淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2107200715173800
中文論文名稱 松杉靈芝萃取物抑制人類表皮癌細胞之細胞週期進行
英文論文名稱 Cell cycle arrest by Ganoderma tsugae extracts in human epidermoid A431 cell
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 95
學期 2
出版年 96
研究生中文姓名 吳岱珈
研究生英文姓名 Tai-Chia Wu
學號 694171165
學位類別 碩士
語文別 中文
口試日期 2007-07-07
論文頁數 58頁
口試委員 指導教授-莊子超
委員-高銘欽
委員-王文奇
委員-莊子超
中文關鍵字 松杉靈芝  上皮生長因子受體  細胞週期 
英文關鍵字 Genoderma tsugae  EGFR  Cell cycle 
學科別分類 學科別自然科學化學
中文摘要 在許多癌症中(例如皮膚癌),上皮生長因子受體(EGFR, Epidermal
Growth Factor Receptor)及Cyclin D1 通常有過度的蛋白質表現、異常增生及突變情形。利用MTT assay,我們證實了松杉靈芝甲醇萃取物能在時間與劑量的調控下抑制A431 的生長。因此接下來欲探討松杉靈芝甲醇萃取物對於EGFR 過份表現的人類表皮癌細胞株A431 的抗癌作用。我們證實了松杉靈芝甲醇萃取物在時間與劑量的調控下抑制A431 的癌細胞生長。其次藉由西方墨點法偵測一系列下游訊息的蛋白質表現探討詳細分子機轉。我們證明了松杉靈芝甲醇萃取物在時間與劑量的條件下負調控EGFR、cyclin D1 與 CDK4 的蛋白質表現量並且降低了A431 癌細胞株的增生。在降解途徑方面,我們也發現了藉由加入蛋白酶抑制劑 MG132,松杉靈芝甲醇萃取物負調控了cyclin D1 的情況會回升,進而推論 cyclin D1 會走ubiquitin-dependent 的蛋白酶降解途徑。進一步我們又發現,松杉靈芝甲醇萃取物可能會提高AKT 及GSK3β的去活化作用。藉由這些實驗,我們可以推論松杉靈芝甲醇萃取物造成EGFR 蛋白質過表現的人類表皮癌細胞株A431 細胞週期停滯可能是經由PI3K/AKT 途徑進而造成cyclin D1 蛋白降解。此外,松杉靈芝甲醇萃取物不僅造成p21 的蛋白質表現增加而抑制了細胞週期中G1 期的cyclin D1 並且降低CDK4 的蛋白質表現。綜合以上之研究推測造成cyclin D1 減少的原因可能是由於蛋白酶調控的降解途徑以及CDK 抑制劑( p21)的表現提高,最終造成松杉靈芝甲醇萃取物抑制 EGFR 蛋白過表現的人類表皮癌細胞株。
英文摘要 The Epidermal Growth Factor Receptor (EGFR) and cyclin D1 are frequently amplified, overexpressed, or mutated in many cancers, including skin. We have previously demonstrated that the locally cultivated Ganoderma tsugae (G. tsugae, Lingzhi) extract possessing anti-cancer and anti-angiogenic properties in vitro and in vivo. The aim of the present work was to investigate the role of G. tsugae extracts in anti-cancer properties of EGFR-overexpressing human epidermoid carcinoma A431 cells. Using MTT assay, we demonstrated that G. tsugae extracts could inhibit the growth of A431 cells in a dose- and time-dependent manner. Western blotting analysis was used to investigate the mechanism of these effects. We demonstrated here a dose- and time-dependent down-regulation of expression of EGFR, cyclin D1 and CDK4 by G. tsugae extracts those correlate with the decrease in the proliferation of A431 cells. We also found that G. tsugae extracts-induced down-regulation of cyclin D1 was reversed by proteasome inhibitor, MG132, suggesting the role of ubiquitin-dependent proteasomal pathway. Furthermore, G. tsugae extracts treatment could cause the de-phosphorylation of constitutively active AKT and GSK3-beta. These finding suggest that G. tsugae extracts induces cell cycle arrest through proteasomal degration of cyclin D1 in EGFR-overexpressing human epidermoid carcinoma A431 cells might via the phosphatidylinositol 3-kinase/Akt-dependent pathway. Additionally, G. tsugae extracts could dramatically induce the expression of p21 while significantly inhibit the expression of the G1 phase cell cycle regulatory gene such as cyclin D1 and could suppress the expression of CDK4 protein. Taken together, our results suggest that proteasome-mediated down-regulation of cyclin D1 and up-regulation of CDK inhibitor might contribute to the antiproliferative effect of G. tsugae extracts against EGFR-overexpressing human epidermoid carcinoma.
