淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2107200814153500
中文論文名稱 孔隙水壓模式應用於液化影響樁基礎之波動方程分析
英文論文名稱 Wave Equation Analysis on Piles affected by Liquefaction using Pore Water Pressure Model
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 張紹綸
研究生英文姓名 Shao-Lun Chang
學號 695380146
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2008-06-25
論文頁數 204頁
口試委員 指導教授-張德文
委員-陳正興
委員-李維峰
中文關鍵字 樁基礎  液化  孔隙水壓模式  波動方程分析  集中質塊分析 
英文關鍵字 pile foundations  liquefaction  pore water pressure model  wave equation analysis  lumped mass analysis 
學科別分類 學科別應用科學土木工程及建築
中文摘要 本研究使用波動方程式模擬側向地震下之單樁行為,分析時以間接分析法將完整之土壤與單樁拆解成個別之子結構系統,並依疊加概念分別詮釋不同子結構行為模式,最後加總各系統行為以模擬整體結構反應。研究首先利用集中質塊法結合孔隙水壓模式建立自由場之位移反應,並以此為前置解代入側向樁基波動方程中,求解樁基受液化影響之受震反應。其中單樁周遭土層以p-y曲線模式模擬土壤彈簧,以轉換輻射阻尼係數代入有限差分公式進行分析,樁身剛度並以簡易Bouc-Wen模式模擬其非線性行為。研究另將與有限元素分析軟體Cyclic 1D比較,以證明該項分析之可行性。
研究結果顯示:(1)當改變地震類型、最大地表加速度、孔隙水壓分析模式、地下水位、地盤種類及樁身勁度與阻尼時,皆會影響基樁之破壞情形,其中又以地盤種類與最大地表加速度影響最大;(2)當變更樁長與上部載重時,對於樁體位移、彎矩、剪力皆無明顯之影響;(3)本研究與Hamada(1992)及Ishihara and Cubrinovski(2004)分析結果相似,其樁基礎之最大彎矩易發生於液化層與非液化層交界處;樁身位移之尖峰量發生於樁頂,而樁頂與樁底之相對位移量亦能符合實際現地觀察情形;(4)本研究所建立之孔隙水壓分析模式,可清楚反映樁基礎受震之各個時間下對液化影響產生之變形與受力反應;(5)本研究所建議之簡易分析方法與Cyclic 1D有限元素解所得之趨勢相似,但卻可大量減少分析時間。
英文摘要 The seismic lateral response of the single pile is modeled in this study using the wave equation analysis. The structural system was decomposed into substructures where the corresponding individual responses were solved and integrated to obtain the results. To obtain the solution, the seismic free-field response of the site was computed from the lumped mass analysis and pore water pressure model, and the soil deformations were than imposed onto the pile foundation to conduct the wave equation analysis. The soil springs along the pile are calculated from the p-y curves. They are implemented with the transformed dampers to model the seismic forces. Modified Bouc-Wen model is used to obtain nonlinear pile responses. Validations of the analysis are made with the Cyclic-1D solutions.
The observation are summarized as follows: (1) The seismicity source, PGA, depth of ground water table, site stiffness, soil spring and damping, and even the pore water pressure model parameters will all affect the pile responses. Among them, PGA and the site stiffness are the most two significant ones. (2) The changes of pile length and external loads are not sound to the pile displacements and the corresponding pile moments and shears. (3) The solutions from this study were found similar to those of Hamada (1992) and Ishihara and Cubrinovski (2004). The maximum bending moment of the pile occurs at the interfaces between the liquefied layer and the non-liquefiable layers. Peak pile displacement occurs at the pile head. Maximum relative pile displacement between the pile head and pile tip agree well with the field observation. (4) The pore water pressure model can reflect clearly the time-dependence of the trigger of soil liquefaction on seismic response of the pile. (5)The lumped mass analysis of the seismic site responses could provide similar results to those obtained from Cyclic-1D analysis, however it saves more time in computations.
論文目次 中文摘要 I
英文摘要 II
本文目錄 III
表目錄 V
圖目錄 VI

第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法與內容 2

第二章 文獻回顧 5
2-1 前言 5
2-2 土壤液化之行為與破壞型態 7
2-2-1 液化發生原因及其影響力學之機制 7
2-2-2 影響土壤液化之因素 15
2-2-3 土壤液化之破壞型態 20
2-3 液化行為之分析方法 24
2-3-1 數值分析 25
2-3-1-1 土質參數折減係數模式 25
2-3-1-2 孔隙水壓模式 26
2-3-2 實驗室分析 27
2-3-2-1 離心機試驗 27
2-3-2-2 振動台試驗 30
2-4 樁身破壞機制與非線性行為模擬方法 31
2-4-1 土壤液化與樁基礎行為之影響 31
2-4-2 樁身破壞機制 33
2-4-3 樁基礎非線性行為模擬 42
2-5 Cyclic 1D 概述 49
2-5-1 研究背景 49
2-5-2 操作說明 54

