淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2106201222500000
中文論文名稱 代餐食品持續使用行為之研究
英文論文名稱 A Study of Continuance Intention in Meal Replacement
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士班
系所名稱(英) Department of Business Administration
學年度 100
學期 2
出版年 101
研究生中文姓名 許藍心
研究生英文姓名 Lan-Hsin Hsu
學號 699610704
學位類別 碩士
語文別 中文
口試日期 2012-05-30
論文頁數 56頁
口試委員 指導教授-吳坤山
共同指導教授-張敬珣
委員-楊立人
委員-楊志德
中文關鍵字 代餐  期望確認  持續使用意願 
英文關鍵字 meal replacement  expectation confirmation  continuance intention 
學科別分類 學科別社會科學管理學
中文摘要 近年來時尚界對模特兒的審美觀開始強調「瘦就是美」,追求一種「骨感美」的風氣藉由電視、廣播、雜誌及報紙廣告等大眾媒體的渲染之下,普遍大眾身處在崇尚以瘦為美的時代,於是瘦身減重,雕塑體態逐漸成為一種流行趨勢。對於肥胖,則有較多的負面評價。不僅在外觀體型上,肥胖者給人笨拙、行動不靈活的負面觀感更重要的是肥胖會為健康帶來重大的影響。在追求「紙片人」、「骨感美」的風氣盛行下,由此可預見減重食品市場必將蓬勃發展,代餐食品不僅能夠提供減重者足夠的營養且有效控制熱量達到減重目的,且在食用上具有便利性,符合現代國人忙碌的生活步調模式,故在代餐食品市場上有極大的發展潛力與成長空間,因此代餐食品業者如何掌握其消費者的需求以及提高消費者滿意度,致力於提升消費者的再購意願,此為公司經營獲利的重要目標。
本研究主要以食用過代餐食品的女性消費者為研究對象,根據期望確認理論與計畫行為理論為基礎,探討主觀規範及知覺行為控制、期望確認程度、認知有用性、使用滿意度、持續使用意願與推薦意願間之關聯,提供代餐食品業者行銷代餐食品策略擬定參考。
本研究根據理論基礎建立研究架構與研究假說,共回收234份有效問卷,經由SPSS 19.0及VisualPLS 1.04b1統計軟體進行資料分析,研究結果發現:
一、知覺行為控制顯著正向影響認知有用性,主觀規範則無。
二、期望確認程度顯著正向認知有用性及使用滿意度。
三、認知有用性顯著正向影響滿意度與持續使用意願。
四、滿意度顯著正向影響持續使用意願及推薦意願。
最後根據本研究結果,提出管理意涵與建議,提供後續研究方向。
英文摘要 In the recent years fashion world conveys to the public the message that thin is beauty or bony means pretty. Commercial advertisements, TVs and magazines publicize thinness is something beauty. Therefore, slim body gradually becomes a kind of fashion trend. About obesity, the public have more negative opinions for fat persons not only their appearance but also awkward movements. The most important things is that obesity will cause healthy problem. Now, the general atmospheres focus on pursuing ”size zero model” or “skinny”; therefore , the diet food market will be in a vigorous growth. Meal replacement can not only provide enough nutrition for people who want to lose weight but can effectively control calories to get the goal of losing weight. Besides, eating meal replacement is quite convenient that comes up to busy lifestyle of modern people. The key factors for a meal replacement manufacture to obtain the market are to knowing the consumer’s need well, increasing their satisfaction and arousing their repurchasing intention.
The main purposes of this study based on the Expectation Confirmation Theory (ECT) and Theory of Planned Behavior, (TPB), examine the relationships among perceived behavior control, subject norm, perceived usefulness, expectation confirmation, satisfaction, continuance intention and recommendation intention. This research according to its theoretical foundation, then set up structure and hypotheses.234 effective sample were collected, By SPSS19.0 and VisualPLS 1.04b1 statistics software were used to analyze data and verify the hypotheses, the findings as follows:
1. Perceived behavior control has significant effect on perceived usefulness; subjective norm has not significant effect on perceived usefulness.
2. Expectation confirmation has significant effect on perceived usefulness and satisfaction.
3. Perceived Usefulness has significant positively effect on satisfaction and continuance intention.
4. Perceived Usefulness has significant positively effect on continuance intention and recommendation intention.
Finally, according to the empirical results, proposed several managerial implementations and suggestions for future research directions.
