§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2107200911100500
DOI 10.6846/TKU.2009.00770
論文名稱(中文) 超音速燃燒衝壓引擎流場之直接模擬蒙地卡羅法模擬探討
論文名稱(英文) The Investigation of Fluid Dynamics of Scramjet Flows using DSMC method
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 林建宏
研究生(英文) Jian-Hong Lin
學號 696371250
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-06-18
論文頁數 92頁
口試委員 指導教授 - 洪祖昌
委員 - 楊照彥
委員 - 吳宗信
委員 - 洪祖昌
委員 - 黃俊誠
委員 - 李宗翰
關鍵字(中) 直接模擬蒙地卡羅法
超音速燃燒衝壓引擎
稀薄氣體
關鍵字(英) DSMC
Scramjet
Rarefied gas
第三語言關鍵字
學科別分類
中文摘要
超音速燃燒衝壓引擎(Supersonic Combustion Ramjet, Scramjet)為一種高效率推進系統,本身僅需攜帶燃料不用額外的助燃劑,重量大幅減輕,是未來航空科技之重要研究課題。Scramjet周圍流場為高稀薄度之流場,在此區域連續體的假設將不成立,須以分子觀點來討論,其中直接模擬蒙地卡羅(Direct simulation Monte Carlo, DSMC)法為目前被認為是較精確且使用最廣泛的方法。
本文利用DSMC法模擬Scramjet之極音速稀薄氣體流場。飛行器飛行於低密度高空流場時,進氣道入口分子會受到外緣震波作用造成性質改變,進而影響引擎內流場之結構。而當流場稀薄度增加時,變化亦可能由下游延伸至上游。探討不同稀薄度之自由流在極音速流場下所呈現的物理現象。針對氣流流經不同突張結構之內流場所產生之特性(流場內震波與邊界層互相作用、階梯結構後方產生的膨脹波等)加以討論與分析。最後模擬三維引擎流場,並比較二維與三維結果差異。
英文摘要
Supersonic combustion ramjet (Scramjet) is a high-efficiency propulsion system. Scramjet only needs to carry fuel not to bring booster, the weight of vehicle reduces greatly. It is an important topic of aerospace sciences in the future. Because the flow around the scramjet is high-rarefaction, the assumption of continence isn’t valid. Hence, we have to discuss flow fluid by molecular model.  In molecular gas dynamics, the direct simulation Monte Carlo (DSMC) method is a popular and accuracy simulation technique for low density flows.
Hypersonic rarefied gas flows around a Scramjet inlet model have been analyzed using DSMC method. In the flows around vehicles operating at high altitudes, the molecules at the entrance and the flows properties inside the engine are affected by the shock wave. As the rarefaction of the flows field becomes increasingly, the effect may extend from downstream to upstream. This article discusses the physical phenomenon of different rarefied hypersonic flow field. We analyze the properties, including the shock-boundary interaction and expansion effect, of the gas flow in different sudden expansion structure. Finally, the results of three-dimensional scramjet flow are compared with those of two-dimensional scramjet flow.