第三章 理論與方法 60
3-1 前言 60
3-2 自由場分析 62
3-2-1 集中質塊分析 62
3-2-2 孔隙水壓模式分析 66
3-2-3 地盤轉換函數 77
3-2-4 基線修正法 79
3-3 樁基波動方程分析 83
3-3-1 前期研究發展過程 83
3-3-2 控制方程之推導 86
3-3-3 土壤彈簧與阻尼模式 93
3-3-4 樁基反應分析與Bouc-Wen非線性模式 96

第四章 樁基礎受液化之參數研究 104
4-1 前言 104
4-2 假設案例及參數說明 105
4-3 樁基礎受液化反應之行為分析 112

第五章 實際案例分析與驗證 134
5-1 前言 134
5-2 案例1:NHK Building 135
5-3 案例2:TANK TA 72 159

第六章 結論與建議 187
6-1 結論 187
6-2 展望與建議 191

參考文獻 192


表目錄
表2-1 最小旋轉半徑計算表
(摘自 Bhattacharya et al., 2004)41
表2-2 Cyclic 1D岩盤類型及其參數對照表 58
表2-3 Cyclic 1D土壤類型(非凝聚性土壤)及其參數對照表 59
表2-4 Cyclic 1D土壤類型(凝聚性土壤)及其參數對照表 59
表3-1 k2max建議值(摘自 Seed and Idriss, 1970)67
表3-2 前期研究之波動方程發展重點與相關貢獻 84
表3-3 地盤反力常數經驗值(摘自 Johnson, 1968)94
表3-4 各樁徑與α、z參數之關係表 101
表4-1 參數研究對照表 108
表4-2 各參數在砂土層之相互關係(摘自 DAS, 2004)109
表4-3 參數研究分析結果統整表 133
表5-1 NHK Building土壤的基本性質(摘自 林三賢等人,2005)138
表5-2 NHK Building樁基的基本參數性質
(摘自 林三賢等人,2005)138
表5-3 NHK Building參數設定表 144
表5-4 NHK Building α、z參數之設定 144
表5-5 兩種數值解之分析時程比較及分析系統說明 146
表5-6 人工回填島之土壤參數表(摘自 黃俊鴻,2006)160
表5-7 基樁材料性質參數 160
表5-8 TANK TA72參數設定表 171
表5-9 TANK TA72 α、z參數之設定 171
表5-10 兩種數值解之分析時程比較及分析系統說明 173


