§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2106201216162600
DOI 10.6846/TKU.2012.00881
論文名稱(中文) 無線隨意網路中以叢集度為考量之可靠繞徑協定
論文名稱(英文) Reliable Local Recovery Routing Protocol with Clustering Coefficient for Ad Hoc Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系博士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 姚成翰
研究生(英文) Chen-Han Yao
學號 895410156
學位類別 博士
語言別 英文
第二語言別
口試日期 2012-06-04
論文頁數 93頁
口試委員 指導教授 - 蔡憶佳
委員 - 謝孫源
委員 - 顏淑惠
委員 - 林慧珍
委員 - 林慶昌
委員 - 蔡憶佳
關鍵字(中) 叢集度
無線隨意網路
局部復原
需求導向繞徑協定
複雜網路
關鍵字(英) Clustering Coefficient
Wireless Mobile Ad Hoc Network
Local Recovery
On-demand Routing Protocol
Complex Network
第三語言關鍵字
學科別分類
中文摘要
在無線隨意網路中,當裝置要傳送資料時,必須利用在通訊範
圍內的鄰居節點將資料一步一步代傳至目的節點。傳統的繞徑協定
通常利用封包廣播的方式來尋找傳送路徑,網路拓墣變動容易造成
傳送路徑失效。當傳送路徑失效時,來源節點會重新尋找新的傳送
路徑;頻繁的路徑失效導致不斷的重新尋找傳送路徑會造成大量的
資源消耗。
不論網路拓樸如何變動,有效率的繞徑協定必須快速且正確的
將資料傳送至目的節點並同時減少資源消耗。因此在本篇論文中我
們提出兩個以叢集度為考量並具備局部復原能力的繞徑協定:(一)
以叢集度為考量之局部復原繞徑協定,(二)以可靠性及叢集度為考
量之局部復原繞徑協定。
方法一依據路徑叢集度總和選擇傳送路徑,當路徑失效時,節
點快速的利用其他最短路徑或周邊鄰居節點將資料繼續傳送至目的
節點。方法二依據連線穩定度及節點叢集度選擇傳送路徑,此方法
可選擇較穩定的連線路徑,減少路徑失效發生的頻率;同時利用局
部復原方法快速修復失效路徑。
實驗結果顯示本論文所提出的兩個繞徑協定皆可以有效地減少
當路徑失效時重新尋找路徑的資源消耗,並同時可以提升資料成功
傳送的送達率。
英文摘要
Nodes in mobile ad hoc network communicate with each other through wireless multi-hop links. When a node wants to send data to another node, it uses some routing protocol to find the path. In on-demand routing protocols, the source starts a route discovery to find the route leading to the destination. Route discovery is typically performed via flooding, which consumes a lot of control packets. Because of node mobility, the network topology change frequently and cause the route broken. Traditional routing protocols restart a route discovery when link failure. In this thesis, we propose two on-demand local recovery routing protocols based on clustering coefficient, (I) "Local Path Recovery Routing Protocol based on Clustering Coefficient "(LPRCC), (II) "Reliable Local Recovery Routing Protocol based on Clustering Coefficient"(RLRCC). Our first protocol LPRCC use route clustering coefficient to choose routing path. When link failure occurs, nodes can quickly salvage the data without starting another route discovery. Our second protocol RLRCC choose a route with higher route score, route score is calculated by link stable value and node triangle value. RLRCC can decrease the number of route failure occur and also can reduce the route discovery times. Simulation results show both of our protocols can decrease the number of control packets and increase route delivery ratio.
