵字(英) Pseudomonas sp.
nattokinase
gene cloning
insecticidal protein
第三語言關鍵字
學科別分類
中文摘要
TKU015係一株以蝦殼粉為主要碳/氮源,篩選自台灣北部土壤,經鑑定為Pseudomonas 屬新種之幾丁質酶、幾丁聚醣酶和納豆激酶生產菌。TKU015生產納豆激酶之較適條件為含1 % 蝦殼粉、0.1 % K2HPO4及0.05 % MgSO4.7H2O (pH7)於30℃搖瓶培養2天。SDS-PAGE測得分子量為21 kDa。納豆激酶活性受PMSF完全抑制,Fe 2+ 則會提高其活性。於基質特異性方面,因對N-succinyl-Ala-Ala-Pro-Phe-pNA的感受性較高,而將之歸納為類似凝乳蛋白的絲胺酸型蛋白酶。
由液相層析串聯式質譜分析得到納豆激酶的胺基酸序列片段,經比對有23 %序列接近Bacillus cereus ATCC 14597的幾丁質結合蛋白。設計適當的引子,經由一連串的聚合酶鏈鎖反應,發現TKU015的殺蟲蛋白基因序列片段。經由胺基酸序列比對,與Pseudomonas entomophila L48序列相近,設計合宜的引子以聚合酶鏈鎖反應,找到殺蟲蛋白基因的C端。並且藉由GenomeWalkerTM和聚合酶鏈鎖反應找出殺蟲蛋白的基因全長2079核苷酸單位,並進一步做基因選殖。首先將基因轉殖到pET-32 Xa/LIC的載體上,轉形入大腸桿菌XL1-Blue宿主中,利用XL1-Blue宿主特性將質體完整建構,之後萃取純化質體再轉形入大腸桿菌BL21宿主中表現,用IPTG誘導表現於37℃搖瓶培養1天,可表現94.7 kDa的蛋白質產物。用HisTag將蛋白質純化,去純多餘的鹽類,之後利用factor Xa protease 將目標蛋白質77 kDa進一步分離出來,得到的蛋白質對果蠅幼蟲做生物活性測試。
英文摘要
The chitinase, chitosanase and nattokinase producing strain, Pseudomonas sp. TKU015, was isolated from the soil in North Taiwan. The shrimp shell waste powder was used as sole carbon / nitrogen source. The optimized condition for nattokinase production was found when the culture was shaken at 30℃for 2 days in 100mL of medium contain 1% SSP, 0.1 % K2HPO4 and 0.05 % MgSO4.7H2O (pH7). The molecular mass of the nattokinase determined by SDS-PAGE was approximately 21 kDa. The nattokinase was inhibited completely by PMSF, and more activated by Fe2+. The most sensitive substrate for nattokinase was N-succinyl-Ala-Ala-Pro-Phe-pNA. Therefore, nattokinase was considered to be a chymotrypsin-like serine protease.

The results of peptide mass mapping showed that two tryptic peptides of the nattokinase were identical to a chitin binding protein from Bacillus cereus ATCC 14579 (GenBank accession number gi30020946) with 23% sequence coverage. Designing the suitable primer, by way of a succession of polymerase chain reaction, discovered the insecticidal protein gene sequence fragment. The sequence was similar that amino acid sequence comparison with Pseudomonas entomophila L48, then designing that suitable that, by way of a succession of polymerase chain reaction, found the C end of insecticidal protein gene. The all insecticidal protein gene of 2079 base pair was revealed that used GenomeWalkerTM and polymerase chain reaction.
Cloning insecticidal protein gene from Pseudomonas sp. TKU015 in the pET-32 Xa/Lic vector, and transferred to the Escherichia coli XL1-Blue host. The plasmid constructed completely because of the host characteristic. Afterward purification plasmid was extracted and then expression of transferred the Escherichia coli BL21 host. Inducing the performance of 94.7kDa the protein product with IPTG when the culture was shaken at 37℃for 1 day. The purification of insecticidal protein used HisTaq, and then desalted. Finally, the 77 kDa of goal protein was separated by using factor Xa protease. The protein was to be the biological activity test against larva of fruit fly.
第三語言摘要
論文目次
目錄
	頁次