圗目錄
圖1-1 研究分析流程 4
圖2-1 砂土受到剪力後孔隙水壓上升之機制
(重繪自 陳銘鴻,2002)8
圖2-2 飽和砂土不排水試驗液化潛能狀態示意圖
(重繪自Castro, 1969)9
圖2-3 引發流動液化之區域(重繪自 Kramer, 1996)11
圖2-4 流動液化之不排水應力路徑(重繪自 Kramer, 1996)11
圖2-5 1957年於舊金山MERCED湖沿岸發生流動液化情形
(摘自 Kramer, 1996)11
圖2-6 引發反覆流動性液化之區域(重繪自 Kramer, 1996)13
圖2-7 反覆流動性液化之不排水應力路徑
(重繪自 Kramer, 1996)13
圖2-8 1976年瓜地馬拉地震於MOTAGUA河流發生側潰情形
(摘自 Kramer, 1996)14
圖2-9 結構物上浮破壞示意圖 22
圖2-10 噴砂破壞示意圖 22
圖2-11 地層滑動破壞示意圖之ㄧ 22
圖2-12 地層滑動破壞示意圖之二 22
圖2-13 結構物沉陷破壞示意圖 22
圖2-14 張力型破壞示意圖 22
圖2-15 簡支樑型破壞示意圖 23
圖2-16 懸臂樑型破壞示意圖 23
圖2-17 侧向壓力過大造成破壞示意圖之ㄧ 23
圖2-18 侧向壓力過大造成破壞示意圖之二 23
圖2-19 離心機試驗配置圖之ㄧ(重繪自 Kagawa et al., 1997)28
圖2-20 離心機試驗配置圖之二(重繪自 Kagawa et al., 1997)29
圖2-21 地盤側向流動對樁基礎之變形試驗
(重繪自 Abdoun and Dobry, 2002)29
圖2-22 振動台試驗配置圖(重繪自 Tokimatsu et al., 2002)30
圖2-23 液化土層中樁-土-結構互制示意圖
(重繪自 Tokimatsu and Asaka , 1998)32
圖2-24 箍筋圍束下混凝土應力與應變模式
(重繪自 Kent and Park, 1971)35
圖2-25 典型基樁之彎矩與曲率關係圖 37
圖2-26 鋼筋混凝土結構之損害分類圖
(重繪自 Luo et al., 2002)37
圖2-27 樁體彎曲特性三線性模式 37
圖2-28 樁體彎曲特性雙線性模式 37
圖2-29 基樁破壞機制模式(摘自 Bhattacharya et al., 2004)38
圖2-30 工程設計中之樁長與樁徑關係圖(摘自 Bond, 1989)40
圖2-31 蒐集案例之有效細長比
(摘自 Bhattacharya et al., 2004)40
圖2-32 有效樁長示意圖(摘自 Bhattacharya et al., 2004)41
圖2-33 Diado混凝土彎曲試驗法(摘自 Meyersohn, 1994)43
圖2-34 試樁之彎矩與曲率關係圖(摘自 Meyersohn, 1994)43
圖2-35 矩形斷面混凝土與鋼筋之彎矩曲率分析示意圖 45
圖2-36 樁基之等值線性模式(摘自 Cubrinovski et al., 2004)46
圖2-37 鋼筋混凝土之撓度變化
(摘自 Arthur H. Nilson et al., 2003)48
圖2-38 慣性矩 對彎矩-轉角關係的影響(摘自 楊宗勳,2000)48
圖2-39 Cyclic 1D模型示意圖 49
圖2-40 典型使用u-p公式元素圖(摘自 Elgamal et al., 2002)51
圖2-41 有效主應力空間及偏差平面示意圖
(摘自 Elgamal et al., 2003)52
圖2-42 Cyclic 1D網路操作流程圖(摘自 Yang et al., 2004)53
圖2-43 Cyclic 1D所提供之輸出資訊(摘自 Yang et al., 2004)53
圖2-44 Cyclic 1D操作介面示意圖之ㄧ 54
圖2-45 Cyclic 1D操作介面示意圖之二 56
圖2-46 Cyclic 1D操作介面示意圖之三 56
圖2-47 Cyclic 1D內建地震加速度歷時圖 57
圖2-48 Cyclic 1D操作介面示意圖之四 58
圖3-1 EQWEAP分析程序示意圖 61
圖3-2 側向單樁分析架構平衡示意圖 61
圖3-3 自由場集中質量分解模擬示意圖 62
圖3-4 員林地區地壤受震土壤模數折減與孔隙水壓比之關係圖
(摘自 翁作新等人,2004)66
圖3-5 ㄧ維卸載曲線(摘自 Seed et al., 1978)69
圖3-6 不同相對密度下與剪應變之對應關係
(摘自 Seed and Idriss, 1970)73
圖3-7 與應變量關係(相對密度為90%)73
圖3-8 與應變量關係(相對密度為75%)74
圖3-9 與應變量關係(相對密度為60%)74
圖3-10 與應變量關係(相對密度為45%)75
圖3-11 與應變量關係(相對密度為30%)75
圖3-12 孔隙水壓模式完整流程圖 76
圖3-13 地盤轉換理論分析法模型示意圖 77
圖3-14 地盤轉換函數分析流程圖 78
圖3-15 基線修正前之位移歷時圖 82
圖3-16 基線修正後之位移歷時圖 82
圖3-17 樁頂邊界條件(自由端)87
圖3-18 樁頂邊界條件(剛性端)87
圖3-19 樁頂之節點編號 90
圖3-20 樁頂內一點之節點編號 90
圖3-21 樁底之節點編號 92
圖3-22 樁底內一點之節點編號 92
圖3-23 樁基礎分析流程圖 97
圖3-24 樁身剛度折減示意圖 101
圖3-25 彎矩回歸分析結果 102
圖3-26 曲率回歸分析結果 103
圖4-1 標準案例基樁與地盤剖面圖 109
圖4-2 921地震加速度歷時圖(TCU110)110
圖4-3 331地震加速度歷時圖(TCU110)110