第三語言摘要
論文目次
誌謝.....................................I
中文摘要.................................II
英文摘要.................................III
目錄.....................................IV
表目錄...................................VII
圖目錄...................................VIII
符號說明.................................XII
第一章 緒  論............................1
  1-1前言................................1
  1-2文獻回顧............................2
  1-3研究目的與方法......................5
  1-4紐森數的定義........................6
  1-5波茲曼方程式及其解法................8
第二章  直接模擬蒙地卡羅法...............13
  2-1直接模擬蒙地卡羅法..................13
  2-2網格設置與計算時步..................14
  2-3流場初始條件........................15
  2-4流場邊界處理........................16
  2-5碰撞模型............................19
    2-5-1硬球模型........................19
    2-5-2可變硬球模型....................19
    2-5-3可變軟球模型....................20
    2-5-4雙原子分子模型..................21
  2-6碰撞	................................24
  2-7巨觀性質............................25
第三章 超音速燃燒衝壓引擎................28
  3-1超音速燃燒衝壓引擎介紹..............28
  3-2超音速燃燒衝壓引擎構造..............29
  3-3超音速燃燒衝壓引擎遭遇的困難........30
第四章 結果與討論........................31
  4-1程式驗證與網格測試..................31
  4-1-1程式驗證..........................31
  4-1-2網格測試..........................32
  4-2模擬構型............................33
  4-3不同ICR (相同擴張率)比較............34
    4-3-1 12馬赫算例.....................34
    4-3-2 15、18馬赫算例.................37
  4-4不同擴張率(相同ICR)比較.............40
  4-5二維結果與三維結果比較..............41
第五章 結論與建議........................43
  5-1結論................................43
  5-2未來工作............................44
參考文獻.................................45

表目錄

表 4-1 網格測試之對照表	49
表 4-2 突張構型條件設置	49
表 4-3 自由流條件設置	50
表 4-4 可變硬球分子模型基本參數(273K,1atm)	50


圖目錄
圖1-1 Kn值與統御方程式間的關係圖	51
圖2-1稀薄度與密度之關係圖	51
圖2-2直接模擬蒙地卡羅法流程圖	52
圖2-3硬球模型碰撞示意圖	53
圖2-4分子碰撞面積示意圖	53
圖3-1 X-43A	54
圖3-2 超音速燃燒衝壓引擎內外流場整合示意圖	54
圖3-3 超音速燃燒衝壓引擎與渦輪引擎之差異	55
圖4-1 12馬赫算例之壁面壓力與實驗比較圖	56
圖4-2 15馬赫算例之壁面壓力與實驗比較圖	56
圖4-3 12馬赫算例之馬赫數分布比較圖	57
圖4-4 15馬赫算例之馬赫數分布比較圖	57
圖4-5 網格測試之12馬赫算例切面圖	58
圖4-6 網格測試之15馬赫算例切面圖	59
圖4-7 網格測試之18馬赫算例切面圖	60
圖4-8 模擬二維超音速燃燒衝壓引擎外型示意圖	61
圖4-9 模擬三維超音速燃燒衝壓引擎外型示意圖	61
圖4-10 算例一之外流場等馬赫線分布	62
圖4-11 算例一之外流場等壓線分布	62
圖4-12 算例二之外流場等馬赫線分布	63
圖4-13 算例二之外流場等壓線分布	63
圖4-14 算例三之外流場等馬赫線分布	64
圖4-15 算例三之外流場等壓線分布	64
圖4-16 算例一之馬赫分布	65
圖4-17 算例一之壓力分布	65
圖4-18 算例一之溫度分布	66
圖4-19 算例一之密度分布	66
圖4-20 算例二之馬赫分布	67
圖4-21 算例二之壓力分布	67
圖4-22 算例二之溫度分布	68
圖4-23 算例二之密度分布	68
圖4-24 算例三之馬赫分布	69
圖4-25 算例三之壓力分布	69
圖4-26 算例三之溫度分布	70
圖4-27 算例三之密度分布	70
圖4-28 算例一之中心壓力切面圖	71
圖4-29 算例一之中心溫度切面圖	71
圖4-30算例二之中心壓力切面圖	72
圖4-31算例二之中心溫度切面圖	72
圖4-32算例三之中心壓力切面圖	73
圖4-33算例三之中心溫度切面圖	73
圖4-34算例一之平均全壓分布	74
圖4-35算例二之平均全壓分布	74
圖4-36算例三之平均全壓分布	74
圖4-37算例一之燃燒室頂部、底部X軸速度分布	75
圖4-38算例二之燃燒室頂部、底部X軸速度分布	75
圖4-39算例三之燃燒室頂部、底部X軸速度分布	75
圖4-40算例一之壁面C 值分布	76
圖4-41算例一之壁面C 值分布	77
圖4-42算例二之壁面C 值分布	78
圖4-43算例二之壁面C 值分布	79
圖4-44算例三之壁面C 值分布	80
圖4-45算例三之壁面C 值分布	81
圖4-46算例一之內流場壓力分布	82
圖4-47算例二之內流場壓力分布	83
圖4-48算例三之內流場壓力分布	84
圖4-49 算例一之不同擴張率之流場中心性質切面圖	85
圖4-50 算例二之不同擴張率之流場中心性質切面圖	86
圖4-51 算例三之不同擴張率之流場中心性質切面圖	87
圖4-52 算例一之不同擴張率之平均全壓切面圖	88
圖4-53 算例二之不同擴張率之平均全壓切面圖	88
圖4-54 算例三之不同擴張率之平均全壓切面圖	88
圖4-55 算例一之三維馬赫數分布	89
圖4-56 算例一之三維壓力分布	89
圖4-57 算例二之三維馬赫數分布	90
圖4-58 算例二之三維壓力分布	90
圖4-59 算例三之三維馬赫數分布	91
圖4-60 算例三之三維壓力分布	91
圖4-61 算例一之流場中心壓力分布比較圖	92
圖4-62 算例二之流場中心壓力分布比較圖	92
圖4-63 算例三之流場中心壓力分布比較圖	92
參考文獻
[1]Bird, G. A., “Recent Advance and Current Challenges for DSMC,” Comput. Math. Appl., Vol. 35, pp. 1-14, 1998.