簽名頁
授權書
中文摘要	I
英文摘要 III
誌謝	V
目錄	VI
圖目錄	XI
表目錄	XIII

第一章 緒論	1
第二章 文獻回顧	2
     2.1 菌種之簡介	2
     2.2 幾丁質之應用	2
     2.3 納豆激酶	3
        2.3.1 納豆激酶溶解血栓之功用	3
     2.4 化學性與生物性農藥	4
2.4.1 化學農藥	4
2.4.2 生物農藥	4
     2.5 生物防治之微生物應用	6
2.5.1 細菌性殺蟲劑	6
  2.5.1.1 蘇力菌	6
  2.5.1.2 其他細菌防治昆蟲的特性	7
2.5.2 Pseudomonas spp.殺蟲物質	8
2.5.3 Pseudomonas spp.殺蟲蛋白之比較	9
2.6 利用生物技術轉殖殺蟲基因	9
第三章 材料與方法	13
     3.1 實驗菌株	13
     3.2 選殖載體	13
     3.3 實驗材料	13
     3.4 實驗儀器	15
     3.5 酵素最適培養條件探討	15
3.5.1 碳/氮源之選擇	15
3.5.2 碳/氮源濃度之影響	16
3.5.3 培養溫度	16
3.5.4 培養體積 (通氣量)	16
3.5.5 培養時間	16
     3.6 酵素之分離純化	16
3.6.1 粗酵素液之製備	17
3.6.2 陰離子交換層析	17
     3.7 納豆激酶之活性測定	17
     3.8 蛋白質電泳分析	18
     3.9 蛋白質定量分析	18
     3.10 酵素之特性分析	19
        3.10.1 金屬離子與抑制劑對酵素活性之影響	19
        3.10.2 納豆激酶之基質特異性	19
        3.10.3 液相層析串聯式質譜分析納豆激酶	19
     3.11 聚合酶鏈鎖反應鑑定殺蟲蛋白基因	20
3.11.1 設計引子	20
3.11.2 聚合酶鏈鎖反應	20
     3.12 殺蟲蛋白基因全長	21
3.12.1 應用GenomeWalkerTM建立基因庫	21
3.12.2 基因特異性引子合成	21
3.12.3 聚合酶鏈鎖反應	21
     3.13 殺蟲蛋白基因選殖	22
        3.13.1 設計引子	22
        3.13.2 聚合酶鏈鎖反應	23
        3.13.3 接合到pET32 Xa/LIC載體上	23
        3.13.4 轉形	23
     3.14 殺蟲蛋白	24
        3.14.1 誘導產生蛋白質	24
        3.14.2 不溶性內涵體蛋白	25
        3.14.3 純化殺蟲蛋白	25
     3.15 殺蟲蛋白生物活性測試	26
        3.15.1 供試昆蟲	26
        3.15.2 生物活性測試	26
第四章 結果與討論	27
     4.1 納豆激酶生產菌之篩選	27
     4.2 菌株之特性	27
     4.3 碳/氮源之選擇	27
     4.4 納豆激酶較適生長條件探討	27
     4.5 納豆激酶之分離純化	28
        4.5.1 粗酵素液製備	28
        4.5.2 陰離子交換層析	28
        4.5.3 綜合結果	29
     4.6 納豆激酶之分子量測定	29
        4.6.1 SDS-PAGE	29
        4.6.2 綜合結果	29
     4.7 納豆激酶之特性分析	30
        4.7.1 金屬離子對納豆激酶之影響	30
        4.7.2 納豆激酶之基質特異性	30
        4.7.3 納豆激酶的液相層析串聯式質譜分析	31
     4.8 Pseudomonas sp.TKU015殺蟲蛋白	44
        4.8.1 殺蟲蛋白基因序列	44
        4.8.2 應用GenomeWalkerTM找出殺蟲蛋白基因序列全長	44
     4.9 Pseudomonas sp.TKU015殺蟲蛋白基因選殖	45
        4.9.1 殺蟲蛋白基因接合在pET32 Xa/LIC載體上	45
        4.9.2 基因轉形	45
     4.10 生物活性測試	46
第五章 結論	61
參考文獻	63
附件	73

