淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2107200807361400
中文論文名稱 垃圾焚化飛灰中揮發性重金屬之移動特性
英文論文名稱 Mobility characteristics of volatile heavy metals in municipal solid waste incinerator fly ash
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系博士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 何鴻哲
研究生英文姓名 Hong-Che Ho
學號 889330014
學位類別 博士
語文別 中文
口試日期 2008-06-14
論文頁數 101頁
口試委員 指導教授-高思懷
委員-楊萬發
委員-王鯤生
委員-鄭大偉
委員-魏銘彥
委員-高思懷
中文關鍵字 焚化飛灰  重金屬  溶出  蒸發  磷酸穩定 
英文關鍵字 incinerator fly ash  heavy metals  leaching  evaporation  phosphoric acid stabilization 
學科別分類
中文摘要 垃圾焚化飛灰不論採固化掩埋處置或熱處理再利用,其重金屬之溶出特性與熱處理之蒸發特性,均為必須嚴重關切的問題。飛灰中重金屬之溶出特性與蒸發特性除本身之化學組成外,亦受環境之pH值或周邊化合物特性之影響。本研究之目的主要在探討旋風集塵灰與袋式過濾灰兩種飛灰中,四種重金屬(鉛、鋅、銅及鎘)的溶出與熱處理時之移動特性。
飛灰重金屬之溶出行為主要依毒性特性溶出程序(TCLP)進行,並討論飛灰粒徑及鹼度對重金屬溶出行為之影響;重金屬之熱移動特性則藉管狀燃燒爐進行,並配合水洗前處理釐清氯鹽在重金屬蒸發過程所扮演之角色;此外磷酸穩定對重金屬之溶出及蒸發的作用,在研究中亦有所探討。
由溶出實驗結果得知,旋風集塵灰之TCLP可符合法規之限值,即使提高其鹼度或降低其粒徑可使重金屬鉛之溶出量增加,但仍可符合溶出標準。袋式過濾灰中鉛之溶出濃度則明顯超過限值,添加少量磷酸予以穩定化後,則可有效抑制鉛之溶出,同樣地,使用適量之硫酸與硝酸,使TCLP溶出液之pH值落於10-12範圍內,亦可使各重金屬之溶出濃度降至最低。
兩種飛灰於熱處理時,鉛均為最易蒸發之重金屬之一,且袋式過濾灰經水洗前處理後,鋅、銅及鎘之蒸發率均大幅降低,但鉛之蒸發趨勢則未受影響,顯示鉛為飛灰中最具移動性之重金屬。此外,研究中亦證實,袋式過濾灰中所含之高量氯化物(如氯化鈣)在重金屬之蒸發特性中扮演了相當重要的角色,在熱處理過程中,可將飛灰中之重金屬氧化物轉化為氯化物而加速其蒸發,且其對氧化鉛之轉化作用明顯優於氧化鋅,具有一定之順序性。至於磷酸穩定後之袋式過濾灰及水洗灰,其重金屬蒸發率似無明顯變化,就重金屬之熱移動特性而言,其穩定效果有限。
英文摘要 Leaching and evaporation characteristics of heavy metals in Municipal Solid Waste Incinerator Fly Ash (MSWIFA) should be considered seriously during solidified for landfill or thermal treatment for recycling. These characteristics of heavy metals in MSWIFA are affected by the species of metals and the conditions of surrounding, such as pH and chemical components. In this study, leaching and thermal mobility of four selected heavy metals (Pb, Zn, Cu and Cd) found in two types of MSWIFA [cyclone ash (CA) and filter ash (FA)] were investigated.
Leaching behavior of heavy metals from MSWIFA was investigated by toxicity characteristic leaching procedure (TCLP). The effect of particle size and alkalinity of fly ash on leaching behavior were also discussed in this study. Thermal behavior of heavy metals from MSWIFA was performed with tube furnace. The role of chloride in MSWIFA during heavy metals evaporation procedure was investigated by water washing pretreatment. In addition, the influence of phosphoric acid stabilization on heavy metals leaching and evaporation was also explored in this research.
