淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2107200811493000
中文論文名稱 逆洗與通氣對管式薄膜過濾蛋白質溶液濾速增進之探討
英文論文名稱 Flux Enhancement by Backwashing and Gas-sparging in Tubular Membrane Filtration of Protein Solution
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 鄭運馨
研究生英文姓名 Yun-Hsin Cheng
學號 695400050
學位類別 碩士
語文別 中文
口試日期 2007-06-23
論文頁數 112頁
口試委員 指導教授-鄭東文
委員-蔡少偉
委員-葉和明
中文關鍵字 薄膜結垢  等電點  逆洗  通氣 
英文關鍵字 Membrane fouling  Isoelectric point  Backwashing  Gas-sparging 
學科別分類
中文摘要 本研究以掃流式無機薄膜過濾系統探討蛋白質溶液之過濾行為與結垢現象,並尋求提升濾速之操作方式。實驗溶液為BSA溶液,操作參數有透膜壓差、濃度、pH值、液體速度、氣體速度、逆洗頻率等,另也計算薄膜過濾之各項阻力,及以淨濾速比較不同操作方式之性能。
實驗結果顯示,pH值為3時濾速最高、pH值為7時次之、pH值為4.9時濾速最低,由於濃度極化層的阻力與BSA之電性及形狀有關,pH值為3時BSA為帶狀且表面帶電,濃度極化層不易堆積,因此濾速最高,pH值為4.9時,BSA為球狀且表面不帶電,因此所形成之濃度極化層最緻密,使得濾速最低。而由不同操作方式之淨濾速分析可知,通氣為最佳的操作方式,逆洗會因清洗耗去的濾液量而使濾速低於一般過濾。通氣可移除濃度極化層,防止BSA粒子吸附於膜面,且不需耗費濾液清洗,因此具有最高的淨濾速, pH值為3時,通氣約可提高60%之濾速。
英文摘要 Inorganic membranes were employed in a cross-flow filtration system for investigating the flux behavior and membrane fouling of BSA solutions. The operating parameters included transmembrane pressure, solution concentration, pH value, liquid velocity, air velocity and backwashing frequency. The filtration resistances were also evaluated and the net permeate flux was considered in order to compare the performances of various operation modes,
For varying the pH, the experimental results show that the permeate flux is maximum at pH = 3 and is minimum at pH = 4.9. The BSA particle’s shape and surface charge were determined by the pH value. At pH = 3, the BSA molecules are linear with surface charge, the BSA polarization layer in the filtration has a loose structure results in a lower filtration resistance.. At pH = 4.9, a compact BSA polarization layer’s structure was formed due to the neutral and nearly spherical BSA molecues. Basing on the analysis of net permeate flux, the gas sparging method is better than the backwashing for flux enhancement. The gas sparging can effectively remove the polarization layer and reduce the BSA deposition on the membrane. Furthermore, no permeate is wasted for washing in gas sparging. At pH =3, the flux increment by gas sparging is up to 60%.