論文目次 目錄Ⅰ
表目錄Ⅱ
圖目錄Ⅱ
第一章緒論1
第一節研究背景與動機1
第二節研究目的3
第三節研究流程4
第二章文獻探討6
第一節代餐6
第二節期望確認理論9
第三節計劃行為理論16
第四節研究變數間之關聯性18
第三章研究方法與設計22
第一節研究架構22
第二節研究假說23
第三節研究變項、操作型定義與衡量23
第四節研究對象28
第五節資料分析方法28
第四章資料分析
第一節樣本與資料蒐集31
第二節敘述統計分析31
第三節研究變項之因果關係35
第五章研究結論與建議
第一節研究結論與發現42
第二節管理意涵45
第三節研究限制46
第四節後續研究建議46
參考文獻47
附錄一 研究問卷55

表目錄
表2-1 代餐供應型態表......................................7
表2-2 不同熱量限制的代餐..................................8
表2-3 2010-2011 年有關期望確認理論應用的部分研究..........13
表4-1 問卷回收統計表.....................................31
表4-2 年齡統計表.........................................32
表4-3 職業別統計.........................................32
表4-4 取得減肥代餐資訊管道統計表.........................33
表4-5 食用減肥代餐食品後其成效維持時間之統計表...........33
表4-6 食用減肥代餐食品後之至多減輕公斤數統計表...........34
表4-7 每月可支配所得統計表...............................34
表4-8 研究構面之信效度表.................................37
表4-9 相關係數矩陣表.....................................38
表4-10 研究模型路徑分析結果表.............................40
表4-11 影響持續使用意願之路徑.............................41
表5-1 研究假說彙整表.....................................42

圖目錄
圖1-1 研究流程圖..........................................5
圖2-1 Oliver(1980)之期望確認模式架構圖.....................9
圖2-2 繼續使用的期望確認模型模式(ECM) ..................12
圖 2-3 使用前後兩個階段影響 IT 持續使用意願模型...........13
圖 2-4 計畫行為理論式.................................... 16
圖 3-1 研究架構圖........................................ 22
圖4-1 本研究模型之路徑分析圖.............................40
參考文獻 中文文獻
1.吳明隆(2008)。結構方程模式SIMPLIS的應用。五南圖書出版股份有限公司。
2.李冠緯(2010)。Wii Fit 持續使用意願之探討:期望確認理論之應用。 朝陽科技大學休閒事業管理所碩士論文。
3.徐雅芬、羅淑慧(2008)。肥胖治療產品與服務之發展趨勢。「經濟部技術產業技術知識服務(ITIS)計畫」出版品。
4.陳紋慧(2003)。怎樣吃出瘦身美人:完全代餐手冊。葉子出版股份有限公司。
5.陳淑芳(2003)。減重食品產業現況與趨勢。「經濟部技術處產業技術知識服務(ITIS)計畫」出版品。
6.黃秀麗(2009)。扶輪社會員入住養生村行為意向之研究。淡江大學企業管理學系在職專班碩士論文。
7.黃婉婷(2010)。影響企業軟體委外服務持續使用之研究-組織流程、介面及使用者滿意度之觀點。 國立高雄第一科技大學資訊管理研究所碩士論文。
8.葉志嶸、張新儀、潘文涵(2009)。台灣近12年之肥胖與代謝症候群之變遷趨勢。中央研究院。
9.蕭銘雄、鄭曉平(2008)。以延伸式科技接受模型探討消費者線上投保人壽保險之意願。電子商務學報,第10卷,第1期。
10.鍾儀君(2010)。健康資訊網站持續使用意向之研究。國立中正大學醫療資訊管理研究所碩士論文。
11.顏廷任(2010)。應用雲端服務於國小社會科教學之研究。國立屏東教育大學數位學習教學所碩士論文。

二、英文文獻
1.Ajzen, I. and Fishbein, M.(1975). Understanding Attitudes and Predicting Social Behavior, Pretice-Hall, Englewood Cliffs, NJ.
2.Ajzen, I. and Fishbein, M.(1980). Understanding Attitudes and Predicting Social Behavior, Pretice-Hall, Englewood Cliffs, NJ.
3.Ajzen, I. and Madden T. J. (1986). Prediction of goal-directed behavior:Attitudes, intentions, and perceived behavioral control, Journal of Experimental Social Psychology, 22(5), 453-474.
4.Ajzen, I. (1989). Attitude structure and behavior, in A.R. Pratkanis, S.J. Breckler, and A.G. Greenwald (Eds.). Attitude structure and function, Lawrence Erlbaum Associates, Hillsdale, NJ, 241-274.