論文目次 謝誌-----------------------------------I
中文摘要-------------------------------II
英文摘要-------------------------------III
目錄-----------------------------------V
表目錄---------------------------------VIII
圖目錄---------------------------------IX
附錄目錄-------------------------------X
縮寫表---------------------------------XI

第一章、 前言-實驗緣起及目的---------1
第二章、 序論------------------------2
第三章、 第一節、細胞週期------------2
壹、細胞週期概論---------------------2
貳、細胞週期之調控-------------------3
叁、細胞週期蛋白---------------------5
第二節、表皮生長因子-----------------6
壹、表皮生長因子受體概論(EGFR)-----6
貳、表皮生長因子受體與癌症的關係-----7
叁、針對表皮生長因子受體的治療方法---8
第三節、靈芝-------------------------9
壹、靈芝概論-------------------------9
貳、靈芝的主要成份與功效-------------10
参、靈芝與癌症的關係-----------------11
肆、松杉靈芝-------------------------12
研究方向-----------------------------13
第三章、材料與方法-------------------14
第一節、實驗材料及相關儀器-----------14
壹、細胞株---------------------------14
貳、抗體-----------------------------14
叁、化學藥品與試劑-------------------14
肆、主要儀器及器材-------------------15
第二節、實驗方法---------------------16
壹、松杉靈芝萃取物之製備-------------16
貳、細胞存活率分析-------------------16
叁、西方墨點法-----------------------17
第四章、實驗結果---------------------18
壹、松杉靈芝甲醇萃取物影響人類表皮癌細胞A431之細胞形態---18
貳、松杉靈芝甲醇萃取物抑制人類表皮癌細胞A431之生長-------18
叁、松杉靈芝甲醇萃取物影響人類表皮癌細胞A431的細胞週期之相關蛋白之表現-----19
一、 松杉靈芝甲醇萃取物抑制人類表皮癌細胞A431的cyclin D1及CDK4的表現量-----19
二、松杉靈芝甲醇萃取物增加人類表皮癌細胞A431的CDKi (p21)的表現-----------20
肆、松杉靈芝甲醇萃取物對人類表皮癌細胞A431的cyclin D1蛋白分解途徑之探討-----20
伍、松杉靈芝甲醇萃取物抑制人類表皮癌細胞A431的EGFR蛋白之表現---------------21
陸、松杉靈芝甲醇萃取物抑制人類表皮癌細胞A431的MAPK訊息傳遞途徑-------------22
第五章、討論----------------23
第六章、結論----------------26
參考文獻--------------------27
表--------------------------41
圖--------------------------45
附錄------------------------55
表目錄----------------------IV
表1、細胞株基本資料---------41
表2、西方墨點法使用之抗體---42
表 3、化學藥品及試劑--------43
圖目錄----------------------V
圖1、細胞週期的調控機轉-----4
圖2、表皮生長因子受體蛋白所調控之相關訊息傳遞路徑-----7
圖3、松杉靈芝甲醇萃取物對於人類表皮癌A431細胞株外觀型態之影響---------45
圖4、松杉靈芝甲醇萃取物對於人類表皮癌細胞A431細胞生長之影響---------46
圖5、松杉靈芝甲醇萃取物對於人類表皮癌A431細胞株之細胞週期相關蛋白之影響-----------47
圖6、松杉靈芝甲醇萃取物對於人類表皮癌A431細胞株cyclin D1蛋白分解途徑之影響-------48
圖7、松杉靈芝甲醇萃取物對於人類表皮癌A431細胞株之p-GSK3-beta蛋白表現量之影響---49
圖8、松杉靈芝甲醇萃取物抑制人類表皮癌A431細胞株p-Akt蛋白表現量-----------------50
圖9、松杉靈芝甲醇萃取物對於人類表皮癌A431細胞株之EGFR蛋白表現量之影響-----------51
圖10、松杉靈芝甲醇萃取物抑制人類表皮癌A431細胞株之EGFR下游MAPK ( Erk )蛋白質表現----------52
圖11、松杉靈芝甲醇萃取物抑制人類表皮癌A431細胞株之EGFR下游MAPK ( p38 )蛋白質表現----------53
圖12、松杉靈芝甲醇萃取物抑制cyclin D1之可能途徑示意圖---54
附錄目錄-----------------VI
附錄1、細胞培養使用之緩衝液-----------55
附錄2、西方墨點法使用之試劑溶液-------56
附錄3、Cyclin D1的降解途徑------------58
參考文獻 Adelaide J, Monges G, Derderian C, Seitz JF and Birnbaum D (1995). Oesophageal cancer and amplification of the human cyclin D gene CCND1/PRAD1. Br. J. Cancer, 71, 64-68.