While reducing the particle size or/and increasing the alkalinity of CA elevate the leaching concentration of Pb, the leaching concentrations of Pb, Zn, Cu and Cd in CA meet the regulatory limit of TCLP in Taiwan. However, the leaching concentration of Pb in FA fails to the regulatory limit. Lead leaching concentration was restrained by blending FA and 2-3 M phosphoric acid with liquid/solid ratio=0.5 ml/g. Similarly, FA blending with sulfuric acid or nitric acid result in the pH of TCLP leachate 10-12 also inhibits the leaching concentration of heavy metals.
Lead possesses the highest evaporation ratio among the examined heavy metals in the two types of fly ashes under thermal treatment. While FA washed with water removes large amounts of chloride in FA and is able to inhibit the evaporation ratio of zinc, copper and cadmium significantly, it still has no effects on lead. It is experimentally concluded that chlorides play a key role in the determination of the evaporation of heavy metals in the fly ashes. That is, chloride salts in fly ashes will transform metal oxides into metal chlorides and enhance the evaporation ratio of heavy metals significantly. Furthermore, there is a selectivity of the transformation of chloride salts so that lead oxide has higher priority than zinc oxide. FA and water washed filter ash (WWFA) stabilized by phosphoric acid show no significantly variance in evaporation ratio of selected heavy metals.
論文目次 目 錄

中文論文提要 ……………………………………… Ⅰ
英文論文提要 …………………………………………… Ⅱ
目錄 ………………………………………………………… Ⅲ
圖目錄 …………………………………………………… Ⅴ
表目錄 …………………………………………………… Ⅶ
第一章 前言 ……………………………………………… 1
第二章 文獻回顧 …………………………………………… 3
2-1 垃圾焚化飛灰之之產生 …………………………… 3
2-2 飛灰之物理化學特性 ……………………………… 4
2-2-1 粒徑分佈 …………………………………… 4
2-2-2 形狀與密度 …………………………………… 5
2-2-3 酸鹼值與酸中和能力 ………………………… 5
2-2-4 組成元素分佈與重金屬含量 ………………… 6
2-2-5 晶相組成與重金屬化合物之型態 …………… 8
2-3 飛灰中重金屬之來源與溶出特性 ………………… 13
2-4 飛灰熱處理之重金屬行為 ………………………… 16
2-5 飛灰水洗前處理 …………………………………… 19
2-6 磷酸對飛灰中重金屬之穩定 ……………………… 21
第三章 研究方法 …………………………………………… 25
3-1 研究架構 …………………………………………… 25
3-2 飛灰試樣之來源與準備 ………………………… 26
3-3 飛灰之重金屬溶出特性 …………………………… 26
3-4 重金屬蒸發實驗 ………………………………… 27
3-5 飛灰之水洗前處理 ……………………………… 29
3-6 磷酸穩定化實驗 ………………………………… 29
3-7 分析方法與設備 ………………………………… 30
第四章 結果與討論 ……………………………………… 33
4-1 飛灰之基本特性 ………………………………… 33
4-2 飛灰粒徑與鹼度對重金屬溶出之影響 …………… 40
4.3 磷酸穩定對重金屬溶出之影響 …………………… 43
4-4重金屬蒸發特性 ………………………………… 47
4-4-1 溫度之影響 ………………………………… 49
4-4-2 時間之影響 ………………………………… 57
4-5 水洗前處理對重金屬蒸發之影響 ………………… 66
4-6 飛灰中氯化物對重金屬蒸發之影響 …………… 71
4-7 重金屬氧化物對氯鹽之競爭作用 ………………… 74
4-8 氯鹽對重金屬氧化物轉化成氯化物之熱力學探討 … 76
4-9 磷酸穩定對重金屬蒸發之影響 ………………… 80
4-9-1 磷酸添加量之評估 ………………………… 80
4-9-2 磷酸穩定化之熱處理實驗 ………………… 84