圖目錄
	                                           頁次

圖2.1 納豆激酶在血栓溶解系統中之直接與間接作用	11
圖4.1 Pseudomonas sp.TKU015之顯微鏡照片	32
圖4.2 16S rDNA核酸序列分析	33
圖4.3 SSP濃度對TKU015納豆激酶生產之影響	34
圖4.4 培養溫度對TKU015納豆激酶活性生產之影響	35
圖4.5 納豆激酶之DEAE-Sepharose CL-6B層析圖譜	36
圖4.6 各純化步驟之SDS-PAGE電泳分析圖	38
圖4.7 由胺基酸序列片段地圖設計p203 及p206 引子,對 Pseudomonas sp.TKU015 進行聚合酶連鎖反應所得產物之電泳圖	47
圖4.8 以p239 及p240 引子,對Pseudomonas sp.TKU015 進行聚合酶連鎖反應所得產物之電泳圖	48
圖4.9 GenomeWalker™ 應用四種限制酶作用於Pseudomonas sp.TKU015之實驗流程圖	49
圖4.10 GenomeWalker 資料庫和基因特異性引子GSP1 (p267)、GSP2 (p268)試圖找出殺蟲蛋白基因全長	50
圖4.11 GenomeWalker 資料庫和基因特異性引子GSP1(p274)、GSP2(p276)找出殺蟲蛋白基因全長	51
圖4.12 Pseudomonas sp.TKU015殺蟲蛋白胺基酸序列全長	52
圖4.13 Pseudomonas sp.TKU015殺蟲蛋白與Pseudomonas entomophila L48 殺蟲蛋白序列比對	53
圖4.14 設計p282 及p283 引子進行聚合酶連鎖反應,從Pseudomonas sp.TKU015 genomic DNA 找到殺蟲蛋白基因全長並且萃取DNA.
        	54
圖4.15 設計p291及p292引子擴增TKU015殺蟲蛋白。並選殖於pET32
        Xa/LIC載體	55
圖4.16 Pseudomonas sp.TKU015殺蟲蛋白基因選殖實驗流程圖 56
圖4.17各純化步驟之SDS-PAGE電泳分析圖	57
圖4.18 Xa蛋白酶處理殺蟲蛋白之SDS-PAGE電泳分析圖	58
圖4.19 TKU015殺蟲蛋白對於果蠅幼蟲之致死率	59
圖4.20 殺蟲蛋白質之基因圖譜	60

表目錄
	                          頁次

表2.1 拮抗微生物之種類與其防治機制	12
表4.1 TKU015納豆激酶之純化	37
表4.2 微生物來源之納豆激酶特性比較	39
表4.3 金屬離子對納豆激酶之影響	40
表4.4 TKU015納豆激酶的基質特異性	41
表4.5 TKU015納豆激酶的液相層析串聯式質譜分析	42
表4.6 聚合酶鏈鎖反應實驗之引子	43
參考文獻
參考文獻

王一雄。(1997)。土壤環境污染與農藥。明文書局。

王三郎。1999。海洋未利用生物資源之回收利用。生物資源 生物技術。1 (1):1-8。

王三郎。2002。應用微生物。高立圖書出版社。

曾國權。2002。Pseudomonas fluorescens K-188所生產微生物抑制物質之研究。大葉大學食品工程學系碩士論文。

曾經洲。2005。昆蟲的穿蟲毒藥 蘇力菌。生物農藥 科學發展。391。

陳韋如。2005。台灣蘇力菌篩選鑑定及cry1Ac 基因選殖。朝陽科技大學生物技術研究所碩士論文。

陳昱初。(1996)。談作物病蟲害之生物防治。高雄區農業專訊。

陳慶三。2005。抗蟲蛋白質。科學發展。393: 12-15。

陳馨仁。2007。Pseudomonas sp. TKU015所生產幾丁質酶、幾丁聚醣酶及納豆激酶之純化與定性。淡江大學生命科學研究所碩士論文。

謝佳霖。2009。微生物殺蟲劑-蘇力菌。生物資源 生物技術。 11(1,2): 12-13。

謝奉家、林宗俊、曾瑞堂、高穗生。2004 。兼具殺蟲與抗菌作用之線蟲共生細菌--- 光桿菌。植物保護學會會刊。46:163-172。

Alberghini S, Filippini R, Marchetti E, Dindo ML, Shevelev AB, Battisti A, Squartini A (2005) Construction of a Pseudomonas sp. derivative carrying the cry9Aa gene from Bacillus thuringiensis and a proposal for new standard criteria to assess entomocidal properties of bacteri. Res Microbio. 156: 690–699.