第三語言摘要
論文目次
Contents
Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
English Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X
List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Architecture of Wireless Networks . . . . . . . . . . . . . . . . . 1
1.2 The Origin of Ad Hoc Networks . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Overview of Mobile Ad Hoc Networks . . . . . . . . . . . . . . . 3
1.4 Applications of Mobile Ad Hoc Networks . . . . . . . . . . . . . . . . 4
1.5 Research Issues of Mobile Ad Hoc Networks . . . . . . . . . . . . . . 5
1.6 Routing in Mobile Ad Hoc Networks . . . . . . . . . . . . . . . . . . 6
1.7 Network Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.10 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Proactive Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Reactive Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Hybrid Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Our Proposed Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Local Path Recovery Routing Protocol based on Clustering Coefficient
(LPRCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Examples for Node Clustering Coefficient . . . . . . . . . . . . 32
3.1.3 An Example for Route Clustering Coefficient . . . . . . . . . . 34
3.1.4 Route Discovery Phase . . . . . . . . . . . . . . . . . . . . . . 35
3.1.5 Route Maintenance Phase . . . . . . . . . . . . . . . . . . . . 38
3.2 Reliable Local Recovery Routing Protocol based on Clustering Coefficient
(RLRCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Route Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Examples of Route Score . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Route Discovery Phase . . . . . . . . . . . . . . . . . . . . . . 49
3.2.4 Route Maintenance Phase . . . . . . . . . . . . . . . . . . . . 51
4 Analysis of Our Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1 LPRCC Route Discovery Algorithm . . . . . . . . . . . . . . . . . . . 52
4.2 LPRCC Transmission Algorithm . . . . . . . . . . . . . . . . . . . . . 54
4.3 RLRCC Route Discovery Algorithm . . . . . . . . . . . . . . . . . . . 55
4.4 RLRCC Transmission Algorithm . . . . . . . . . . . . . . . . . . . . 56
4.5 Local Recovery Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 57
5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Performance of LPRCC vs AODV . . . . . . . . . . . . . . . . . . . . 59
5.2 Performance of RLRCC vs RFC . . . . . . . . . . . . . . . . . . . . . 62
6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Appendix A: Clustering Coefficient and Node Size . . . . . . . . . . . . . . . . 76
Appendix B: Clustering Coefficient and Network Connectivity . . . . . . . . . 79
Appendix C: Clustering Coefficient and Network Size . . . . . . . . . . . . . . 82
Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

List of Figures
1.1 A mobile ad hoc network formed by different mobile devices. . . . . . 3
1.2 An example of how to send data from S to D. . . . . . . . . . . . . . 6
1.3 An empirical graph of degree distribution at node size 100, transmission
range 150m, network size 1000m × 1000m. . . . . . . . . . . . . 8
1.4 An empirical graph of average path length at node size 75 − 500,
transmission range 150m, network size 1000m × 1000m. . . . . . . . . 9
1.5 An example of how to calculate betweenness centrality of node i. . . . 11
1.6 An example of how to calculate clustering coefficient of node i. . . . . 12
1.7 A spacial case of clustering coefficient. . . . . . . . . . . . . . . . . . 12
1.8 An empirical graph of global clustering coefficient at node size 75 −
500, transmission range 150m, network size 1000m × 1000m. . . . . . 13
1.9 An empirical graph of local clustering coefficient at node size 100,
transmission range 150m, network size 1000m × 1000m. . . . . . . . . 14
1.10 An empirical graph of network average clustering coefficient at node
size 75 − 500, transmission range 150m, network size 1000m × 1000m. 15
1.11 An example of a route failure occur at node B because of node C
move away. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 DSDV routing table update scheme . . . . . . . . . . . . . . . . . . . 20
2.2 Route request scheme of DSR. . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Route reply scheme of DSR. . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 AODV route discovery scheme. . . . . . . . . . . . . . . . . . . . . . 24
2.5 AODV-BR: Build alternate path via overhear RREP packets. . . . . . 25
2.6 An example of RFC how to determine the link’s stability. . . . . . . . 26
2.7 An example of zone routing protocol(zone size is 2 hops). . . . . . . . 27
3.1 Examples for node clustering coefficient with node degree is 2. . . . . 32
3.2 Examples of node clustering coefficient with node degree is 3. . . . . . 33
3.3 An example of route clustering coefficient where the shortest hop
count from node S to D is 5. . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 An example of how to generate an adjacency matrix. . . . . . . . . . 35
3.5 An example of node E receive several RREQ packets. . . . . . . . . . 37
3.6 An example of node i update its adjacency matrix. . . . . . . . . . . 37
3.7 An example of salvage route by choosing another shortest path. . . . 40
3.8 An example of repair the route by select recovery routes. . . . . . . . 41