[2]Bird, G. A., Molecular Gas Dynamics and The Direct Simulation of Gas Flows, Oxford University Press, 1994.
[3]Bird, G. A., “Approach to Translational Equilibrium in a Rigid Sphere Gas,” Phys. Fluids Vol. 6, pp. 1518-1519, 1963.
[4]Bird, G. A., “The Velocity Distribution Function Within a Shock Wave,” Journal of Fluid Mechanics, Vol. 30, pp. 479-487, 1967.
[5]Borgnakke, C., and Larsen, P. S., “Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture,” Journal of Computational Physics, Vol. 18, No. 4, pp. 405-420, 1975.
[6]Bird, G. A., “Molecular Gas Dynamics,” Oxford, UK:Clarenden, 1976
[7]Bird, G. A., “Perception of Numerical Method in Rarefied Gas Dynamics,” in Rarefied Gas Dynamics: Theoretical and Computational Techniques of Progress in Aeromautics and   Astronautics, AIAA, Washington, Vol. 118 , 1989.
[8]Muntz, E. P., “Rarefied gas dynamics,” Annu. Rev. Fluid Mech. 21, pp. 387–417, 1989.
[9]Cheng, H. K., “Perspectives on hypersonic viscous flow research,” Annu. Rev. Fluid Mech., Vol. 25, pp. 455–484, 1993.
[10]Cheng, H. K. and Emmanuel, G., “Perspectives on hypersonic non-equilibrium flow,” AIAA J., Vol. 33, pp. 385–400, 1995.
[11]Situ, M., Wang, C. and Zhuang, F.G., “Investigation of Supersonic Combustion of Kerosene Jets with Hot Gas Piloted Energy and Dual-Cavity,” 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002
[12]Anderson J. S., Grabitz, G., Meier, G. E. A., Jungowski, W. M. and Witczak, K. J., “Base Pressure Oscillation in a Rectangular Duct with an Abrupt Enlargement, ”, Archives of Mechanics, pp.337-351, 1978.
[13]Drummond J. P., Rogers, R. C. and Evans, J. S., “Combustor Modeling for Scramjet Engine,” AGARD-CP-275, 1979.
[14]Guy, G. W. and Mackey E. A., “Initial Wind Tunnel Test at Mach 4 and 7 of Hydrogen Burning Airframe Integrated Scramjet Fuel Injection for Supersonic Combustion,” AIAA Paper 79-7405, 1979.
