§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2106201320583400
DOI 10.6846/TKU.2013.00808
論文名稱(中文) 側流對水旋風分離器粒子分離的影響
論文名稱(英文) Effects of Side Outlet Stream of a Hydrocyclone on Particle Separation
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 張碩程
研究生(英文) Shuo-cheng Chang
學號 600400591
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-06-03
論文頁數 79頁
口試委員 指導教授 - 吳容銘
委員 - 陳錫仁
委員 - 郭修伯
關鍵字(中) 水旋風分離器
計算流體力學
側流
關鍵字(英) Hydrocyclone
CFD
Side outlet stream
第三語言關鍵字
學科別分類
中文摘要
本研究採用直徑18.5 mm之水旋風分離器,使用黑色碳化矽粉末作為實驗粉體,並以計算流體力學軟體FLUENT進行模擬,討論當水旋風分離器圓柱部份改為具有側流時,對水旋風分離器分離現象的影響。以VOF多相流模式及LES紊流模式模擬水旋風分離器的流場狀態,並使用離散相模式(Discrete Phase Model)針對水旋風分離器中顆粒的運動行為進行分析,以討論側流功能對水旋風分離器分級效率的影響。

實驗與模擬結果顯示,當水旋風分離器具有適當的側流量時,對於顆粒的分級效率會有提升的效果。原因在於水旋風分離器圓柱區域亂流的情況較為嚴重,這會造成粒子在此區域運動軌跡複雜化,而降低分離的效率,因此在這區域內設置適當的側流量時,可以有效降低亂流的程度,使粒子運動軌跡簡化,並減少在水旋風分離器內的滯留時間,讓粒子更有效率的進行分離,因此具有側流功能的水旋風分離器對於提升分離效率有一定程度的貢獻。
英文摘要
In this essay, we used 18.5mm diameter hydrocyclone in my experimental device, with black silicon carbide as experimental particulates Fluent, a simulation program, to do process simulation. Furthermore, we discussed the separation of the hydrocyclone when we increased the stream of side outlet in the cylinder. also, we compared the performance as before. We simulated the status of the flow pattern, which is inside of the hydrocyclone. At the same time, we set discrete phase model to analyze the motivation of particulates for observing the efficiency of classification.
As a result, the classifying efficiency of particulates will increase after we set the stream of side outlet. The reason is the hydrocyclone, which is traditional, will produce turbulence easily. After that, this situation will cause particulates to take more long time to leave the cylinder. That’s the reason why classification will be decreased. However, when we set the stream of side outlet, it will decrease the effect which is caused by turbulence. The space time of particulates will shorter than before. The particles will separate efficiently. In conclusion, we can say with reasonable confidence that the separation of the hydrocyclone will improve when it is set with the stream of side outlet.
第三語言摘要
論文目次
中文摘要		Ⅰ
英文摘要		Ⅱ
目錄		Ⅲ
圖表目錄		Ⅵ

第一章 緒論		1
  1-1 前言		1
  1-2 研究動機與目的		2

第二章 文獻回顧		3
  2-1 水旋風分離器之發展概論		3
    2-1-1水旋風分離器歷史發展		3
    2-1-2 水旋風分離器之結構與簡介		4
    2-1-3 水旋風分離器的優缺點		6
  2-2 水旋風分離器之特殊現象		7
    2-2-1短路流現象		7
    2-2-2循環流	.7
    2-2-3 空氣柱現象	.8
    2-2-4 魚勾現象		8
  2-3 數值計算在水旋風分離器的應用	10

第三章 理論與數值計算方法	17
  3-1 水旋風分離器的基本分離原理	17
    3-1-1 平行軌道理論	18
  3-2 固體顆粒在水旋風分離器流場中運動的受力分析	19
    3-2-1固體顆粒在流場中沉降的受力分析	19
    3-2-2兩相流動中的受力分析	21
    3-2-3水旋風分離器中的剪應力	23
  3-3影響水旋風分離器之參數	24
    3-3-1幾何結構對水旋風分離器的影響	24
    3-3-2物性參數對水旋風分離器的影響	26
    3-3-3操作參數對水旋風分離器的影響		27
  3-4無因次群組	29
  3-5數值計算方法	31
    3-5-1模擬軟體簡介		31
    3-5-2統御方程式	32
    3-5-3建立幾何形狀與網格	36
    3-5-4邊界條件設定	38
    