Allan CR, Hadiger LA (1979) The fungicidal effect of fungi of varying cell well composition. Exper Mycol. 3: 285-287.

Aronson A (2002) Sporulation and δ -endotoxin synthesis by Bacillus thuringiensis. CMLS, Cell Mol Life Sci. 59: 417-425.

Beegle CC, Yamamoto T (1992) History of Bacillus thuringiensis Berliner research and development. Can Entomol. 124: 587-616.

Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R, ffrench-Constant RH (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Sci. 280: 2129–2132.

Bowen DJ, Ensign JC (1998) Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Micron. 64: 3029-3035.

Bowen DJ, Thomas A, Rocheleau, Blackburn M, Andreev O, Golubeva E, Bhartia R, Richard H (2009) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science. 280: 2129-2132.

Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 49: 423–435.

Chak KF, Youn YM (1990) Characterization of the Bacillus strains isolated from Taiwan. Proc Natl Sci Counc ROC(B). 14: 175-182.

Chambers JA, Jelen A, Gilbert MP, Jany CS, Johnson TB (1991) Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J Bacteriol. 173: 3966-3979.

Chevallier T, Muchaonyerwa P, Chenu C (2003) Microbial utilisation of two proteins adsorbed to a vertisol clay fraction: toxin from Bacillus thuringiensis subsp. tenebrionis and bovine serum albumin. Soil Biol Biotech. 35: 1211–1218.

Cody RM (1989) Disdtribution of chitinase and chitobiase in Bacillus. Cur Microbiol. Appl Environ Micron.ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Benett H, Au C (2003) Photorhabdus: towards a functional genomic analysis of a symbiot and pathogen. FEMS Microbiol Lett. 26: 433–456.

ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon. 49: 436–451.

De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17: 193–199.

Dunn PH (1960) Control of house flies in bovine feces by a feed additive containing Bacillus thuringiensis var. thuringiensis Berliner. J Insect Pathol. 2: 13-16. 

Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S  (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol. 21: 1307–1313.

Dodd SJ, Mark RH, Hurst, Travis R. Glare, Maureen O’Callaghan, Ronson  CW (2006) Occurrence of sep insecticidal toxin complex genes in Serratia spp. and Yersinia frederiksenii.  Appl Environ Microbiol. 72: 6584-6592.

Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun. 197: 1340-1347.

Gamel PH, Piot JC (1992) Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. Gene. 120: 17-26.

Goodrich-Blair H, and Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64: 260–268.

Hall IM, Arakawa KY (1959) The susceptibility of housefly Musca domestica Linnaeus to Bacillus thuringiensis var. thuringiensis Berliner. J  Insect Pathol. 1: 351-355. 

Huang M, Li DX, Xiang WL, Chen H, Guo JH, Zhao J, Zhang J, Yang ZR, Sun Q (2009) Effect of the untranslated region and signal peptide sequence of the insecticidal gene from Pseudomonas pseudoalcaligenes on the activity of its expression products in tobacco. World J Microbiol Biotechnol. 25: 619–625.

Huang K, Badger M, Haney K, Evans SL (2007) Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas Xuorescens. Protein Expr Purif.53: 325–330.

Jeong YK, Kim JH, Gal SW, Kim JE, Park SS, Chung KT, Kim YH, Kim BW, Joo WH (2004) Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis Strain A1. World J. Microbiol Biotechnol. 20: 711-717.

Jeong YK, Park JU, BaekH, Park SH, Kong IS, Kim DW, Joo WH (2001) Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol Biotechnol. 17: 89-92.

Kadokura, K., Rokutani, A., Yamamoto ,M., Ikegami ,T., Sugita ,H., Itoi ,S., Hakamaya, W., Oku, T., Nishio , T (2007) Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin . Appl Microbiol Biotechnol. 75: 1275-1283.

Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol. 62: 1488-2482.

Kim HK, Kim GT, Kim DK, Choi WA, Park SH, Jeong YK, Kong IS (1997) Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J Ferment Bioeng. 84: 307-312.

Ko JH, Yan JP, Zhu L, Qi YP (2004) Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C Toxicol Pharmacol. 137: 65-74.

Lee SK, Bae DH, Kwon TJ, Lee SB, Lee HH, Park JH, Heo S, Johnson MG (2001) Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J Microbiol Biotechnol. 11: 845-852.

Lee SY, Kim JS, Kim JE, Sapkota K, Shen MH, Kim S, Chun HS, Yoo JC, Choi HS, Kim MK, Kim SJ (2005) Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif. 43: 10-17.