論文目次 圖目錄 IV
表目錄 VII
第一章 序論 1
1.1 前言 1
1.2 薄膜分離 2
1.3 濃度極化與結垢現象 4
1.4 本研究之目標 6
第二章 文獻回顧 9
2.1 蛋白質簡介 9
2.1.1 蛋白質酸鹼性質 9
2.1.2 蛋白質的等電點 9
2.1.3 蛋白質之相關研究 10
2.2 薄膜超過濾之特性 13
2.3 影響濾速之因素 15
2.4 提高濾速之方法 17
2.5 濾速分析模式 25
第三章 實驗裝置與方法 36
3.1 實驗裝置 36
3.2 實驗藥品 36
3.3 實驗步驟 37
3.4 操作條件 37
3.4.1 系統操作條件 37
3.4.2 流量計校正與雷諾數計算 38
3.5 分析方法 38
3.5.1 分析儀器 38
3.5.2 BSA的分析方法與條件 38
3.5.3 阻隔率之計算 39
3.6 薄膜清洗 39
第四章 結果與討論 47
4.1 薄膜純水濾速 47
4. 2 BSA溶液濾速 47
4.2.1 液體掃流速度之影響 47
4.2.2 通氣之影響 50
4.2.3 逆洗操作之影響 54
4.2.4 通氣與逆洗操作之比較 56
4.2.5 浄濾速分析 57
4.3 阻力分析 59
4.3.1 阻力串聯模式 59
4.3.2 液體掃流對阻力之影響 59
4.3.3 氣體掃流對阻力之影響 60
4.3.4 逆洗對阻力之影響 61
4.3.5 不同操作對阻力之影響 62
4.4 模式分析 62
4.4.1 滲透壓模式 62
4.4.2 物性參數 64
4.7.2 計算結果 65
第五章 結論 92
5.1 掃流速度的影響 92
5.2 逆洗對濾速之影響 92
5.3 pH値之影響 93
5.4 阻力分析 93
5.5 滲透壓模式 94
5.6 淨濾速分析 95
5.7 總結 95
符號說明 97
參考文獻 100
附錄 110

圖目錄

圖1.1 薄膜分離程序之分類 7
圖1.2 (a)濾餅過濾及(b)掃流過濾示意圖 8
圖2.1 蛋白質(胺基酸)的雙極結構 10
圖2.2 蛋白質(胺基酸)的帶電性與環境性質之關係 10
圖2.3 蛋白質結構圖(a)中性溶液下(b)pH值3之下 11
圖2.4 壓力對濾速之關係圖 32
圖2.5 提高濾速之方法 33
圖2.6 氣液兩相之流動型態圖 34
圖2.7 膠層極化之濃度分佈圖 35
圖3.1 管式陶瓷薄膜過濾實驗裝置圖 40
圖3.2 TiO2薄膜介達電位隨著pH值之變化圖 41
圖3.3 流體流量計校正圖(流量計A) 41
圖3.4 流體流量與掃流速度(UL)之關係圖(流量計A) 42
圖3.5 管式單通道薄膜流體流量與雷諾數之關係圖(流量計A) 42
圖3.6 流體流量計校正圖(流量計B) 43
圖3.7 流體流量與掃流速度(UL)之關係圖(流量計B) 43
圖3.8 管式單通道薄膜流體流量與雷諾數之關係圖(流量計B) 44
圖4.1 MWCO 5k Da薄膜純水濾速圖 67
圖4.2 100 kPa下不同液體速度之濾速變化圖 67
圖4.3 300 kPa下不同液體速度之濾速變化圖 68
圖4.4 100 kPa下不同液體速度之濾速變化圖 68
圖4.5 300 kPa下不同液體速度之濾速變化圖 69
圖4.6 100 kPa下不同氣體速度之濾速變化圖 69
圖4.7 300 kPa下不同氣體速度之濾速變化圖 70
圖4.8 100 kPa下不同氣體速度之濾速變化圖 70
圖4.9 300 kPa下不同氣體速度之濾速變化圖 71
圖4.10 間歇性通氣之濾速變化圖 71
圖4.11 pH値3下通氣與ㄧ般過濾之濾速變化圖 72圖4.12 pH値4.9下通氣與ㄧ般過濾之濾速變化圖 72
圖4.13 pH値7.0下通氣與ㄧ般過濾之濾速變化圖 73
圖4.14 不同頻率下之濾速變化圖 73
圖4.15 pH=3.0之下逆洗與過濾濾速變化圖 74
圖4.16 pH=4.9之下逆洗與過濾濾速變化圖 74
圖4.17 pH=7.0之下逆洗與過濾濾速變化圖 75
圖4.18 不同pH值之下逆洗濾速變化圖 75
圖4.19 pH值7.0之下不同操作手法之濾速變化圖 76
圖4.20 pH值4.9之下不同操作手法之濾速變化圖 76
圖4.21 pH值3.0之下不同操作手法之濾速變化圖 77
圖4.22 不同操作頻率下淨濾速對比圖 77
圖4.23 不同操作手法之下各pH值淨濾速對比圖 78
圖4.24 100 kPa下不同掃流速度之阻力變化圖 78
圖4.25 300 kPa下不同掃流速度之阻力變化圖 79
圖4.26 100 kPa下不同掃流速度之阻力變化圖 79
圖4.27 300 kPa下不同掃流速度之阻力變化圖 80