Alao JP (2007). The regulation of cyclin D1 degradation: role in cancer development and potential for therapeutic invention. Molecular Cancer, 6, 1-16.
Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A and Pestell RG (1995). Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem., 270, 23589-23597.
Anderson D, Koch CA, Grey L, Ellis C, Moran MF and Pawson T (1990). Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science, 250, 979-982.
Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, Wang S, Weinstein IB and Holt PR (1996). Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology, 110, 669-674.
Arteaga C (2003). Targeting HER1/EGFR: a molecular approach to cancer therapy. Seminars in Oncology, 30, 3-14.
Arteaga CL and Baselga J (2004). Tyrosine kinase inhibitors: why does the current process of clinical development not apply to them? Cancer Cell, 5, 525-31.
Bacus SS, Chin D, Yarden Y, Zelnick CR and Stern DF (1996). Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors. Am. J. Pathol., 148, 549-558.
Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M and Bartek J (1994a). Cyclin D1 protein expression and function in human breast cancer. Intl. J. Cancer, 57, 353-361.
Bartkova J, Lukas J, Muller H, Strauss M, Gusterson B and Bartek J (1995). Abnormal patterns of D-type cyclin expression and G1 regulation in human head and neck cancer. Cancer Res., 55, 949-956.
Bartkova J, Lukas J, Strauss M and Bartek J (1994b). The PRAD-1/cyclin D1 oncogene product accumulates aberrantly in a subset of colorectal carcinomas. Intl. J. Cancer, 58, 568-573.
Baselga J, Norton L (2002). Focus on breast cancer. Cancer Cell, 1, 319-322.
Boigk G, Stroedter L, Herbst H, Waldschmidt J, Riecken EO and Schuppan D (1997). Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology, 26, 643-649.
Bowman T, Garcia R, Turkson J and Jove R (2000). STATs in oncogenesis. Oncogene, 19, 2474-2488.
Brazil DP, Yang ZZ and Hemmings BA (2004). Advances in protein kinase B signalling: AKTion on multiple fronts. Trends. Biochem. Sci., 29, 233-242
Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr (1999). Stat3 as an oncogene. Cell, 98, 295-303.
Cao QZ and Lin ZB (2006). Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell. Life Sci., 78, 1457-1463.
Caputi M, Groeger AM, Esposito V, Dean C, De Luca A, Pacilio C, Muller MR, Giordano GG, Baldi F, Wolner E and Giordano A (1999). Prognostic role of cyclin D1 in lung cancer. Relationship to proliferating cell nuclear antigen. Am. J. Respir. Cell Mol. Biol., 20, 746-750.
Carpenter G (2003). ErbB-4: mechanism of action and biology. Exp. Cell Res., 284, 66-77.
Ciardiello F, Troiani T, Caputo F, de Laurentiis M, Tortora G, Palmieri G, de Vita F, Colantuoni G, de Placido S, Bianco A: Phase II trial of gefitinib combined with docetaxel as first-line therapy in patients with metastatic breast cancer. Proceedings of American Society of Clinical Oncology Annual Meeting, Abstract No: 3080, 2005
Cohen S (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem., 237, 1555-1562.
Cohen S and Carpenter G (1975). Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl. Acad. Sci. U S A., 72, 1317-1321.
Cohen S and Taylor JM (1974). Epidermal growth factor: chemical and biological characterization. Recent Prog Horm Res., 30, 533–550.
Cohen S, Carpenter G and King L Jr (1980). Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J. Biol. Chem., 255, 4834-4842.
Cohen S, Fava RA and Sawyer ST (1982). Purification and characterization of epidermal growth factor receptor/protein kinase from normal mouse liver. Proc. Natl. Acad. Sci. USA., 79, 6237-6241.