3.9 An schematic diagram of how to calculate route score from S to D
where have k shortest path. . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Link stable value for each possible route, hop count is 5. . . . . . . . 47
3.11 Node triangle number for each possible route. . . . . . . . . . . . . . 48
5.1 Clustering coefficient distribution. Node number=100. . . . . . . . . 60
5.2 Control packets number vs. node mobility, 100 nodes, 1000mx1000m
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Packets Delivery Ratio vs. node mobility, 100 nodes, 1000mx1000m
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Control packets number vs. node mobility, 100 nodes, 1000mx1000m
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Packets Delivery Ratio vs. node mobility, 100 nodes, 1000mx1000m
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.1 Clustering coefficient distribution at node size 75, transmission range
150m, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . . 76
A.2 Clustering coefficient distribution at node size 100, transmission range
150m, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . . 77
A.3 Clustering coefficient distribution at node size 150, transmission range
150m, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . . 77
A.4 Clustering coefficient distribution at node size 180, transmission range
150m, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . . 78
A.5 Clustering coefficient distribution at node size 200, transmission range
150m, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . . 78
B.1 Clustering coefficient distribution at transmission range 120m, node
size 100, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . 79
B.2 Clustering coefficient distribution at transmission range 130m, node
size 100, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . 80
B.3 Clustering coefficient distribution at transmission range 150m, node
size 100, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . 80
B.4 Clustering coefficient distribution at transmission range 200m, node
size 100, network size 1000m × 1000m. . . . . . . . . . . . . . . . . . 81
C.1 Clustering coefficient distribution at network size 600m×600m, transmission
range 150m, node size 100. . . . . . . . . . . . . . . . . . . . 82
C.2 Clustering coefficient distribution at network size 800m×800m, transmission
range 150m, node size 100. . . . . . . . . . . . . . . . . . . . 83
C.3 Clustering coefficient distribution at network size 1000m × 1000m,
transmission range 150m, node size 100. . . . . . . . . . . . . . . . . 83
C.4 Clustering coefficient distribution at network size 1200m × 1000m,
transmission range 150m, node size 100. . . . . . . . . . . . . . . . . 84
C.5 Clustering coefficient distribution at network size 1200m × 1200m,
transmission range 150m, node size 100. . . . . . . . . . . . . . . . . 84

List of Tables
1.1 The comparison of our proposed protocols . . . . . . . . . . . . . . . 18
3.1 Notation Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 LPRCC RREQ Packet Format . . . . . . . . . . . . . . . . . . . . . . 36
3.3 LPRCC RREP Packet Format . . . . . . . . . . . . . . . . . . . . . . 38
3.4 LPRCC Routing table Format . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Notation Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 RLRCC RREQ Packet Format . . . . . . . . . . . . . . . . . . . . . . 50
3.7 RLRCC RREP Packet Format . . . . . . . . . . . . . . . . . . . . . . 50
3.8 RLRCC Routing table Format . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Notation of LPRCC Route Discovery Algorithm . . . . . . . . . . . . 53
4.2 Check RREQ Function . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Notation of LPRCC Transmission Algorithm . . . . . . . . . . . . . . 54
4.4 Notation of RLRCC Route Discovery Algorithm . . . . . . . . . . . . 55
4.5 Notation of RLRCC Transmission Algorithm . . . . . . . . . . . . . . 57
4.6 Notation of Local Recovery Algorithm . . . . . . . . . . . . . . . . . 58
5.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
參考文獻
Bibliography
[1] C. S. R. Murthy and B. S. Manoj, “Ad Hoc Wireless Networks,” Prentice Hall PTR, Upper Saddle River, NJ, 2004.
[2] S. Sesay, Z. Yang and J. He, “A Survey on Mobile Ad Hoc Wireless Network,” Information Technology Journal, Vol. 3, Issue 2, pp. 168-175, 2004.
[3] M. Abolhasan, T. Wysocki and E. Dutkiewicz, “A Review of Routing Protocols for Mobile Ad Hoc Networks,” Ad Hoc Networks, Vol. 2, Issue 1, pp. 1-22, 2004.
[4] C. R. Dow, P. J. Lin, S. C. Chen, J. H. Lin and S. F. Hwang, “A Study of Recent Research Trends and Experimental Guidelines in Mobile Ad-hoc Networks,” Advanced Information Networking and Applications, pp. 72-77, 2005.
[5] S. H. H. N. Ghazani, J. J. Lotf and R. M. Alguliev, “A New Survey of Routing Algorithms in Ad Hoc Networks,” 2nd International Conference on Computer
Engineering and Technology (ICCET), pp. 684-688, 2010.
[6] Y. J. Tsai, P. N. Hsiao and C. C. Lin, “A Social Network Model Based on Caveman Network,” First International Conference on Communications and Networking, pp. 1-6, 2006.
[7] D. J. Watts and D. H. Strogatz, “Collective Dyanmics of Small-World Networks,” Nature 393, pp. 440-442, 1998.
[8] L. DA F. Costa, F. A. Rodrigues, G. Travieso and P. R. V. Boas, “Characterization of Complex Networks: A Survey of Measurements,” Advances in Physics, Vol. 56, Issue 1, pp. 167-242, 2007.