圖4.28 100 kPa下通氣與ㄧ般過濾之阻力變化圖 80
圖4.29 300 kPa下通氣與ㄧ般過濾之阻力變化圖 81
圖4.30 100 kPa下通氣與ㄧ般過濾之阻力變化圖 81
圖4.31 300 kPa下通氣與ㄧ般過濾之阻力變化圖 82
圖4.32 不同pH値下通氣阻力變化圖 82
圖4.33 pH値3.0下通氣與ㄧ般過濾之阻力變化圖 83
圖4.34 pH値4.9下通氣與ㄧ般過濾之阻力變化圖 83
圖4.35 pH値7.0下通氣與ㄧ般過濾之阻力變化圖 84
圖4.36 逆洗頻率15 : 1之阻力變化圖 84
圖4.37 逆洗頻率10 : 1之阻力變化圖 85
圖4.38 逆洗頻率5 : 1之阻力變化圖 85
圖4.39 不同逆洗頻率下總阻力變化圖 86
圖4.40 pH=3.0之下逆洗與過濾阻力對比圖 86
圖4.41 pH=4.9之下逆洗與過濾阻力對比圖 87
圖4.42 pH=7.0之下逆洗與過濾阻力對比圖 87
圖4.43 不同pH值之下逆洗阻力對比圖 88
圖4.44 pH=3之下不同操作手法阻力對比圖 88
圖4.45 pH=4.9之下不同操作手法阻力對比圖 89
圖4.46 pH=7.0之下不同操作手法阻力對比圖 89
圖4.47 滲透壓模式下理論與實驗濾速比較圖(1000ppm;100 kPa) 90
圖4.48 滲透壓模式下理論與實驗濾速比較圖(1000ppm;300 kPa) 90
圖4.49 滲透壓模式下理論與實驗濾速比較圖(2000ppm;100 kPa) 91
圖4.50 滲透壓模式下理論與實驗濾速比較圖(2000ppm;300 kPa) 91圖A-1 BSA檢量線 110
表目錄

表1.1 不同操作程序之驅動力分類 7
表3.1 薄膜性質說明 44
表3.2 BSA特性說明 45
表3.3 流量計A刻度與實際流量、掃流速度、雷諾數之關係 45
表3.4 流量計B刻度與實際流量、掃流速度、雷諾數之關係 46
表4.1 各薄膜純水透過率及薄膜阻力 47
表4.2 通氣操作之流態 50
表4.3 不同逆洗頻率之濾速表 66
表4.4 不同操作手法之濾速表 66

參考文獻 參考文獻

Bansal, B., R. Al-Ali, R. Mwrcade-Prieto, X.D. Chen, “Rinsing and clean -ing of α-lactalbumin fouled MF membranes”, Sep. Purif. Technol. 48 (2006) 202-207.
Bargeman, G., J.M. Vollenbroek, J. Straatsma, C.G.P.H. Schroen, R.M. Boom, “Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention”, J. Membr. Sci. 247 (2005) 11-20.
Bauser, H., H. Chmiel, N. Stroh, E. Walitza, “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application”, J. Membr. Sci. 27 (1986) 195-202.
Belfort, G., ”Membrane modules: comparison of different configurations using fluid mechanics”, J. Membr. Sci., 35, (1988) 245-270.
Belfort, G., ”Fluid mechanics in membrane filtration: recent deve -lopments”, J. Membr. Sci. 40 (1989) 123-147
Blatt, W.F., A. Dravid, A.S. Michales, L. Nelsen, “Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control technique”, in: J.E. Filnn, ed., Membrane Science and Technology, Plenum Press, New York, (1970), p. 47.
Bowen, W.R., J.S. Welfoot, “Modelling the performance of membrane nanofiltration–critical assessment and model development”, Chem. Eng. Sci. 57 (2002) 1121-1137.