第五章 結論與建議 ……………………………………… 89
5-1 結論 ………………………………………………… 89
5-2 建議 ………………………………………………… 92
參考文獻 …………………………………………………… 94
附錄A 熱力學相關資料表 ……………………………… 99

圖 目 錄

圖3.1 研究架構圖 ……………………………………… 25
圖3.2 熱處理實驗裝置圖 ………………………………… 28
圖4.1 飛灰之粒徑分佈圖 ((a) CA;(b) FA) …………… 35
圖4.2 飛灰之XRD晶相圖((a) CA;(b) FA) …………… 37
圖4.3 飛灰之酸中和能力 ………………………………… 38
圖4.4 GCA之粒徑分佈 ………………………………… 42
圖4.5 調整CA之粒徑大小及鹼度對重金屬鉛溶出之影響 42
圖4.6 重金屬溶出濃度與溶出液pH值之關係((a) Pb;(b) Zn) 45
圖4.6 重金屬溶出濃度與溶出液pH值之關係((c)Cu;(d) Cd) 46
圖4.7 CA熔融熱處理實驗中重金屬之分佈 …………… 49
圖4.8 飛灰熱處理之重金屬蒸發特性 ((a) CA;(b) FA) … 52
圖4.9 CA與FA熱處理之燒失率 ………………………… 53
圖4.10 CA熱處理前後之XRD圖譜 ……………………… 55
圖4.11 FA熱處理前後之XRD圖譜 ……………………… 56
圖4.12 CA之重金屬蒸發率與時間之函數
((a) 800 ℃ (b) 1000 ℃) ……………………………… 60
圖4.13 FA之重金屬蒸發率與時間之函數
((a) 800 ℃ (b) 1000 ℃) ……………………………… 61
圖4.14 FA水洗後各主要元素及重金屬之分佈 …………… 67
圖4.15 WWFA經XRD晶相分析之結果 ………………… 67
圖4.16 FA水洗廢液中白色沉澱物之XRD分析結果 …… 69
圖4.17 WWFA熱處理之重金屬蒸發特性 ………………… 71
圖 4.18 氧化鉛混合FA與WWFA對鉛之蒸發率的影響
( (a) 800 ℃;(b) 1000℃) ……………………………… 73
圖4.19鉛蒸發率與CaCl2/PbO莫耳比之關係 …………… 74
圖4.20 氧化鉛與氧化鋅對氯化鈣之競爭作用 …………… 75
圖4.21 氯化鈣轉化重金屬氧化物之標準自由能 ……… 79
圖4.22 磷酸添加量對重屬溶出之影響((a) FA;(b) WWFA) 83
圖4.23 磷酸穩定對FA與WWFA中重金屬蒸發率之影響
((a) Pb;(b) Zn) ……………………………………… 87
圖4.23磷酸穩定對FA與WWFA中重金屬蒸發率之影響
((c) Cu;(b) Cd) ……………………………………… 88

表 目 錄

表2.1 文獻資料之飛灰元素組成 …………………………… 11
表2.2 文獻中垃圾焚化飛灰之晶相鑑定結果 ……………… 12
表4.1 飛灰之元素組成 …………………………………… 36
表4.2 飛灰之毒性特性溶出結果 …………………………… 40
表4.3 一階速率方程式模擬特定溫度下飛灰中重金屬蒸發結果
…………………………………………………………… 62
表4.4 重金屬氧化物及氯化物之熔點與沸點 ……………… 65
表A.1 NIST熱力學相關資料表 …………………………… 99
表A.2 Binneuies and Milke 熱力學相關資料表 …………… 100



參考文獻 參考文獻
Abe, S., Kambayashi, F., and Okada, M. (1996). "Ash melting treatment by rotating type surface melting furnace." Waste Manage., 16(5/6), 431-443.
Andac, M., and Glasser, F. P. (1998). "The effect of test conditions on the leaching of stabilised MSWI-fly ash in Portland cement." Waste Manage., 18, 309-319.
Binneuies, M.; Milke, E. (1999). Thermochemical Data of Elements and Compounds, WILEY-VCH.
Bogahawatta, V. T. L., and Poole, A. B. (1996). "The influence of phosphate on the properties of clay bricks." Applied Clay Science, 10, 461-475.
Camerani-Pinzani, M. C., Ansell, S., Somogyi, A., Steenari, B. M., and Lindqvist, O. (2004). "Microextended X-ray absorption fine structure studies of cadmium speciation within single municipal solid waste fly ash particles." Anal. Chem., 76, 1596-1602.
Chan, C., Jia, C. Q., Graydon, J. W., and Kirk, D. W. (1996). "The behaviour of selective heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents." J. Hazard. Mater., 50, 1-13.
Chan, C., and Kirk, D. W. (1999). "Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents." J. Hazard. Mater., B64, 75-89.