[9] Y. J. Tsai and P. N. Hsiao, “A Growing Network Model with High Hub Connectivity and Tunable Clustering Coefficient,” WSEAS Transactions on Information Science and Applications, Vol. 4, Issue 12, pp. 1447-1452, 2007.
[10] G. Pei, M. Gerla and T. W. Chen, “Fisheye State Routing: A Routing Scheme for Ad Hoc Wireless Networks,” International Conference on Communications (ICC), pp. 70-74, 2000.
[11] P. Appavoo and K. Khedo, “SENCAST: A Scalable Protocol for Unicasting and Multicasting in a Large Ad Hoc Emergency Network,” International Journal of Computer Science and Network Security, Vol. 8, No. 2, pp. 152-164, 2008.
[12] S. Khurana, N. Gupta and N. Aneja, “Reliable Ad-hoc On-demand Distance Vector Routing Protocol,” International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, pp. 1-6, 2006.
[13] A. Pandey, Md. N. Ahmed, N. Kumar and P. Gupta, “A Hybrid Routing Scheme for Mobile Ad Hoc Networks with Mobile Backbones,” IEEE International Conference on High Performance Computing (HIPC), pp. 411-423, 2006.
[14] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” Computer Communications Review, Vol. 24, Issue 4, pp. 234-244, 1994.
[15] C. E. Perkins and E. M. Royer, “Ad Hoc On-demand Distance Vector Routing,” Mobile Computing Systems and Applications (WMCSA), pp. 90-100, 1999.
[16] V. D. Park and M. S. Corson, “A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks,” Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Infocom), pp. 1405-1413, 1997.
[17] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks,” Mobile Computing, Vol. 353, pp. 153-181, 1996.
[18] S. -J. Lee and M. Gerla, “AODV-BR: Backup Routing in Ad Hoc Networks,” Wireless Communications and Networking Conference (WCNC), pp. 1311-1316, 2000.
[19] C. Sengul and R. Kravets, “Bypass Routing: An On-Demand Local Recovery Protocol for Ad Hoc Networks,” Ad Hoc Networks, Vol. 4, Issue 3, pp. 380-397, 2006.
[20] M. Spohn and J. J. Garcia-Luna-Aceves, “Neighborhood Aware Source Routing,” 2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 11-21, 2001.
[21] N. Sarma, S. Nandi and R. Tripathi, “Enhancing Route Recovery for QAODV Routing in Mobile Ad Hoc Networks,” International Symposium on Parallel Architectures, Algorithms and Networks, pp. 39-44, 2008.
[22] N. Pereira and R. M. de Moraes, “A Comparative Analysis of AODV Route Recovery Mechanisms in Wireless Ad Hoc Networks,” IEEE Latin-American Conference on Communications, pp. 1-6, 2009.
[23] B. -L. Xiao, W. Guo, J. Liu and S. -L. Zhu, “An Improvement for Local Route Repair in Mobile Ad Hoc Networks,” International Conference on Telecommunications ITS Telecommunications Proceedings, pp. 691-694, 2006.
[24] J. Jeon, K. Lee and C. Kim, “Fast Route Recovery Scheme for Mobile Ad Hoc Networks,” International Conference on Information Networking (ICOIN), pp. 419-423, 2011.
[25] M. EffatParvar, M. Dehghan, A. Movaghar, A. Dareshorzadeh and M. R. Effat Parvar, “Reliable Multicast Routing with Local Recovery Approach in Ad Hoc Network,” International Conference on Access Networks and Workshops (AccessNets), pp. 1-6, 2007.
[26] N. Arad and Y. Shavitt, “Minimizing Recovery State in Geographic Ad Hoc Routing,” IEEE Transaction on Mobile Computing, Vol. 8, No. 2, pp. 203-217, 2009.
[27] D. Jagadeesan and S. K. Srivatsa, “Multipath Routing Protocol for Effective Local Route Recovery in Mobile Ad hoc Network,” Journal of Computer Science, Vol. 8, Issue 7, pp. 1143-1149, 2012.
[28] J. -W. Lin and Y. -T Chen, “Local Replacement for Route Recovery on a Collaborative Mobile Ad Hoc Network,” Wireless Communications and Mobile Computing, Vol. 11, Issue 10, pp. 1341-1357, 2011.
[29] L. R. Reddy and S. V. Raghavan, “SMORT: Scalable Multipath On-demand Routing for Mobile Ad Hoc Networks,” Ad Hoc Networks, Vol. 5, Issue 2, pp. 162-188, 2007.
[30] B. Sun, C. Gui, Q. Zhang, B. Yan and W. Liu, “A Multipath On-demand Routing with Path Selection Entropy for Ad Hoc Networks,” International Conference for Young Computer Scientists (ICYCS), pp. 558-563, 2008.