Bowen, W.R., J.S. Welfoot, “Modelling of membrane nanofiltration–pore size distribution effects”, Chem. Eng. Sci. 57 (2002) 1393-1407.
Cabassud, C., S. Laborie, J.M. Laine, “How slug flow can improve ultra -filtration flux in organic hollow fibers”, J. Membr. Sci. 128 (1997) 93-101.
Cabassud, C., E. Karim, D. Gaelle, L. Alain, “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chem. Eng. Sci. 56 (2001) 6321-6327
Carter D.C., Ho J.X., “Structure of serum albumin”,Adv. Protein Chem. 45 (1994) 153-199.
Cheng, T.W., H.M. Yeh, C.T. Gau, “Flux analysis by modified osmotic -pressure model for laminar ultrafiltration of macromolecular solutions”, Sep. Purif. Technol. 13 (1998) 1-8.
Cheng, T.W., C.T. Lin, “A study on cross-flow ultrafiltration with various membrane orientations”, Sep. Purif. Technol. 39 (2004) 13-22.
Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, 2nd ed., Technomic Publishing Co. Inc. Pennsylvania (1998).
Cheryan, M., R. Shukla, “Performance of ultrafiltration membrane in ethanol-water solution: effect of membrane conditioning” J. Membr. Sci. 198 (2002) 75-85.
Chong, R., P. Jelen, W. Wang, “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol. 20 (1985) 393-402.
Cui, Z.F., K.I.T. Wright, “Gas-liquid two-phase crossflow ultrafiltration of BSA and dextran solution”, J. Membr. Sci. 90 (1994) 183-189.
Cui, Z.F., K.I.T. Wright, “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, J. Membr. Sci. 117 (1996) 109-116.
Derzansky, L.J., W.N. Gill, “Mechanisms of brane-side mass transfer in a horizontal reverse osmosis tubular membrane”, AIChE J. 20 (1974) 751-761.
Dharmesh M. Kanani, Raja Ghosh, Carlos D.M. Filipe, “A novel approach for high-resolution protein–protein separation by ultrafiltration using a dual-facilitating agent.”, J. Membr. Sci. 243 (2004) 223-228.
Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, “Colori -metric method for determination of sugars and related substances”, Anal. Chem. 28 (1956) 350-356.
Fane, A. G., C.J.D. Fell, A. Suki, “Effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, J. Membr. Sci. 16 (1982) 195-210.
Fell, C.J.D., K.J. Kim, V. Chem, D.E. Wiley, A.G. Fane, “Factors determining flux and rejection of ultrafiltration membranes”, Chem. Eng. Process. 27 (1990) 165-173.
Ferrer M.L., Duchowicz R., Carrasco B., J.G. de la Torre, A.U. Acuna, “The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study”, Biophys. J. 80 (2001) 2422-2430.
Ghosh, R., Q. Li, Z.F. Cui, ” “Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging”, AIChE J. 44 (1998) 61-67.
Ghosh, R., Z.F. Cui, “Fractionation of BSA and lysozyme using ultra -filtration: effect of pH and membrane pretreatment”, J. Membr. Sci. 139 (1998) 17-28.
Ghosh, R., Z.F. Cui, “Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes”, J. Membr. Sci., 162 (1999) 91-102.
Gupta, B.B., P. Blanpain, M.Y. Jaffrin, “Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane”, J. Membr. Sci. 70 (1992) 257-266.
Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, “A helical baffle for cross -flow microfiltration”, J. Membr. Sci. 99 (1995) 31-42.
Heran M., Elmaleh S., “Microfiltration through an inorganic tubular membrane with high frequency retrofiltration”, J. Membr. Sci. 188 (2001) 181-188.
Hidetoshi, M., Y.C. Chen, Y. Ryotaro, K. Yuichi, M. Mie , T. Akihiko, “Membrane potentials across nanofiltration membranes:effect of
nanoscaled cavity structure”, J. Molecular Structure. 739 (2005) 99-104.