Cohen S, Ushiro H, Stoscheck C and Chinkers M (1982). A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J. Biol. Chem., 257, 1523-1531.
Craven RJ, Lightfoot H and Cance WG (2003). A decade of tyrosine kinases: from gene discovery to therapeutics. Surg. Oncol., 12, 39-49.
Deane NG, Parker MA, Aramandla R, Diehl L, Lee WJ, Washington MK, Nanney LB, Shyr Y and Beauchamp RD (2001). Hepatocellular carcinoma results from chronic cyclin D1 overexpression in transgenic mice. Cancer Res., 61, 5389-5395.
Dickson C, Fantl V, Gillett C, Brookes S, Bartek J, Smith R, Fisher C, Barnes D and Peters G (1995). Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Letts., 90, 43-50.
Diehl JA, Zindy F and Sherr CJ (1997). Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev., 11, 957-972.
Drobnjak M, Osman I, Scher HI, Fazzari M and Cordon-Cardo C (2000). Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin.Cancer Res., 6, 1891-1895.
Duckett CS, Perkins ND, Leung K, Agranoff AB and Nabel GJ. (1995) Cytokine induction of nuclear factor kappa B in cycling and growth-arrested cells. Evidence for cell cycle-independent activation. J. Biol. Chem., 270, 18836-18840.
Fantl V, Creer A, Dillon C, Bresnick J, Jackson D, Edwards P, Rosewell I and Dickson C (2000). Fibroblast growth factor signalling and cyclin D1 function are necessary for normal mammary gland development during pregnancy. A transgenic mouse approach. Adv. Exp. Med Biol., 480, 1-7.
Fantl V, Stamp G, Andrews A, Rosewell I and Dickson C (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev., 9, 2364 - 2372.
Gan KH, Fann YF, Hsu SH, Kuo KW and Lin CN (1998). Mediation of the cytotoxicity of lanostanoids and steroids of Ganoderma tsugae through apoptosis and cell cycle. J. Nat. Prod., 61, 485-487.
Gao JJ, Min BS, Ahn EM, Nakamura N, Lee HK and Hattori M (2002). New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem. Pharm. Bull., 50, 837-840.
Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D and Peters G (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res., 54, 1812-1817.
Graham DL, Hillman DW, Hobday TJ, Rousey SR, Nair SG, Soori GS, Sabagh TM, Perez EA: N0234: Phase II study of erlotinib (OSI-774) plus gemcitabine as first-or second-line therapy for metastatic breast cancer (MBC). Proceedings of American Society of Clinical Oncology Annual Meeting, Abstract No: 644, 2005
Gregory H (1975). Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature, 257, 325-327.
Gumbiner LM, Gumerlock PH, Mack PC, Chi SG, deVere White RW, Mohler JL, Pretlow TG and Tricoli JV (1999). Overexpression of cyclin D1 is rare in human prostate carcinoma. Prostate, 38, 40-45.
Haigler HT, McKanna JA and Cohen S (1979). Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J. Cell. Biol., 81, 382–395.
Harari D and Yarden Y (2000). Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 19, 6102 – 6114.
Hartwell LH, Kastan MB (1994). Cell cycle control and cancer. Science,266, 1821–1828.
Hsu MJ, Lee SS and Lin WW (2002). Polysaccharide purified from Ganoderma lucidum inhibits spontaneous and Fas-mediated apoptosis in human neutrophils through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. J. Leukoc. Biol., 72, 207-216.
Hsu MJ, Lee SS, Lee ST, Lin WW (2003). Signaling mechanisms of enhanced neutrophil phagocytosis and chemotaxis by the polysaccharide purified from Ganoderma lucidum. Br. J. Pharmacol.,139, 289-298.
Hu H, Ahn NS, Yang X, Lee YS and Kang KS (2002). Ganoderma lucidum extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer cell. Int. J. Cancer, 102, 250-253.
Jiang J, Slivova V and Sliva D (2006). Ganoderma lucidum inhibits proliferation of human breast cancer cells by down-regulation of estrogen receptor and NF-kappaB signaling. Int. J. Oncol., 29, 695-703.
Jiang J, Slivova V, Harvey K, Valachovicova T and Sliva D (2004). Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-kappaB signaling. Nutr. Cancer, 49, 209-216.
Johnsom DG and Walker CL (1999). Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol Toxicol, 39, 295-312.