Liang F, Shouwen C, Ming S, Ziniu Y (2007) Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield. Appl Microbiol Biotechnol. 74: 390-397.

Liu XL, Du LX, Lu FP, Zheng XQ, Xiao J (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl Microbiol Biotechnol. 67: 209-214.

Li M, Wu G, Liu C, Chen Y, Qiu L, Pang Yi (2009) Expression and activity of a probable toxin from Photorhabdus luminescens. Mol Biol Rep. 36: 785–790.

Liehi P, Billght M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila / Pseudomonas infection model. PLoS Pathog. 2: 551-561.

Mark R. H. Hurst, Travis R. Glare, Trevor A. Jackson (2004) Cloning Serratia entomophila antifeeding genes—a putative defective prophage active against the grass grub Costelytra zealandica. J Bacteriol. 186: 5116-5218.

Morgan JAW, Sergeant M, Ellis D, Ousley M. Jappett P (2001) Sequence Analysis of Insecticidal Genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol. 67: 2062-2069.

Paik HD, Lee SK, Heo S, Kim SY, Lee H, Kwon TJ (2004) Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J Microbiol Biotechnol. 14: 829-835.

Pardo-Lopez L, Gomez I, Munoz-Garay C, Jimenez-Juarez N, Soberon M, Bravo A (2006) Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin. J Invert Pathol. 92: 172–177.

Péchy-Tarr M, bruck DJ, Maurhofer M, Fischer E, Vogen C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel C (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol. 10: 2368–2386.

Peng Y, Yang X, Zhang RH, Zhang YZ (2005) Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo. Appl Microbiol Biotechnol. 69: 126-132.

Peng Y, Huang Q, Zhang RH, Zhang YZ (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol Biochem Mol Biol. 134: 45-52.

Rowe GE, Margaritis A (1987) Bioprocess developments in the Production of Bioinsecticides by Bacillus thuringiensis. CRC Cri Rev Biotech. 6: 87-127. 

Schnepf HE, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 62: 775-806.

Stanly WL, Watters GG, Chan BG, Mercer JM (1975) Lactose and other enzyme bound to chitin with glutaraldehyde. Biotechnol Bioengin. 17: 315-326.

Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia. 43: 1110-1116.

Sun Y, Fu Z, Ding X, Xia L (2008) Evaluating the insecticidal genes and Their expressed products in Bacillus thuringiensis strains by combining PCR with mass spectrometry. Appl Environl Microbiol. 74: 6811-6813.

Tami Y, Miyatake K, Okamoto Y, Takamori Y, Sakamoto K, Minami S (2003) Enhanced healing of cartilaginous injuries by N-acetyl-D-glucosamine and glucuronic acid. Carbohydr Polym. 54: 251-262.

Thanabalu T, Porter AG (1996) A Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa. Gene. 170: 85-89.

Peng R, Xiong A, Li X, Fuan H, Yao Q (2003) A δ-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity. Appl Microbiol Biotechnol. 63: 300–306.

Visser B, Munsterman E, Stoker A, Dirkse WG (1990) A novel Bacillus thuringiensis gene encoding a Spodotera exigua-specific crystal protein. J. Bacteriol. 172: 6783-6788.

Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci USA. 102: 11414–11419.

Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurwns B, Vacheruc B, Wincker P, Weissenbach J, Lemaitre B, Me´digue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas Entomophila. Nature. 24: 673-679.

Wang SL, Chen HJ, Liang TW, Lin YD (2009) A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem. 44: 70-76.

Wang SL, Chen HJ, Wang CL (2008) Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydr Res. 343: 1171-1179. 

Wang CT, Ji BP, Li B, Nout R, Li PL, Ji H, Chen LF (2006) Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from chinese traditional douchi. J Microbiol Biotechnol. 33: 750-758.

Wang J, Wang M, Wang Y (1999) Purification and characterization of a novel fibrinolytic enzyme from Streptomyces spp. Chin J Biotechnol. 15: 83-89.

Zhao R, Han R, Qiu X, Yan X, Cao L, Liu X (2008) Cloning and heterologous expression of insecticidal-protein-encoding genes from Photorhabdus luminescens TT01 in Enterobacter cloacae for Termite Control. App Environ Microbiol. 74: 7219-7226.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信