Ho, C.C., A. L. Zydeny, “A combined pore blockage and cake filtration model for protein fouling during microfiltration”, J. Colloid Interface Sci. 232 (2000) 389-399.
Huisman, I.H., P. Pradanos, A. Hernandez, “The effect of protein-protein and protein-membrane interactions on membrane fouling in ultra -filtration”, J. Membr. Sci. 179 (2000) 79-90.
Iritani, E.J., Y.T. Mukai, T.R. Murase, “Separation of binary protein mixtures by ultrafiltration”, Filtration & Separation. 34 (1997) 967-973.
Karthik, V., S. DasGupta, S. De, “Modelling and simulation of osmotic pressure controlled electro-ultrafiltration in a cross-flow system”, J. Membr. Sci. 199 (2002) 29-40.
Kedem, O., A. Katchalsky, “A physical interpretation of the phenomenological coefficients of membrane permeability”, J. Gen. Physiol. 45 (1961) 143-179.
Kelly, S.T., A.L. Zydney, “Effects of intermolecular thiol-disulfide interchange reactions on BSA fouling during microfiltration”, Biotechnol. Bioeng. 44 (1994) 972-982.
Kelly, S.T., A.L. Zydney, “Mechanisms for BSA fouling during microfiltration”, J. Membr. Sci. 107 (1995) 115-127.
Kim, B.S., H.N. Chang, “Effects of periodic backflushing on ultra -filtration Performance”, Bioseparation, 2 (1991) 9-23.
Kimura, S., S. Sourirajan, “Analysis of data in reverse osmosis with porous celluloses acetate membranes used”, AIChE J. 13 (1967) 497-503.
Kozinski, A. A., E. N. Lightfoot, “Protein ultrafiltration: a general example of boundary layer filtration”, AIChE J. 18 (1972) 1030.
Kroner, K.H., V. Nissinen, “Dynamic filtration of microbial suspensions using an axially rotating filter”, J. Membr. Sci. 36 (1988) 85-100.
Kuberkar, V., Czekaj, P., Davis, R., “Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing.”, Biotechnology and Bioengineering, 60 (1998) 77-87.
Lee, C.K., W.G. Chang, Y.H. Ju, “Air slugs entrapped cross-flow filtration of bacterial suspensions”, Biotech. Bioeng. 41 (1993) 525-530.
Li, S.L., C Li, Y.S. Liu, X.L. Wang, Z.A. Cao, “Separation of L- glutamine from fermentation broth by nanofiltration”, J. Membr. Sci. 222 (2003) 191-201.
Mercier-Bonin, M., C. Fonade, C. Lafforgue-Delorme, “How slug flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci. 128 (1997) 103-113.
Mericier-Bonin, M., C. Lagane, C. Fonade, “Influence of a gas /liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane”, J. Membr. Sci. 180 (2000) 93-102.
Millward, H.R., B.J. Bellhouse, G. Walker, “Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance”, J. Membr. Sci., 106 (1995) 269-279.
Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent. 4 (1983) 412.
Morel, G., A. Gracina, J. Lachise, “Enhanced nitrate ultrafiltration by cationic surfactant”, J. Membr. Sci. 56 (1991) 1-12.
Moritz, T., S. Benfer, P. Arki, G. Tomandl, “Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic Membranes”, Sep. Purif. Technol. 25 (2001) 501-508.
Mulder, M., “Basic principle of membrane technology”, Kluwer Academic Publishers. Taiwan (1991).
Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin”, AIChE J. 36 (1990) 907-915.
Nakao, S., X.L. Wang, T. Tsuru, M. Togoh, S. Kimura, ”Transport of organic electrolytes with electrostatic and sterichidrance effects through nanofiltration membranes”, J. Chem. Eng. Jpn. 28 (1995) 372-380.
Nel, R. G., S. F. Oppenheim, V.G.J. Rodgers, “Effect of solution properties om solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog. 10 (1994) 539-542.