圖4-4 正規化921地震加速度歷時圖 111
圖4-5 正規化331地震加速度歷時圖 111
圖4-6 參數研究分析結果(無液化之情形)116
圖4-7 參數研究分析結果(標準案例)117
圖4-8 參數研究分析結果(Modified 331地震)118
圖4-9 參數研究分析結果(PGA=0.1 g)119
圖4-10 參數研究分析結果(PGA=0.45 g)120
圖4-11 參數研究分析結果(PGA=0.75 g)121
圖4-12 參數研究分析結果(地下水位為0 m)122
圖4-13 參數研究分析結果(地下水位為4 m)123
圖4-14 參數研究分析結果(第二類地盤)124
圖4-15 參數研究分析結果(第一類地盤)125
圖4-16 參數研究分析結果(排水狀態)126
圖4-17 自由場孔隙水壓力增量歷時反應 127
圖4-18 自由場有效應力歷時反應 127
圖4-19 參數研究分析結果(樁長為13 m)128
圖4-20 參數研究分析結果(樁身勁度折減20%)129
圖4-21 參數研究分析結果(樁身阻尼增加20%)130
圖4-22 參數研究分析結果
(樁身勁度折減20%、樁身阻尼增加20%)131
圖4-23 參數研究分析結果(上部載重為800 kN)132
圖5-1 液化後新潟地區永久位移量分佈圖(摘自 Hamada, 1992)136
圖5-2 現場調查斷樁破壞示意圖(摘自 Hamada, 1992)137
圖5-3 樁基礎破壞模式及簡化分析模式(NHK building)137
圖5-4 樁身位移與彎矩值分佈圖(摘自 Meyersohn, 1994)139
圖5-5 樁身位移與彎矩值分佈圖(摘自 林三賢等人,2005)139
圖5-6 新潟地震加速度歷時曲線(測站:701 SMAC-A)145
圖5-7 自由場最大孔隙水壓力比值剖面圖(NHK Building)146
圖5-8 自由場最大位移量剖面圖(NHK Building)146
圖5-9 自由場之地盤位移歴時反應(NHK Building)147
圖5-10 自由場最大孔隙水壓力剖面圖(NHK Building)148
圖5-11 自由場孔隙水壓力增量歷時反應(NHK Building)149
圖5-12 自由場正規化剪力模數歷時反應(NHK Building)150
圖5-13 自由場有效應力歷時反應(NHK Building)150
圖5-14 自由場剪應力-剪應變歷時反應(NHK Building)151
圖5-15 自由場累積體積應變量歷時反應(NHK Building)151
圖5-16 樁身最大位移剖面圖(NHK Building)152
圖5-17 不同時間下樁身位移剖面圖(NHK Building)153
圖5-18 不同時間下樁身彎矩剖面圖(NHK Building)154
圖5-19 不同時間下樁身剪力剖面圖(NHK Building)155
圖5-20 樁身位移歷時反應(NHK Building)156
圖5-21 樁身彎矩歷時反應(NHK Building)157
圖5-22 樁身剪力歷時反應(NHK Building)158
圖5-23 液化後堤岸移動示意圖
(摘自 Ishihara and Cubrinovski, 2004)161
圖5-24 地盤側向變形量
(摘自 Ishihara and Cubrinovski, 2004)161
圖5-25 Mikagehama Island地理位置圖(摘自 Ishihara, 2003)162
圖5-26 人工島上儲油槽Tank TA72位置示意圖
(摘自 Ishihara and Cubrinovski, 2004)162
圖5-27 儲油槽結構剖面與土層分佈概況
(摘自 Ishihara and Cubrinovski, 2004)163
圖5-28 群樁基礎與擠壓砂樁之配置示意圖
(摘自 Ishihara and Cubrinovski, 2004)164
圖5-29 高強度預鑄混凝土樁之彎矩-曲率圖
(摘自 Ishihara and Cubrinovski, 2004)164
圖5-30 No.2基樁之側向位移及樁身損害示意圖
(摘自 Ishihara and Cubrinovski, 2004)165
圖5-31 No.9基樁之側向位移及樁身損害示意圖
(摘自 Ishihara and Cubrinovski, 2004)166
圖5-32 神戶地震加速度歷時 172
圖5-33 自由場最大孔隙水壓力比值剖面圖(TANK TA72)173
圖5-34 自由場最大位移量剖面圖(TANK TA72)173
圖5-35 自由場之地盤位移歴時反應(TANK TA72)174
圖5-36 自由場最大孔隙水壓力剖面(TANK TA72)175
圖5-37 自由場孔隙水壓力增量歷時反應(TANK TA72)176
圖5-38 自由場正規化剪力模數歷時反應(TANK TA72)177
圖5-39 自由場有效應力歷時反應(TANK TA72)177
圖5-40 自由場剪應力-剪應變歷時反應(TANK TA72)178
圖5-41 自由場累積體積應變量歷時反應(TANK TA72)178
圖5-42 樁身最大位移比較剖面圖(TANK TA72)179
圖5-43 樁身最大彎矩比較剖面圖(TANK TA72)180
圖5-44 不同時間下樁身位移剖面圖(TANK TA72)181
圖5-45 不同時間下樁身彎矩剖面圖(TANK TA72)182
圖5-46 不同時間下樁身剪力剖面圖(TANK TA72)183
圖5-47 樁身位移歷時反應(TANK TA72)184
圖5-48 樁身彎矩歷時反應(TANK TA72)185
圖5-49 樁身剪力歷時反應(TANK TA72)186