Chang, F. Y., and Wei, M. Y. (2006). "Comparison of the characteristics of bottom and fly ashes generated from various incineration processes." J. Hazard. Mater., B138, 594-603.
Chase, M.W. Jr. (1998). NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1-1951.
Collivignarelli, C., and Sorlini, S. (2002). "Reuse of municipal solid wastes incineration fly ashes in concrete mixtures." Waste Manage., 22, 909-912.
Derie, R. (1996). "A new way to stabilize fly ash from municipial incinerators." Waste Manage., 16(8), 711-716.
Ecke, H. (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manage. 23, 631-640.
Ecke, H., Sakanakura, H., Matsuto, T., Tanaka, N. and Lagerkvist, A. (2001) Effect of electric arc vitrification of bottom ash on the mobility and fate of metals. Environ. Sci. Technol. 35, 1531-1536.
Eighmy, T.T., Crannell, B.S., Butler, L.G., Cartledge, F.K., Emery, E.F., Oblas, D., KrzanowskiI, J.E., Eusden, J.D., Shaw, E.L. and Francis, C.A. (1997) Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ. Sci. Technol. 31, 3330-3338.
Eighmy, T.T., Eusden, J.D., Krzanowski, J.E., Domingo, D.S., Stampfli, D., Martin, J.R. and Erikson, P.M. (1995) Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environ. Sci. Technol. 29, 629-646.
Ferreira, C., Reiberiro, A. and Ottosen, L. (2003) Possible applications for municipal solid waste fly ash. J. Hazard. Mater. B 96, 201-216.
Fournier, J.B., Vignier, V., Renaud, P. and Martin, G.J. (1997) Element analysis carried out on reference samples. Comparison between five digestion techniques using wet and dry process. Analusis 25, 196-201.
Huang, S.J., Chang, C.Y., Mui, D.T., Chang, F.C., Lee, M.Y. and WANG, C.F. (2007) Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash. J. Hazard. Mater. 149, 180-188.
Jakob, A., Stucki, S. and Kuhn, P. (1995) Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ. Sci. Technol. 29, 2429-2436.
Jakob, A., Stucki, S. and Struis, R.P.W.J. (1996) Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates. Environ. Sci. Technol. 30, 3275-3283.
Kim, J.M. and Kim, H.S. (2004) Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J. Eur. Ceram. Soc. 24, 2373-2382.
Kim, W.S. and Lee, D.W. (2002) Size characterization of Incinerator fly ash using sedimentation/steric field-flow fractionation. Anal. Chem. 74, 848-855.
Kosson, D.S., van der Sloot, H.A. and Eighmy, T.T. (1996) An approach for estimate of contaminant release during utilization and disposal of municipal waste combustion residues. J. Hazard. Mater. 47, 43-75.
Krachler, M., Mohl, C., Emons, H. and Shotyk, W. (2002) Influence of digestion procedures on the determination of rare earth elements in peat and plant samples by USN-ICP-MS. J. Anal. Atom. Spectrom. 17, 844-851.
Laperche, V., Traina, S. J., Gaddam, P., and Logan, T. J. (1996). "Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite." Environ. Sci. Technol., 30, 3321-3326.
Lee, H. Y. (2007). "Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue." J. Hazard. Mater., 147, 570-575.
Li, X., Bertos, M. F., Hills, C. D., Carey, P. J., and Simon, S. (2007). "Accelerated carbonation of municipal solid waste incineration fly ashes." Waste Manage., 27, 1200-1206.
Ma, Q. Y., Traina, S. J., and Logan, T. J. (1993). "In situ lead immobilization by apatite." Environ. Sci. Technol., 27, 1803-1810.
Mangialardi, T. (2001). "Sintering of MSW fly ash for reuse as a concrete aggregate." J. Hazard. Mater., B87, 225-239.
Mangialardi, T. (2003). "Disposal of MSWI fly ash through a combined washing-immobilisation process." J. Hazard. Mater., B98, 225-240.
Mangialardi, T., Paolini, A. E., Polettini, A., and Sirini, P. (1999). "Optimization of the solidificationrstabilization process of MSW fly ash in cementitious matrices." J. Hazard. Mater., B70, 53-70.
Mizutani, S., van der Sloot, H. A., and Sakai, S. (2000). "Evaluation of treatment of gas cleaning residues from MSWI with chemical agents." Waste Manage., 20, 233-240.