[15]Liu, D., “An Overview of Scramjet Propulsion and Its Flow Simulation,” The 14th National Computational Fluid Dynamics Conference, 2007
[16]Kanda, T., Wakamatsu, Y., Sakuranaka, N., Izumikawa, M., Ono,   F., Murakami, A., “Mach 8 Testing of a Scramjet Engine with Ramp Compression,” 38th Aerospace Sciences Meeting & Exhibit, 2000
[17]Mohieldin, T. O., Abdel-salam, T. M. and Tiwari, S. N.,“Numerical Study of Supersonic Mixing And Combustion Using Unstructured Gird,” 38th Aerospace Sciences Meeting & Exhibit, 2000
[18]Minucci, M. A. S., Nagamatsu, H. T., and Kim, S. C., “Investigation of a 2-D Scramjet Inlet, M∞ =8.25 and To =4,100K,” AIAA Paper, pp. 91-5018, 1991
[19]Minucci, M. A. S., and Nagamatsu, H. T., “Investigation of a Two-Dimensional Scramjet Inlet, M∞ =8-18 and To =4,100K,” Journal of Propulsion and Power, Vol. 9, No.1, pp. 139-145, 1993
[20]Chung, C. H., Kim, S. C., Witt, K. J. D. and Nagamatsu, H. T., “Numerical Analysis of Hypersonic Low-Density Scramjet Inlet Flow,”Journal of Spacecraft and Rockets, Vol. 32, No.1, pp. 60-66, 1995
[21]Curran, E. T., Heiser, W. H., and Pratt, D. T. “Fluid Phenomena In Scramjet Combustion System,” Annu. Rev. Fluid. Mech, pp. 323-360, 1996
[22]Emami, S., Trexler, C. A., Auslender, A. H., Weidner, J. P., “Experimental Investigation of Inlet-Combustor Isolators for a Dual-Mode Scramjet at a Mach Number of 4, ”NASA Technical Paper 3502, 1995
[23]Kodera, M., Igarashi, Y., Nakahashi, K., Kanda, T., Hiraiwa, T. Mitani, T., “Number Analysis of Scramjet Internal Flow by Hybird Unstructured Grid Method,” JSME International Journal, Vol. 43,No. 3, 2000
[24]Tiwari, S. N., Taha, A. A. and Mohieldin, T. O.,“Effect of Pilot Injection and Combustor Configuration on the Flame Holding and Stability of Ethylene in Scramjet Engines, ” 40th AIAA aerospace Sciences Meeting & Exhibit, 2002
[25]Kim, C. K., Im, K. S. and John, S. T., “Direct Calculation of High-Speed Cavity Flows in a Scramjet Engine by the CESE Method,” 40th Aerospace Sciences Meeting &Exhibit, 2002
[26]McClinton, C. R., Ferlemann, S. M., Ken, E. R. and Ferlemann, P. G., “The Role of Formal Experiment Design in Hypersonic Flight System Technology Development,” 40th Aerospace Sciences Meeting &Exhibit, 2002
[27]陳炳炫,“Knudsen區氣體為尺度流動之蒙地卡羅直接模擬”,國防大學中正理工學院國防科技研究所博士論文,桃園,2003 
[28]蘇嘉南,“以三維蒙地卡羅法模擬分析高速微管流場”,國立成功大學航空太空工程研究所碩士論文,臺南,2000
[29]黃顧文,“超音速衝壓引擎中燃料噴入位置及震波結構對燃燒室特性影響分析”,國立中央大學機械系,桃園,1994
[30]施明憲,“超音速衝壓引擎燃燒室內震波增強混合與燃燒分析模擬”,國立中央大學機械系,桃園,1995
[31]羅文彬,“以直接模擬蒙地卡羅法模擬二維微管流場”,淡江大學機械與機電工程學系,臺北,2004
[32]洪念慈,“以直接模擬蒙地卡羅法計算三維微管流場”,淡江大學機械與機電工程學系,臺北,2004
[33]邱昱中,“為結構三維流場及熱傳現象”,淡江大學機械與機電工程學系,臺北,2005
[34]黃盈翔,“以直接模擬蒙地卡羅法計算三維背向式階梯微流場”,淡江大學機械與機電工程學系,臺北,2006
[35]林雅茹,“以直接模擬蒙地卡羅法計算三維微管流場與熱傳特性探討”,淡江大學機械與機電工程學系,臺北,2007
[36]陳昭雄,“以直接模擬蒙地卡羅法計算三維不同微管流場與熱傳特性探討”,淡江大學機械與機電工程學系,臺北,2008
[37]http://jetex.org/images/archive/smoky/0501/3view-x43a-nasa.gif
[38]htt://www.tipmagazine.com/tip/INPHFA/vol-10/iss-4/p24.pdf
[39http://upload.wikimedia.org/wikipedia/commons/archive/d/de/ 20080616222506! Scramjet--X-43A.jpg
[40]Bhatenager, P. L., Gross, E. P., and Krook, M., “Model for Collision Processes in Gases,” Phys. Rev., vol. 94, pp. 511, 1954
[41]Haviland, J. K., and Lavin, M. L., ”Applications of the Monte Carlo Method to Heat Transfer in a Rarefied Gas,” Phys. Fluids Vol. 5,pp.1399-1405, 1962
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信