5.Ajzen, I.(1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
6.Anderson, E.W and Sullivan, M.W,(1993). The antecedents and consequences of customer satisfaction for firms, Marketing Science, 28(1), 125-143.
7.Anderson, E.W., Fornell, C. and Lehmann, D.R.(1994). The Antecedents and consequences of customer satisfaction for firims, Marketing Science, 12, 125-143.
8.Anderson, J.C. and Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach, Psychological Bulletin, 13(3), 411-423.
9.Albert Hayashi, Charlie, C., Terry R. and Jiinpo W. (2004). The role of social presence and moderating role of computer self efficacy in predicting the continuance usage of e-learning systems. Journal of Information Systems Education, 15(2), 139-154.
10.Bagozzi, R. P. and Yi, Y. (1988). On the evaluation of structural equation models,Journal of the Academy of Marketing Science, 16(1), 74-94.
11.Barclay, D. Higgins, C. A. and Thompson, R.L. (1995). The Partial least squares (PLS) approach to causal modeling: personal computer adoption and use as an illustration, Technology Studies, 2(2), 285-309.
12.Bearden,W.O. and Teel, J.E.(1983). Selected determinants of consumer satisfaction and complaints reports, Journal of Marketing Research, 20(2), 417-424.
13.Bougie, Roger, Rik Pieters, and Marcel Zeelenberg (2003). Angry customers don’t come back, They get back: The experience and behavioral implications of anger and dissatisfaction in services, Journal of the Academy of Marketing Science, 31, 377-93.
14.Bhattacherjee, Anol and Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test, MIS Quarterly, 28(2), 229-254.
15.Bhattacherjee, Anol(2001a). An empirical analysis of the antecedents of electronic commerce, Decision Support System, 32(2), 201-214.
16.Bhattacherjee, Anol(2001b). Understanding information systems continuance: An expectation-confirmation model, MIS Quarterly, 25(3), 315-370.
17.Cardozo, R.N.(1965). An experimental study of customer effort, expection and satisfaction, Journal of Marketing Research, 2(3), 244-249.
18.Chen, Yun-Yang (2010). Confirmation of expectation and satisfaction with the internet shopping: The Role of Internet Self-efficacy, Department of Business Administration, I-Shou University.
19.Cheung, C. M. K. and Lee, M. K. O. (2010). A theoretical model of intentional social action in online social networks, Decision Support Systems, 49(1), 24-30.
20.Chin, W.W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), 7-16.
21.Churchill, G.A. and Surprenant, C.(1982). An investigation into the determinants of consumer satisfaction, Journal of Marketing Research, 19(4), 491-504.
22.Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. (1989). User acceptance of computer technology. A comparison of two theoretical models, Management Science, 5(8), 982-1003.
23.Day, Ralph L.(1977). Extending the concept of consumer satisfaction, AdvanceIn Consummer Research, 4,149-154.
24.Fornell, C. and Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced Methods of Marketing Research (52-78), Oxford: Blackwell.
25.Fornell, C. and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18 (1), 39-50.
26.Fornell, C., Johnson, M.D., Anderson, E.W., J. Cha and Bryan, B.E.(1996). The american customer satisfaction index: Nature, purpose and findings, Journal of Marketing, 60, 7-18.
27.Fu, Jen-Ruei (2006). VISUAL PLS 1.04b1. http://www2.kuas.edu.tw/prof/fred/vpls/index.html
28.Gefen, D. and Straub D. W. (2005). A practical guide to factorial validity using PlS-Graph: Tutorial and annotated example, Communications of the Association for Information Systems, 16(5), 91-109.
29.Gefen, D. Straub, D.W. and Voudreau, M.C. (2000). Structural equation modeling and regression: Guidelines for research practices, Communication of the Association for Information Systems, 7(4), 1-79.
30.Hair, J. F., Anderson, R. E., Tatham, R. L. and Black, W. C. (1998). Multivariate Date Analysis International Edition (5th ed), N. J.: Prentice-Hall.
31.Hair, J. F., Black, W. C., Babin, B. J. and Anderson, R. E. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Prentice-Hall.
32.Howard, J.A., and Sheth, J.N.(1969). The Theory of Buyer Behavior, New York: John Wiley and Sons.
33.Herr, P., Kardes, F. and Kim, J.(1991). Effect of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnostic perspective, Journal of Consumer Research, 17(4), 454-462.
34.Howell, J.M. and Aviolo, B.J. (1993). Transformational leadership, transactional leadership, locus of control, and support for innovation: key predictors of consolidated-business-unit-performance, Journal of Applied Psychology, 78(6), 891-902.
35.Hulland J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies, Strategic Management Journal, 20(2), 195-204.