第四章 實驗的裝置與方法	39
  4-1 實驗物料	39
  4-2 實驗儀器與設備	40
  4-3 實驗水旋風分離器裝置	41
  4-4 實驗步驟	46

第五章 結果與討論	48
  5-1 水旋風分離器之分級效率	48
    5-1-1 實驗部分		48
    5-1-2模擬部分	52
    5-1-3模擬不同進口流率對分級效率之影響	54
    5-1-4薄膜管黏滯阻力對水旋風分離器之影響	55
  5-2模擬粒子運動軌跡	57

第六章 結論	68
符號說明	70
參考文獻	74

圖目錄
第二章
圖2-1 水旋風分離器裝置的結構示意圖		5
圖2-2 水旋風分離器的魚鉤現象		9

第三章
圖3-1 三種渦流半徑與切線速度的示意圖		18
圖3-2 模擬用的水旋風分離器網格		37

第四章
圖 4-1 碳化矽粉末之粒徑分佈圖		39
圖 4-2 揚程圖		40
圖 4-3 水旋風分離器本體結構與尺寸		42
圖 4-4 實驗使用的水旋風分離器照片		43
圖 4-5 實驗使用的燒結不鏽鋼管照片		44
圖 4-6 水旋風分離器整體裝置圖		45

第五章
圖5-1  THC溢流、進口及底流之累積粒徑百分比	49
圖5-2  SHC溢流、進口及底流之累積粒徑百分比	49
圖5-3  實驗不同側流量之分級效率	50
圖5-4  SHC模擬與實驗之分級效率(Inlet/(side outlet)=200)	52
圖5-5  SHC模擬與實驗之分級效率(Inlet/(side outlet)=250)	53
圖5-6  THC模擬與實驗之分級效率		53
圖5-7  模擬不同進口流速的分級效率圖	54
圖5-8  模擬不同側流量之分級效率圖(v=8.12 m/s)	55
圖5-9  粒子放入位置示意圖	58
圖5-10在No.5 粒子往底流移動的百分比	59
圖 5-11在No.6 粒子往底流移動的百分比	60
圖 5-12在No.6,不同粒徑下THC與SHC的粒子軌跡	61
圖 5-13在No.7 粒子往底流移動的百分比	62
圖 5-14在No.9 粒子往底流移動的百分比	63
圖 5-15在No.10 粒子往移動的底流百分比	64
圖 5-16在No.11 粒子往底流移動的百分比	64
圖 5-17在No.1 粒子往底流移動的百分比	65
圖 5-18在No.2 粒子往底流移動的百分比	65
圖 5-19在No.3 粒子往底流移動的百分比	66
圖 5-20在No.4 粒子往底流移動的百分比	66
圖 5-21在No.8 粒子往底流移動的百分比	67
圖 5-22在No.12 粒子往底流移動的百分比	67

表目錄

第五章
表 5-1進口及出口的重量百分率濃度	51
參考文獻
(1)Ahmed, M. M., Ibrahim, G. A., and Farghaly, M. G. (2009) “Performance of a three-product hydrocyclone.” International Journal of Mineral Processing, 91, 34-40.

(2)Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009a) “Experimental study of flow patterns in deoiling hydrocyclone.” Minerals Engineering, 22, 319-323. 

(3)Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009b) “Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles.” Chemical Engineering and Technology, 32, 55-63. 

(4)Bamrungsri, P., Puprasert, C., Guigui, C., Marteil, P., Bréant, P., & Hébrard, G. (2008) “Development of a simple experimental method for the determination of the liquid field velocity in conical and cylindrical hydrocyclones.” Chemical Engineering Research and Design, 86, 1263-1270. 

(5)Bhaskar, K. U., Murthy, Y. R., Raju, M. R., Tiwari, S., Srivastava, J. K., and Ramakrishnan, N. (2007) “CFD Simulation and Experimental Validation Studies on hydrocyclone,” Minerals Engineering, 20, 60-71.