參考文獻 1.American Concrete Institute (ACI) (1982、1989),“Building Code Requirements for Structural Concrete,” ASCE, USA.

2.Abdoun, T. and Dobry, R. (2002), “Evaluation of pile foundation response to lateral spreading,”Soil Dynamics and Earthquake Engineering, Vol. 22, No. 9, pp. 1051-1058.

3.Bathe, K. and Wilson, E. L. (1976), “Numerical Methods in Finite Element Analysis,” Prenticle-Hall, New Jersey.

4.Bond, A. J. (1989), “Behaviour of Displacement Piles in Overconsolidated Clays,” Doctor’s dissertation, Imperial College, London.

5.Berrill, J. B., Christensen, S. A. Keena, R. P., Okada, W. and Perringa, J. R. (2001), “Case Study of Lateral Spreading Forces on Piled Foundation,” Geotechnique Vol. 51, No. 6, pp. 501-517.

6.Bhattacharya, S., Madabhushi, S.P.G. and Bolton, M.D.(2004) “An alternative Mechanism of Pile Failure in Liquefiable Deposits during Earthquakes”, Geotechnique, Vol. 54, No. 3, pp. 203-213.

7.Brandenberg, S. J. and Boulanger, R. W., Kutter, B. L. and Chang, D. (2005), “Behavior of Pile Foundation in Laterally Spreading Ground During Centrifuge Tests,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 11, pp. 1378-1391.

8.Bhattacharya, S., Bolton, M. D. and Madabhushi, S. P. G.. (2005), “A Reconsideration of the Safety of Piled Bridge Foundation in Liquefiable Soils,” Soils and Foundations, Vol. 45, No. 4, pp. 13-25.

9.Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January;reprinted in Contributions to Soil Mechanics 1925-1940, BSCE, pp. 257-276.

10.Castro, G. (1969), “Liquefaction of Sands,” Doctor’s dissertation, Harvard University, USA.

11.Castro, G. and Poulos, S. J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 501-516.

12.Chung, K. Y. C. and Wong, I. H. (1982), “Liquefaction potential of soils with plastic fines,” Proc. Of the Conference of Soil Dynamics and Earthquake Engineering, Southampton, pp. 887-897.

13.Chang, D. W. (1995), “Preliminary Investigation of Using Transformed Damping Coefficients in Time Domain Analysis,” Procds., 7th Int. Conf. on Soil Dynamics and Earthquake Engineering, Greece, pp. 623-632.

14.Chang, D. W. and Yeh, S. H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping,” Soils and foundations, JGS. , Vol. 39, No. 2, pp. 31-44.

15.Chang, D. W., Roesset, J .M. and Wen, C. H. (2000), “A Time-Domain Viscous Damping Model Based on Frequency-Depend Damping Ratios,” Soil Dynamic and Earthquake Engineering, Vol. 19, pp. 551-558.

16.Das, B.M. (1983), “Advanced Soil Mechanics,’’ Taylor and Francis Publisher, Washington, pp. 425.

17.Eurocode 8 part5 (1998), Design Provisions for Earthquake Resistance of Structure-foundations, Retaining Structures and Geotechnical Aspects, European Committee for Standardization, Brussels.

18.Elgamal, A., Yang, Z. and Parra, E. (2002), “Computational Modeling of Cyclic Mobility and Post-Liquefaction Site Response,” Soil Dynamics and Earthquake Engineering, Vol. 22, No. 4, pp. 259-271.

19.Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2003), “Modeling of Cyclic Mobility in Saturated Cohesionless Soils,” Int. J. Plasticity, Vol. 19, pp. 883-905.

20.Finn, W. D. L., Byrne, P. M. and Martin, G. R. (1976), “Seismic Response and Liquefaction of Sands,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT8, pp. 841-856.

21.Finn, W. D. L., Lee, K.W. and Martin, G. R. (1977), “An Effective Stress Model for Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. SM7, pp. 657-692.

22.Finn, W. D. L. (1982), “Soil liquefaction studies in the People’s Republic of China,” Soil Mechanics-Transient and Cyclic Loads, Ch.22, pp. 609-626, John Wiley & Sons, Ltd.

23.Finn, W. D. L. and Thavaraj, T. (2001), “Practical Problems in Seismic Analysis of Bridge Pile Foundations,” Proc. 10th Int. Conf. Computer Methods and Adventures in Geomechanics, Tucson, Arizona, USA, pp. 1011-1018.

24.Finn, W. D. L. and Fujita, N. (2002), “Piles in Liquefiable Soils: Seismic Analysis and Design Issue,” Soil Dynamics and Earthquake Engineering, Vo1. 22, No. 9, pp. 731-742.

25.Guo, T. and Prakash S. (2000), “Liquefaction Silt-Clay Mixtures,’’ Proc. 11 World Conf. On Earthquake Engineering Auckland NZ, CD ROM.