[31] M. K. Marina and S. R. Das, “On-demand Multipath Distance Vector Routing in Ad Hoc Networks,” Network Protocols Ninth International Conference on Nerwork Protocols (ICNP), pp. 14-23, 2001.
[32] S. Motegi, K. Yoshihara and H. Horiuchi, “Proposal on Multipath Routing for Ad Hoc Networks,” IEIC Technical Report, Vol. 102, No. 441, pp. 51-56, 2002.
[33] L.Wang, Y. Shu, M. Dong, L. Zhang and O. Yang, “Adaptive Multipath Source Routing in Ad Hoc Networks,” IEEE International Conference on Communications (ICC), pp. 867-871, 2001.
[34] S. J. Lee and M. Gerla, “Split Multipath Routing with Maximally Disjoint Paths in Ad Hoc Networks,” IEEE International Conference on Communications (ICC), pp. 3201-3205, 2001.
[35] J. Yi, A. Adnane, S. David and B. Parrein, “Multipath Optimized Link State Routing for Mobile Ad Hoc Networks,” Ad Hoc Networks, Vol. 9, Issue 1, pp. 28-47, 2011.
[36] M. Al-Akaidi and M. Alchaita, “Link Stability and Mobility in Ad Hoc Wireless Networks ,” Communications, IET, Vol. 1, Issue 2, pp. 173-178, 2007.
[37] N. C. Wang, Y. F. Huang and J. C. Chen, “A Stable Weight-based On-demand Routing Protocol for Mobile Ad Hoc Networks,” Information Sciences, Vol. 177, Issue 24, pp. 5522-5537, 2007.
[38] O. Tickoo, S. Raghunath and S. Kalyanaraman, “Route Fragility: A Novel Metric for Route Selection in Mobile Ad Hoc Networks,” International Conference on Networks (ICON), pp. 537-542, 2003.
[39] C. Y. Hsu, J. -L. C. Wu and S. T. Wang, “Finding Stable Routes in Mobile Ad Hoc Networks,” International Conference on Advanced Information Networking and Applications(AINA), pp. 424-427, 2004.
[40] M. G. Lee and S. Lee, “A Link Stability Model and Stable Routing for Mobile Ad-hoc Networks,” Proceedings of the 2006 international conference on Embedded and Ubiquitous Computing, pp. 904-913, 2006.
[41] M. Conti, E. Gregori and G. Maselli, “Reliable and Efficient Forwarding in Ad Hoc Networks,” Ad Hoc Networks, Vol. 4, Issue 3, pp. 398-415, 2006.
[42] W. Tang and W. Guo, “A Path Reliable Routing Protocol in Mobile Ad Hoc Networks,” International Conference on Mobile Ad-hoc and Sensor Networks, pp. 203-207, 2008.
[43] N. Sarma and S. Nandi, “A Multipath QoS Routing with Route Stability for Mobile Ad Hoc Networks,” IETE Technical Review, Vol. 27, Issue 5, pp. 380-397, 2010.
[44] Y. Liu, “Stable Routing Algorithm for Mobile Ad Hoc Network,” Journal of Networks, Vol. 6, No. 8, pp. 1171-1178, 2011.
[45] S. Sheik Aalam and T. Arulldoss Albert Victorie, “Node Prediction - Routing in Mobile Ad Hoc Networks,” European Journal of Scientific Research, Vol. 65, No. 2, pp. 260-267, 2011.
[46] J. A. Torkestani and M. R. Meybodi, “A Link Stability-based Multicast Routing Protocol for Wireless Mobile Ad Hoc Networks,” Journal of Network and Computer Applications, Vol. 34, Issue 4, pp. 1429-1440, 2011.
[47] N. Meghanathan, “A Link Distance Ratio Based Stable Multicast Routing Protocol for Mobile Ad Hoc Networks,” Advances in Computer Science and Information Technology, Networks and Communications, Vol. 84, Part 2, pp. 253-262, 2012.
[48] S. Santhi and G. Sudha Sadasivam, “Power Aware Stability-based Routing Protocol for Hybrid Ad Hoc Networks,” International Journal of Mobile Network Design and Innovation, Vol. 4, No. 1, pp. 47-58, 2012.
[49] Z. J. Haas and M. R. Pearlman, “A New Routing Protocol for the Reconfigurable Wireless Networks,” International Conference on Universal Personal Communications (ICUPC), pp. 522-566, 1997.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信