Mizutani, S., Yoshida, T., Saikia, S., and Takatsuki, H. (1996). "Release of metals from MSWI fly ash and availability in alkali condition." Waste Manage., 16(5/6), 537-544.
Mulder, E. (1996). "Pre-treatment of MSWI fly ash for useful application." Waste Manage., 16, 181-184.
Nishigaki, M. (2000). "Producing permeable blocks and pavement bricks from molten slag." Waste Manage., 20, 185-192.
NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
Park, Y. J., and Heo, J. (2002a). "Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling." Ceram. Int., 28, 689-694.
Park, Y. J., and Heo, J. (2002b). "Vitrification of fly ash from municipal solid waste incinerator." J. Hazard. Mater., B91.
Patnaik, P. (2003). Handbook of inorganic chemicals, New York: McGraw Hill.
Polettini, A., Pomi, R., Trinci, L., Muntoni, A., and Mastro, S. L. (2004). "Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives." Chemosphere, 56, 901-910.
Romero, M., Rawlings, R. D., and Rincon, J. M. (1999). "Development of a new glass-ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration." J. Eur. Ceram. Soc., 19, 2049-2058.
Ryan, J. A., Zhang, P., Hesterberg, D., Chou, J., and Sayers, D. E. (2001). "Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite." Environ. Sci. Technol., 35, 3798-3803.
Saikia, N., Kato, S., and Kojima, T. (2006). "Compositions and leaching behaviours of combustion residues." Fuel, 85, 264-271.
Tan, L. C., Choa, V., and Tay, J. H. (1997). "The influence of pH on mobility of heavy metals from municipal solid waste incinerator fly ash." Envir. Monit. Assess., 44, 275-284.
Tessier, A., Campbel, P. G. C., and Bisson, M. (1979). "Sequential extraction procedure for the speciation of particulate trace metals." Anal. Chem., 51(7), 844-851.
Van Herck, P., and Vandecasteele, C. (2001). "Evaluation of the use of a sequential extraction procedure for the characterization and treatment of metal containing solid waste." Waste Manage., 21, 685-694.
Verhulst, D., Buekens, A., J., S., P., and Erikson, G. (1996). "Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces." Environ. Sci. Technol., 30, 50-56.
Wang, K. S., Chiang, K. Y., Lin, K. L., and Sun, C. J. (2001). "Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash." Hydrometallurgy, 62, 73-81.
Wey, M. Y., Liu, K. Y., Tsai, T. H., and Chou, J. T. (2006). "Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln." J. Hazard. Mater., B137, 981-989.
Wey, M. Y., Su, J. L., Yan, M. H., and Wei, M. C. (1998). "The concentration distribution of heavy metals under different incineration operation conditions." Sci. Total Environ., 212, 183-193.
Wunsch, P., Greilinger, C., Bieniek, D., and Kettrup, A. (1996). "Investigation of the binding of heavy metals in thermally treated residues from waste incineration." Chemosphere, 32(11), 2211-2218.
Yvon, J., Anteucci, D., Jdid, E., Lorenzi, G., Dutre, V., Leclerq, D., Nielsen, P., and Veschkens, M., 143. (2006). "Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders." J. Geochem. Explor., 90, 143-155.
Zhang, P., and Ryan, J. A. (1998). "Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying pH conditions." Environ. Sci. Technol., 32, 3318-3324.
Zhao, Y., Song, L., and Li, G. (2002). "Chemical stabilization of MSW incinerator fly ashes." J. Hazard. Mat., B95, 47-63.
李冠蓁(2003)「細粒徑之都市垃圾焚化底灰以磷酸穩定化處理之研究」,碩士論文,淡江大學水資源及環境工程研究所,淡水。
楊金鐘、周順裕(1997)「利用磷酸鹽穩定化處理都市垃圾焚化飛之效果計估」,第十二屆廢棄物處理技術研討會論文集,台北,577-584。
鄭大偉、翁祖炘、朱瑾、曾錦清、杜志謙,(2003)「焚化灰渣電漿熔融之熔渣資源化技術與特性研究」,第十八屆廢棄物處理技術研討會論文集,台中。
鍾元璋(2002)「垃圾焚化飛灰以磷酸無害化處理之研究」,碩士論文,淡江大學水資源及環境工程研究所,淡水。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-07-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-07-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信