26.Holtz, R. D. and Kovacs, W. D. (1981), “An Introduction to Geotechnical Engineering,’’ Prentice-Hall, Eaglewood Cliffs, New Jersey.

27.Hamada M. (1992), “Large Ground Deformations and Their Effects on Lifelines:1964 Niigata Earthquake,” in Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, NCEER, Buffalo, NY, USA. 3.1-3.123.

28.Idriss, I. M. and Seed, H. B. (1968), “Seismic Response of Horizontal Soil Layers,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031.

29.Idriss, I. M., Dobry, R. and Singh, R. D. (1978), “Nonlinear Behavior of Soft Clays During Cyclic Loading,” Journal of the Geotechnical Engineering Division, Vol. 104, No. GT12, pp. 1427-1447.

30.Ishihara, K., Sodekawa, M. and Tanaka, Y. (1978), “Effect of Overconsolidation on Liquefaction Characteristics of Sand Containing Fine,” Dynamics Geotechnical Test, ASCE, STP 654, ASTM, pp. 246-264.

31.Ishihara, K. and Yamasaki, F. (1980), “Cyclic Simple Shear Tests on Saturated Sand in Multi-directional Loading,” Soils and Foundations, JGS, Vol. 20, No. 1, pp. 45-59.

32.Ishihara, K. and Towhata, I. (1982), “Dynamic Response Analysis of Level Ground Based on the Effective Stress Method,” Soils Mechanics-Transient and Cyclic Loads, Wiley, New York, pp. 133-171.

33.Iwasaki, T., Areakawa, T. and Tokida, K. (1982), “Simplified Procedure for Assessing Soil Liquefaction During Earthquakes,” Proc. Of the Conference of Soil Dynamics and Earthquake Engineering, Southampton, pp. 925-939.

34.Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquake,’’ Journal of the Geotechnical Engineering, ASCE, Vol. 43, No. 3, pp. 351-415.

35.Ishihara, K. (2003), “Liquefaction-induced Lateral Flow and Its effects on Foundation Piles,” 5th National Conference on Earthquake Engineering, Istanbul, Turkey, May, 28.

36.Ishihara, K. and Cubrinovski, M. (2004), “Case Studies on Pile Foundations undergoing Lateral Spreading in Liquefied Deposits,” Proceeding of 5th International Conference on Case Histories in Geotechnical Engineering, New York, Paper SOAP 5.

37.Kent, D. C, and Park, R. (1971), “Flexural member with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.

38.Kramer, S.L. (1996), “Geotechnical Earthquake Engineering,’’ Prentice Hall, Inc., Upper Saddle River, New Jersey, pp.348-368.

39.Kunnath, S. K. and Reinhorn, A. M. (1989), “Inelastic Three-Dimensional Response Analysis of RC Buildings (IDARC-3D) Part I - Modeling,” Technical Report NCEER-89-0009, National Center for Earthquake Engineering Research, SUNY/Buffalo.

40.Kagawa, T., Taji, Y., Sato, M. and Minowa, C. (1997), “Soil-Pile-Structure Interaction in Liquefying Sand from Large-Scale Shaking-Table Test and Centrifuge Test,” Seismic Analysis and Design for Soil-Pile-Structure Interaction, Geotechnical Special Publication, No. 70, ASCE, pp. 69-84.

41.Knappett, J. A. and Madabhshi, S. P. G (2005), “Modeling of liquefaction-induced instability in pile groups,” Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.

42.Liang, M. and Husein, A. I. (1993), “Simplified Dynamic Method for Pile-Driving Control,” Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 4, pp. 694-713.

43.Liu, L. and Dorby, R. (1995), “Effect of Liquefaction on Lateral Response of Piles by Centrifuge Model Tests,” NCEER Bulletin, Vol. 9, No. 1, January, pp. 7-11.

44.Lin, S.S. (1997), “Use of Filamented Beam Elments for Bored Pile Analysis,” Journal of Structure Engineering, ASCE, pp. 1236-1244.

45.Luo, X., Murono, Y. amd Nishimura, A. (2002), “Verifying Adequacy of the Seismic Deformation Method by Using Real Example of Earthquake Damage,” Soil Dynamics and Earthquake Engineering, Vo1. 22, pp. 17-28.

46.Lin, S. S., Tseng Y. J., Chiang C. C. and Hung C. L. (2005), “Damage of Piles Caused by Laterally Spreading–Back Study of Three Cases,” Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.

47.Martin, G. R., Finn, W. D. L. and Seed, H. B. (1975), “Fundamentals of liquefaction under cyclic loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT5, pp. 423-438.

48.Mulilis, J. P., Chen, C. K. and Seed, H. B. (1975), “The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC75-18, U.C. Berkeley, Earthquake Engineering Research Center.