Palacio, L., C.C. Ho, P. Pradaos, A. Hernandez, A. L. Zydeny., “Fouling with protein mixtures in microfilration: BSA-lysozyme and BSA -pepsine”, J. Membr. Sci. 222 (2003) 41-51.
Persson, A., Ann-Sofi Jonsson, G. Zacchi, “Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration”, J. Membr. Sci. 223 (2003) 11-21.
Philles, G.D., G.B. Benedek, N.A. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy”, J. Chem. Phys. 65 (1976) 1883.
Porter, M.C., “Handbook of industrial membrane technology”, Noyes Publications. USA (1990).
Rabiller-Baudry, M., B. Chaufer, D. Lucas, B. Bariou, P. Aimar, “Model of convection-diffusion-electrophoretic migration application to UF of lysozyme versus pH and ionic strength”, in: proceedings of the international congress on international congress on membranes and membrane processes, Toronto, Canada, June (1999).
Redkar S., Davis, R. H. “Cross-flow microfiltration with high frequency reverse filtration”, A.I.Ch.E. Journal, 41 (1995) 501-508.
Redkar S., Kuberkar, V., Davis, R. E., “Modeling of concentration polarization and depolarization with high-frequency backpulsing.”, J. Membr. Sci., 121 (1996) 229-242.
Rodger, V. G. J., Sparks, R. E., “Effect of transmembrane pressure pulsing on concentration polarization.”, J. Membr. Sci., 68 (1992) 149-168.
Serra Christophe, Durand-Bourlier Laurence, Michael J. Clifton, Moulin Philippe, Jean-Christophe Rouch, Aptel Philippe, “Use of air sparging to improve backwash efficiency in hollow-fiber modules”, J. Membr. Sci. 161 (1999) 95-113.
Schafer, A.I., A.G. Fane, T.D. Waite, “Nanofiltration-Principles and Applications”, Elservier Inc. USA (2005).
Smith, S.R., Cui, Z.F.,” Gas-slug enhanced hollow fibre ultrafiltration—an experimental study” , J. Membr. Sci., 242 (2004) 117-128.
Taylor, G.I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil. Trans. Roy. Soc. A233 (1923) 298.
Taha Taha, Cui, Z.F., “CFD modelling of gas-sparged ultrafiltration
in tubular membranes”, J. Membr. Sci., 210 (2002) 13-27.
Van Der Weal, M. J., I.G. Racz, “Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments”, J. Membr. Sci., 40 (1989) 243-260.
Vera, L., S. Delgado, S. Elmaleh, “Dimensionless numbers for the steady -state flux of cross-flow microfiltration and ultrafiltration with gas sparging”, Chem. Eng. Sci. 55 (2000a) 3419-3428.
Vera, L., R. Villarroel, S. Delgado, S. Elmaleh, “Enhancing micro -filtration through an inorganic tubular membrane by gas sparging”, J. Membr. Sci. 165 (2000b) 47-27.
Wenten, I. G., “Mechanisms and control of fouling in crossflow microfiltration”, Filtration and Separation. Mars (1995)252-254.
Winzeler, H.B., G. Belfort, “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, J. Membr. Sci., 80 (1993) 35-47.
Yeh, H.M., “Modified gel-polarization model for ultrafiltration in hollow-fiber membrane modules”, Sep. Sci. Technol. 31 (1996) 201-211.
Youm, K.H., A.G. Fane, D.E. Wiley, “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, J. Membr. Sci. 116 (1996) 229-241.
Zydeny, A.L., M.F. Ebersold, “The effect of membrane properties on the separation of protein charge variants using ultrafiltration”, J. Membr. Sci. 243 (2004) 379-338.
呂維明編著, “固液過濾技術”, 高立圖書有限公司 (2004).
林世龍, “氣液兩相管式薄膜超過濾系統中流態與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2002).
林家福, “陶瓷薄膜兩相流動超過濾系統中蛋白質溶液濃縮與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2004).
李培銘, “無機薄膜過濾蛋白質溶液中結垢現象與濾速回復之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2006).
林凱尉, “無機管式薄膜過濾蛋白質溶液之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2007).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信