36.Lee, Ming-Chi (2010). Explaining and predicting user's continuance intention toward e-learning: An extension of the expectation-confirmation model, Department of Computer Science and Information Engineering, National Pingtung Institute of Commerce.
37.Liu, W.L, Huang, K.P and Wang, C.H (2011). Age cohort analysis in continued usage intention of mobile value-add service: Generation Y and Baby boomers, Africa Journal of Business Management, 5(14), 5863-5870.
38.Lopez-Nicolas, C., and Molina-Castillo, F. J. (2008). Customer knowledge management and e-commerce: The role of customer perceived risk. International Journal of Information Management, 28, 102-113.
39.Locke, E.A.(1976). The nature and cause of job satisfaction, Handbook of Industrial and Organizational Psychology, 1319-1328.
40.Mathieson, K.(1991). Predicting user intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior, Information Systems Reseach, 2(3), 173-191.
41.Medina, M. Q. and Chaparro, J. P. (2007/2008). The impact of the human element in the information systems quality for decision making and user satisfaction, The Journal of Computer Information Systems, 48(2), 44-53.
42.Miller, J.A.(1977). Studying satisfaction, modifying models, eliciting expectation, posing problems and marking meaningful measurements, Cambrige, Mass: Marketing Science Institute, 72-91.
43.Nunnally J.C. (1978). Psychometric Theory. New York: Mcgraw-Hill.
44.Nunnally J.C. and Bernstein I.H. (1994). Psychometric theory (3rd Ed.). New York: McGraw-Hill.
45.Nysveen, H., Pedersen, P. E. and Thorbjornsen, H. (2005). Intentions to use mobile services: antecedents and cross-service comparisons. Journal of the Academy of Marketing Science 33(3), 330-346.
46.Oliver, R. L. and DeSarbo, W. S. (1988). Response Determinants in Satisfaction Judgment, Journal of Consumer Research, 14, 495-507.
47.Oliver, R.L.(1980). A cognitive model of the antecedents and consequences of satisfaction decision, Journal of Marketing Reserach, 17, 460-469.
48.Oliver, R.L.(1981). Measurement and evaluation of satisfaction process in retail setting, Journal of Retailing, 57(3), 25-47.
49.Oliver, R. L.(1993). Cognitive, affective, and attribute bases of the satisfaction response, Journal of consumer Reserch, 20(3), 418-430.
50.Patterson, P.G. and Spreng. R.A.(1997). Modeling the determinants of customer satisfaction for business-to-business professional service., Journal of Academy of Marketing Science, 25(1), 4-17.
51.Pavlou, P. A.and Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143.
52.Roca, J. C., Chiu, C.M. and Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human–Computer Studies, 64(6), 683–696.
53.Sang, S., Lee, J. D. and Lee, J. (2010). E-government adoption in Cambodia: A partial least squares approach, Transforming Government: People, Process, and Policy, 4(2), 138-157.
54.Shiau, W.L, Huang, L.C and Shih, C.H (2011).Understanding Continuance intention of blog user: A perspective of and expectation confirmation theory, Journal of Convergence Information Techology, 6, 306-315.
55.Spreng, R. A., Mackenzie, S. B. and Olshavsky, Richard W. (1996). A Reexamination of the Determinants of Consumer Satisfaction, Journal of Marketing, 60(3),15-32.
56.Taylor, S. and Todd, P. A. (1995). Understanding infromation technology usage: a test of competing models, Information Systems Research, 6(2), 144-176
57.Tse, D.K. and Wilton, P.C.(1988). Models of consumer satisfaction formation: An extension, Journal of Marketing Research, 25(2), 204-212.
58.Venkatesh, V. and Davis, F. D. (2000). A theoretical extension of the technology acceptance model:Four longitudinal studies. Management Science, 46(2), 186-204.
59.Verkasalo Hannu, Carolona Lopez-Nicolas, Francisco J. Molina-Castillo and Harry Bouwman (2010). Analysis of users and non-users of smartphone applications, Telematics and Informatics, 242-255.
60.Westbrook, Robert A. (1987). Product/Consumption-Based affective response and postpurchase process, Journal of Marketing Resesrch, 24(3), 258-270.
61.Wu, J. and Wang, S.(2005). What drives mobiles commerce? An empirical evaluation of the revised technology acceptance model, Information & Management, 42(5),719-729.
62.Zhou, Tao(2011). An empirical examination of user’s post-adoption behavior of mobile services, Behavior & Information Technology, 30(2), 241-250.




論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-06-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-06-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信