(6)Bhaskar, K. U., Murthy, Y. R., Ramakrishnan, N., Srivastava, J.K., Shakar, Supriya., and Kumar, Vimal. (2007) “CFD validation for flyash particle classification inhydrocyclones,” Minerals Engineering, 20, 209-302.

(7)Boysan, F., Ayers, W. H., and Swithenbank, J. (1982) “Fundamental Mathematical Modeling Approach to Cyclone Design,” Transactions of the Institution of Chemical Engineers, 60, 222-230. 

(8)Da Matta, V. M., and Medronho, R. D. A. (2000) “A New Method for Yeast Recovery in batch Ethanol Fermentations: Filter Aid Filtration Followed by Separation of Yeast from Filter Aid Using Hydrocyclone,” Bioseparation, 9, 43-53 

(9)Delgadillo, J. A., and Rajamani, R. K. (2005) “Hydrocyclone Modeling: Large Eddy Simulation CFD Approach,” Minerals amd Metallurgical Processing, 22, 225-232. 

(10)Duggins, R. K., and Frith, P. C. W. (1987) “Turbulence Anisotropy in Cyclones,” Filtration and Separation, 24, 394-397.

(11)Dyakowski, T., and Williams, R. A. (1993) “Modelling Turbulent Flow Within a Small-Diameter Hydrocyclone,” Chemical Engineering Science, 48, 1143-1152.

(12)Frachon, A. M., and Cilliers, J. J. (1999) “A General Model for Hydrocyclone Partition Curves,” Chemical Engineering Journal, 73, 53-59. 

(13)Gupta, R., Kaulaskar, M. D., Kumar, V., Sripriya, R., Meikap, B. C., & Chakraborty, S. (2008) “Studies on the understanding mechanism of air core and vortex formation in a hydrocyclone.” Chemical Engineering Journal, 144, 153-166. 

(14)Harrison, S.T.L., and Cilliers, J. J.(1997) “The Use of Mini-Hydrocyclones for Differential Separations within Mineral Slurries Subjected to Bioleaching,” Minerals Engineering, 10, 529-535 

(15)Hoekstra, A. J., Derksen, J. J., and Van Den Akker, H. E. A. (1999) “An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones,” Chemical Engineering Science, 54, 2055-2065. 

(16)Huang, S. (2005) “Numerical Simulation of Oil-Water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows,” The Canadian Journal of Chemical Engineering, 83, 829-834. 

(17)Hsieh, K. T., and Rajamani, R. K. (1991) “Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow,” AIChE Journal, 37, 735-746. 


(18)J.C. Cullivan, R.A. Williams, T. Dyakowski, C.R. Cross. (2004) “New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics,” Minerals Engineering, 17, 651–660.

(19)Kelsall, D. F. (1953) “A Further Study on the Hydraulic Cyclone,” Chemical Engineering Science, 2, 254-272. 

(20)K. Udaya Bhaskar, Y. Rama Murthy, M. Ravi Raju, Sumit Tiwari,

(21)J.K. Srivastava, N. Ramakrishnan. (2007) “CFD simulation and experimental validation studies on hydrocyclone,” Minerals Engineering, 20, 60-71.

(22)Liu, Hai-Fei, Xu, Jing-Yu, Wu, Ying-Xiang, Zheng, Zhi-Chu.(2010) “Numerical study on oil and water two-phase flow in a cylindrical hydrocyclone,” 9th International Conference on Hydrodynamics, October 11-15,2010 Shanghai,China.

(23)Majumder, A. K., Yerriswamy, P., and Barnwal, J. P. (2003) “The ‘Fish-Hook’ Phenomenon in Centrifugal Separation of Fine Particles,” Minerals Engineering, 6, 1005-1007.

(24)Matvienko, O. V., and Dueck, J. (2006) “Numerical Study of the Separation Characteristics of a Hydrocyclone under Various Conditions of Loading of the Solid Phase,” Theoretical Foundations of Chemical Engineering, 40, 203-208.

(25)M. Habibian, M. Pazouki, H. Ghanaie, K. Abbaspour-Sani. (2008) “Application of hydrocyclone for removal of yeasts

(26)from alcohol fermentations broth,” Chemical Engineering Journal, 138, 30-34.