Joyce D, Bouzahzah B, Fu M, Albanese C, d'AmicoM, Steer J, Klein JU, Lee RJ, Segall JE, Westwick JK, Der CJ and Pestell RG (1999). Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway. J. Biol. Chem., 274, 25245-25249.
Kato J, Matsushime H, Hiebert SW, Ewen ME and Sherr CJ (1993). Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev., 7, 331-342.
King RW, Jackson PK, and Kirschner MW (1994). Mitosis in transition. Cell, 79, 563-571.
Kino K, Mizumoto K, Sone T, Yamaoka J, Watanabe A,Yamashita K, Ko K and Tsunoo H (1990). An immunomodulatory protein, Ling Zhi-8, (LZ-8), prevents insulitis in nonobese diabetic mouse. Diabetologia, 33, 713.
Kino K, Yamashita A, Yamaoka K, Watanabe J, Tanaka S, Ko K and Tsunoo H. (1989). Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8, (LZ-8), form Ganiderma lucidum. J. Biol. Chem., 264, 472-478.
Lee RJ, Albanese C, Fu M, d'Amico M, Lin B, Watanabe G, Haines IIIGK, Siegel PM, HungMC, Yarden Y, Horowitz JM,MullerWJ and Pestell RG (2000). Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol. Cell. Biol., 20, 672-683.
Li W, Sanki A, Karim RZ, Thompson JF, Soon Lee C, Zhuang L, McCarthy SW and Scolyer RA.Li. (2006). The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology, 38, 287-301.
Lin CN and Tome WP (1991). Novel cytotoxic principles of Formosan Ganoderma lucidum. J. Nat. Prod., 54, 998-1002.
Lin ZB (2005). Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J. Pharmacol. Sci., 99,144-153.
Lin ZB and Wang PY (2006). The pharmacological study of Ganoderma spores and their active component. Beijing Da. Xue. Xue. Bao.,38, 541-547.
Lin ZB and Zhang HN (2004). Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta. Pharmacol. Sin., 25, 1387-1395.
Lo HW, Hsu SC and Hung MC (2006). EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res. Treat., 95, 211-218.
Lundberg AS and Weinberg RA (1998). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell Biol., 18, 753-761.
Masui Y and Markert CL (1971). Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool., 177, 129–145.
Michalides RJ (1999). Cell cycle regulators: mechanisms and their role in aetiology, prognosis, and treatment of cancer. J. Clin. Pathol., 52, 555-568.
Morgan DO (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol., 13, 261-291.
Murasugi A, Tanaka S, Komiyama N, Iwata N, Kino K, Tsunoo H and Sakuma S (1991). Molecular cloning of a cDNA and a gene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus, Ganoderma lucidum. J. Biol. Chem., 266, 2486-2493.
Murray A (1994). Cell cycle checkpoints. Curr. Opin. Cell. Biol.,6, 872–876.
Murray AW (1991). Coordinating cell cycle events. Cold Spring Harb. Symp. Quant. Biol., 56, 399–408.
Musgrove EA (2006). Cyclins: roles in mitogenic signaling and oncogenic transformation. Growth Factors, 24, 13-19.
Navolanic PM, Steelman LS and McCubrey JA (2003). EGFR family signaling and its association with breast cancer development and resistance to chemotherapy. Int. J. Oncol., 22, 237-252.
Nishida N, Fukuda Y, Komeda T, Kita R, Sando T, Furukawa M, Amenomori M, Shibagaki I, Nakao K and Ikenaga M (1994). Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res., 54, 3107-3110.
Norbury C and Nurse P (1992). Animal cell cycles and their control. Annu Rev Biochem, 61, 441-470.
Park OK, Schaefer TS and Nathans D (1996). In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc. Natl. Acad. Sci. U.S.A., 93, 13704-13708.
Patnaik A, Beeram M, de Bono JS, Mita A, Chu SC, Rowinsky EK, Schwartz G, O’Rourke P, Takimoto CH, Tolcher AW: Phase I and Pharmacokinetics (PK) of Combined erbB1 and erbB2 Blockade with OSI-774 (Erlotinib; E) and Trastuzumab (T) in Combination with Weekly Paclitaxel (P) in Patients (pts) with Advanced Solid Tumors. Proceedings of American Society of Clinical Oncology Annual Meeting, Abstract No: 2000, 2005
Pervin S, Singh R and Chaudhuri G (2001). Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc. Natl. Acad. Sci. USA., 98, 3583-3588.
Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ and Arnold A (1999). The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr. Rev., 20, 501-534.
Pinto AE, Andre S, Laranjeira C and Soares J (2005). Correlations of cell cycle regulators (p53, p21, pRb and mdm2) and c-erbB-2 with biological markers of proliferation and overall survival in breast cancer. Pathology, 37, 45–50.
Polychronis A, Sinnett HD, Hadjiminas D, Singhal H, Mansi JL, Ali S, Slade MJ, Shousha S, Morrisson K, Coombes RC: Antiproliferative and molecular effects of neoadjuvant (pre-operative) gefitinib alone or in combination with anastrozole in epidermal growth factor receptor (EGFR) positive, estrogen receptor alpha (ERa) positive patients with primary breast cancer. Proceedings of American Society of Clinical Oncology Annual Meeting, Abstract No: 552, 2005
Rao PN and Johnson RT. (1970). Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature, 225, 159–164.
Roskoski R Jr (2004). The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys. Res. Commun., 319, 1-11.
Sakaida I, Matsumura Y, Akiyama S, Hayashi K, Ishige A and Okita K (1998). Herbal medicine Sho-saiko-to (TJ-9) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. J. Hepatol., 28, 298-306.
Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J and Sato GH ( 1983). Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med., 1, 511-529.
Sauter ER, Nesbit M, Litwin S, Klein-Szanto AJ, Cheffetz S and Herlyn M (1999). Antisense cyclin D1 induces apoptosis and tumor shrinkage in human squamous carcinomas. Cancer Res., 59, 4876-4881.
Shen G, Xu C, Chen C, Hebbar V, Kong AN (2006). p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol., 57, 317-327.

Sherr CJ (1995). D-type cyclins. Trends. Biochem. Sci., 20, 187 - 190.
Sherr CJ and Roberts JM (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes. Dev., 13, 1501-12.
Sherr. C. J (1993). Mammalian G1 cyclins. Cell, 73, 1059-1065.
Sicinski P and Weinberg RA (1997). A specific role for cyclin D1 in mammary gland development. J. Mamm. Gland Biol. Neoplasia, 2, 335-342.
Silva EG, Mistry D, Li D, Kuerer HM, Atkinson EN, Lopez AN, Shannon R and Hortobagyi GN (2002). Elevated luteinizing hormone in serum, breast cancer tissue, and normal breast tissue from breast cancer patients. Breast Cancer Res. Treat., 76, 125-130.
Slingerland J and Pagano M (2000). Regulation of the cdk inhibitor p27 and its deregulation in cancer. J. Cell Physiol., 183, 10-17.
Smith ML and Fornace AJ (1996). Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat.Res., 340, 109-124.
Sporn MB and Todaro GJ (1980). Autocrine secretion and malignant transformation of cells. N. Engl. J. Med., 303, 878-880.
Stanley G, Harvey K, Slivova V, Jiang J and Sliva D (2005). Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta1 from prostate cancer cells. Biochem. Biophys. Res. Commun., 330, 46-52.
Su HJ, Fann YF, Chung MI, Won SJ and Lin CN (2000). New lanostanoids of Ganoderma tsugae. J. Nat.Prod., 63, 514-516.
Tang W, Liu JW, Zhao WM, Wei DZ and Zhong JJ (2006). Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci., 80, 205-211.
Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A and Schmidt EV (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature, 369, 669-671.
Weinberg RA (1995). The retinoblastoma protein and cell cycle control. Cell, 81, 323-330.
Yang HL (2005). Ganoderic acid produced from submerged culture of Ganoderma lucidum induces cell cycle arrest and cytotoxicity in human hepatoma cell line BEL7402. Biotechnol Lett., 27, 835-838.
Yu Q, Geng Y and Sicinski P (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature, 411, 1017-1021.
Zhao JD and Zhang XQ (1994). Resources and taxonomy of Ling Zhi (Ganoderma) in China. In 'Program and Abstract, 94 International Sympposium on Ganoderma Reserch (Lin, Z. B. Ed)" Beijing Medical Univ. Press. Beijing, China. pp. 44-47.
李時珍,本草綱目.
神農氏,神農本草經.
張東柱、周文能、王也珍、朱宇敏 (2002) 大自然的魔法師-台灣大型菌. 行政院農業委員會 出版. 台北市。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-31公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信