49.Matsuzawa, H., Ishibashi, I. and Kawamura, M. (1985), “Dynamic soil and Water Pressures of Submerged Soils,” Journal of the Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1161-1176.

50.MacGregor, J. G. (1988), “Reinforced Concrete: Mechanics and Design,” Prentice Hall, New Jersey, U.S.A.

51.Meyersohn, W. D. (1994), “Pile response to Liquefaction-induced lateral spread,” Doctor’s dissertation, Cornell University, USA.

52.Novak, M. and Beredugo, Y. O. (1972), “Vertical Vibration of Embedded Footings,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98, pp. 1291-1310.

53.Novak, M. (1974), “Dynamic Stiffness and Damping of Piles,” Journal of Canadian Geotechnical Engineering, Vol. 11, pp. 574-598.

54.Novak, M. (1977), “Vertical Vibration of Floating Piles,” Journal of Engineering Mecanics Division, ASCE, Vol. 103(EM-1), pp. 153-168.

55.Novak, M. and EI Sharnouby, B. (1983), “Stiffness and Damping Constants of Single piles, ” Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp. 153-168.

56.National Earthquake Hazard Reduction Program (NEHRP) (2000), Commentary (Federal Emergency Management Agency, USA, 369) for Seismic Regulations of New Buildings and Other Structures.

57.Nilson, A. H. (2003), “Design of Reinforced Concrete Structures,” 13th Edition, McGraw-Hill, Inc., New York, ISBN 0-07-292199-4.

58.Priestley, M. J. N., Seible F. and Calvi, G. M. (1996), “Seismic Design and Retrofit of Bridges,” John Wiley & Sons, Inc.

59.Pamuk, A., Gallagher, P. M. and Zimmie, T. F. (2007), “Remediation of Piled Foundations Against Lateral Spreading by Passive Site Stabilization Technique,’’ Soil Dynamics and Earthquake Engineering, ASCE, Vol. 27, No. 9, pp. 864-874.

60.Reese, L. C. (1997), “Analysis of Laterally Loaded Piles in Weak Rock,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 11, pp. 1010-1017.

61.Smith, E. A. L. (1960), “Pile Driving Analysis by the Wave Equation,” Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 86, No. SM4, pp. 35-61.

62.Seed, H. B., and Idriss, I. M. (1970), “Soil Moduli and Damping Factors for Dynamic Response Analysis,” Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, California.

63.Silver, M. L. and Seed, H. B. (1971), “Volume Changes in Sands During Cyclic Loading”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1171-1182.

64.Seed, H. B. and Peacock, W. H. (1971), “Test Procedures for Measuring Soil Liquefaction Characteristics,’’ Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM8), pp. 1099-1119.

65.Seed, H. B. and Idriss, L. M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential,’’ Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM9), pp. 1249-1273.

66.Seed, H. B., Mori, K. and Chan, C. K. (1975a), “Influence of Seismic History on the Liquefaction Characteristics of Sands,’’ Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.

67.Seed, H. B., Martin, P. P. and Lysmer, J. (1975b), “The Generation and Dissipation of Pore Water Pressure During Soil Liquefaction,’’ Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California.

68.Seed, H. B. (1976), “Some Aspect of Sand Liquefaction under Cyclic Loading,” Proc., Conference on Behavior of Offshore Structures, Norwegian Institute of Technology, Oslo.

69.Seed, B., Pyke, R. M. and Martin, G. R. (1978), “Effect of Multidirectional Shaking on Pore Pressure Development in Sands,” Geotechnical Engineering, Vol. 104, No. 1, pp. 27-43.

70.Seed, H. B. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255.

71.Seed, H. B. and Idriss, I. M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes,’’ Earthquake Engineering Research Institute, California.

72.Tokimatsu, k. and Asaka, Y. (1998), “Effects of liquefaction Induced Ground Displacement on Pile Performance in the 1995 Hyogoken–Nambu Earthquake,” Special Issue of Soils and Foundations, No. 2, pp. 163-178.

73.Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes,” Procds., 12th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering, Singapore, August.

74.Tokimatu, K. and Suzuki, H. (2004), “Pore Water Pressure Response around Pile and Its Effects on P-Y Behavior during Soil Liquefaction,” Soils and Foundations, Vol. 44, No. 6, pp.101-110.

75.Toyota, H., Towhata, I., Imamura, S. and Kudo, K. (2004), “Shaking Table Tests on Flow Dynamics in Liquefied Slope,” Soils and Foundations, Vol. 44, No. 5, pp. 67-84.

76.Ueng, T. S. and Chang C. S. (1982). “The Effects of Clay Content on Liquefaction of Fulung Sand, ” Proc. Of the Conference of Soil Dynamics and Earthquake Engineering, Southampton.