(27)M.A. Hararah, E. Endres, J. Dueck, L. Minkov c, T. Neesse.(2010) “ Flow conditions in the air core of the hydrocyclone,” Minerals Engineering, 23, 295-300.

(28)Nageswararao, K. (2000) “A Critical Analysis of the Fish-Hook Effect in Hydrocyclone Classifiers,” Chemical Engineering Journal, 80, 251-256. 

(29)Narasimha, M., Brennan, M., and Holtham, P. N. (2006) “Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape,” International Journal of Mineral Processing, 80, 1-14. 

(30)Puprasert, C.,G. Hebrard, L. Lopez and Y. Aurelle, (2004)“Potential of Using Hydrocyclone and Hydrocyclone Equipped with Grit Pot as A Pre-Treatment in Run-Off Water Treament,” Chemical Engineering and Processing,43,67-83.

(31)Slack, M. D., Del Porte, S., and Engelman, M. S. (2004) “Designing 

(32)Sonali Swain, Swati Mohanty, (2013) “A 3-dimensional Eulerian–Eulerian CFD simulation of a hydrocyclone” Applied Mathematical Modelling, 37, 2921-2932.

(33)Svarovsky, L. (1984) “Hydrocyclone,” Holt, Rinehart and Winston Ltd, London. 

(34)Svarovsky, L. (1990) “Solid-Liquid Separation,” 3rd ed., Butterworths, London 

(35)Trawinski, H. F. (1977) “Solid/Liquid Separation Equipment Scale up,” Ed. D. B. Purchas, Uplands Press, England, 241-286. 

(36)Wang, B., Chu, K.W., and Yu, A. B. (2007) “Numerical Study of Particle-Fluid Flow in A Hydrocyclone,” Industrial and Engineering Chemistry Research, 46, 4695-4705. 

(37)Wang, B., Chu, K.W., Yu, A. B., Vince, A., Barnett, G.D., Barnett, P.J.(2011) “Computational study of the multiphase flow and performance of dence medium cyclones:Effect of body dimensions,” Minerals Engineering, 24, 19-34.


(38)Xu, P., Wu, Z., Mujumdar, A. S., and Yu, B. (2009) “Innovative hydrocyclone inlet designs to reduce erosion-induced wear in mineral dewatering processes,” Drying Technology, 27, 201-211. 

(39)Yang, G. A. B. and Wakley, W. D. (1994) “Oil-water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions,” Oil Gas, 11, 37-50.

(40)Yoshioka, N., and Hotta, Y., (1955) “Liquid Cyclone As A Hydraulic Classifier,” Chemical Engineering Japen, 19(12),623 .

(41)Yoshioka, H., S., Fukui, K.,and Kobayashi, A. (2004) “Effect of Apex Cone on Particle Classification Performance of Cyclone Separator,” Journal of the Chinese Institute of Chemical Engineers,,35,41-46 

(42)Zhi-shan Bai, Hua-lin Wang *, Shan-Tung Tu. (2009) “Experimental study of flow patterns in deoiling hydrocyclone,” Minerals Engineering, 22, 319-323.

(43)任連城、梁政、梁利平和龍道玉 (2005) “過濾式水力旋流器方案設計”,西南石油學院學報,27(1),82-85 

(44)李建明 (1997) “水力旋流器固液兩相流動數值模擬及分離機理研究",博士學位論文,成都四川聯合大學化學工程學院 

(45)呂信毅 (2006) “改進複合型水旋風分離器之分離效率”,碩士學位論文,淡江大學化學工程與材料工程學系 

(46)許智淵 (2008) “水旋風分離器之研究與薄膜水旋風分離之發展”,碩士學位論文,淡江大學化學工程與材料工程學系 

(47)陳怡任 (2009) “水旋風分離器流場測量與模擬暨新型水旋風分離器之研究”,碩士學位論文,淡江大學化學工程與材料工程學系

(48)陳建宏 (2010) “溢流管之幾何結構對水旋風分離器澄清效果的影響”,碩士學位論文,淡江大學化學工程與材料工程學系

(49)王楚翹 (2010) “水旋風分離器及薄膜水旋風分離器之三相流模擬”,碩士學位論文,淡江大學化學工程與材料工程學系

(50)趙慶國和張明賢 (2003) “水力旋流器分離技術”,化學工業出版社
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信