77.Ueng, T. S., Lin, M. L., Lee, I. Y., Chu, C. M. and Lin, J. S. (2002), “Dynamic Characteristics of Soils in Yuan-Lin Liquefaction Area”, Journal of the Chinese Institute of Engineers, Vol. 25, No. 5, pp. 555-565.

78.Wilson, D. W., Boulanger, R. W. and Kutter, B.L. (2000), “Observed Seismic Lateral Resistance of Liquefying Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 10, pp. 898-906.

79.Yoshimi Y., Tokimatsu K. and Hosaka Y. (1989), “Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples,’’ Soils and Foundations, Vol. 29, No. 1, pp. 93-104.

80.Yang, Z. and Elgamal, A. (2002), “Influence of Permeability on Liquefaction-Induced Shear Deformation,” Engineering Mechanics, ASCE, Vol. 128, No. 7, pp. 720-729.

81.Yang, Z. and Elgamal, A. (2003), “Application of Unconstrained Optimization and Sensitivity Analysis to Calibration of a Soil Constitutive Model,” Int. J for Numerical and Analytical Methods in Geomechanics, Vol. 27, No. 15, pp. 1255-1316.

82.Yang, Z., Lu, J. and Elgamal, A. (2004), “A Web-based Platform for Live Internet Computation of Seismic Ground Response,” Advances in Engineering Software, Vol. 35, pp. 249-259.

83.Yao, S., Kobayashi, K., Yoshida, N. and Matsuo, H. (2004), “Interactive Behavior of Soil-Pile-Superstructure System in Transient State to Liquefaction by Means of Large Shake Table Tests,” Soil Dynamics and Earthquake Engineering, Vo1. 24, pp. 397-409.

84.日本道路協會 (1990),“道路橋示方書•同解說,V耐震設計編”。

85.日本道路協會 (1996),“道路橋示方書•同解說,V耐震設計編”。

86.中華民國交通部 (2007),“鐵路橋樑耐震設計規範”,營建雜誌社。

87.內政部營建署 (2004),“建築物耐震設計規範及解說”。

88.王世權 (2001),“垂直地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

89.王志煒 (2002),“側向地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

90.江鈞平 (1984),“壓密與顆粒性質對含微量黏土細砂之液化潛能的影響”,碩士論文,國立台灣大學土木工程研究所,台灣,台北。

91.江承家 (2004),“土壤測潰對混凝土樁之影響分析”,碩士論文,海洋大學土木工程研究所,台灣,基隆。

92.巫秀星 (2005),“液化土壤模數折減下樁基動力反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

93.李漢珽 (2008),“土質參數折減係數應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

94.周功台、李志剛、廖瑞堂、俞清瀚、余榮生、郭漢興、黃富國、鄭清江 (2000),“液化區基礎修復補強工法對策說明書”,台北市、臺灣省大地工程技師公會,台北。

95.林三賢、曾玉如、江承家、李維峰 (2005),“液化土層產生側潰對基樁之影響分析”,地工技術,第103期,第43-52頁。

96.林伯勳 (2006), “樁基礎受液化和地盤側向流動之結構行為分析”,博士論文,淡江大學土木工程研究所,台灣,淡水。

97.林新哲 (1998),“考慮混凝土開裂之場鑄樁側向載重分析”,碩士論文,台灣科技大學土木工程研究所,台灣,台北。

98.翁作新、陳正興、黃俊鴻 (2004),“國內土壤受震液化問題之檢討” ,地工技術,第100期,第63-78頁。

99.張一郎 (2000), “波動方程式分析於群樁側向反應之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

100.梁慈婷 (2000),“土壤液化對混凝土之影響”,碩士論文,海洋大學土木工程研究所,台灣,基隆。

101.陳銘鴻(2002),“土壤液化成因、災害與復建”,台灣之活動斷層與地震災害研討會論文集,第107-123頁。

102.黃俊鴻(2000),“液化地盤中樁基礎之耐震設計”,地工技術,第82期,第65-78頁。

103.黃俊鴻、鍾明劍 (2006), “液化流動壓作用下側向樁之簡化解析解”,中國土木水利工程學刊,第十八卷,第四期,第465-474頁。
104.楊宗勳 (2000),“地震對混凝土樁之影響分析”,碩士論文,海洋大學土木工程研究所,台灣,基隆。

105.葉興鴻 (1996),“轉換輻射阻尼於基樁軸向、側向行為之模擬與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

106.鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

107.鄭文隆,吳偉康 (1985),“土壤液化之災害型態與現地研判”,地工技術,第9期,第91-103頁。

108.盧見志,鍾賢慶,黃永和 (2005),“橋樑非維性側推分析”,2005兩岸鐵道工程技術與營運管理學術研討會,台灣,12月,第207~221頁。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-07-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信